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• The question arises. We know that given integers a, b not
both 0, there are integers x and y so that

(a, b) = ax + by .

How do we find x and y?

• A method for solving this problem, known as Euclid’s
algorithm, first appeared in Euclid’s Elements more than
2000 years ago.

• Moreover this solution gives a very efficient algorithm and
it is still the basis for many numerical methods in
arithmetical applications.

• We may certainly suppose that a and b > 0 since
multiplying either by (−1) does not change the (a, b) - we
can replace x by −x and y by −y .
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• We can certainly suppose that b ≤ a. For convenience of
notation put r0 = b, r−1 = a.

• Now apply the division algorithm iteratively as follows

r−1 = r0q1 + r1, 0 < r1 ≤ r0,

r0 = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

. . .

rs−3 = rs−2qs−1 + rs−1, 0 < rs−1 < rs−2,

rs−2 = rs−1qs .

• That is, we stop the moment that there is a remainder
equal to 0.

• This could be r1 if b|a, for example, although the way it is
written out above it is as if s is at least 3.

• The important point is that because rj < rj−1, sooner or
later we must have a zero remainder.



Factorization
and Primality

Testing
Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

An application
to
factorization

• We can certainly suppose that b ≤ a. For convenience of
notation put r0 = b, r−1 = a.

• Now apply the division algorithm iteratively as follows

r−1 = r0q1 + r1, 0 < r1 ≤ r0,

r0 = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

. . .

rs−3 = rs−2qs−1 + rs−1, 0 < rs−1 < rs−2,

rs−2 = rs−1qs .

• That is, we stop the moment that there is a remainder
equal to 0.

• This could be r1 if b|a, for example, although the way it is
written out above it is as if s is at least 3.

• The important point is that because rj < rj−1, sooner or
later we must have a zero remainder.



Factorization
and Primality

Testing
Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

An application
to
factorization

• We can certainly suppose that b ≤ a. For convenience of
notation put r0 = b, r−1 = a.

• Now apply the division algorithm iteratively as follows

r−1 = r0q1 + r1, 0 < r1 ≤ r0,

r0 = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

. . .

rs−3 = rs−2qs−1 + rs−1, 0 < rs−1 < rs−2,

rs−2 = rs−1qs .

• That is, we stop the moment that there is a remainder
equal to 0.

• This could be r1 if b|a, for example, although the way it is
written out above it is as if s is at least 3.

• The important point is that because rj < rj−1, sooner or
later we must have a zero remainder.



Factorization
and Primality

Testing
Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

An application
to
factorization

• We can certainly suppose that b ≤ a. For convenience of
notation put r0 = b, r−1 = a.

• Now apply the division algorithm iteratively as follows

r−1 = r0q1 + r1, 0 < r1 ≤ r0,

r0 = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

. . .

rs−3 = rs−2qs−1 + rs−1, 0 < rs−1 < rs−2,

rs−2 = rs−1qs .

• That is, we stop the moment that there is a remainder
equal to 0.

• This could be r1 if b|a, for example, although the way it is
written out above it is as if s is at least 3.

• The important point is that because rj < rj−1, sooner or
later we must have a zero remainder.



Factorization
and Primality

Testing
Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

An application
to
factorization

• We can certainly suppose that b ≤ a. For convenience of
notation put r0 = b, r−1 = a.

• Now apply the division algorithm iteratively as follows

r−1 = r0q1 + r1, 0 < r1 ≤ r0,

r0 = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

. . .

rs−3 = rs−2qs−1 + rs−1, 0 < rs−1 < rs−2,

rs−2 = rs−1qs .

• That is, we stop the moment that there is a remainder
equal to 0.

• This could be r1 if b|a, for example, although the way it is
written out above it is as if s is at least 3.

• The important point is that because rj < rj−1, sooner or
later we must have a zero remainder.



Factorization
and Primality

Testing
Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

An application
to
factorization

• Repeating

r−1 = r0q1 + r1, 0 < r1 ≤ r0,

r0 = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

. . .

rs−3 = rs−2qs−1 + rs−1, 0 < rs−1 < rs−2,

rs−2 = rs−1qs .

• Euclid proved that (a, b) = rs−1.
• First of all (a, b)|a and (a, b)|b, and so (a, b)|r1.
• Repeating this we get (a, b)|rj for j = 2, 3, . . . , s − 1.
• On the other hand, starting at the bottom line rs−1|rs−2,
rs−1|rs−3 and so on until we have rs−1|b and rs−1|a.
Recall that this means that rs−1|(a, b).

• Thus we have just proved that

rs−1|(a, b), (a, b)|rs−1, rs−1 = (a, b).
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• Consider.

Example 1

Let a = 10678, b = 42

10678 = 42× 254 + 10

42 = 10× 4 + 2

10 = 2× 5.

Thus (10678, 42) = 2.

• But how to compute the x and y in (a, b) = ax + by?

• We could just work backwards through the algorithm using
back substitution,

2 = 42− 10× 4 = 42− (10678− 42× 254)× 4

= 42× 1017− 10678× 4.

• In general this is tedious and computationally wasteful
since it requires all our calculations to be stored.
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• A simpler way is as follows.

• Define x−1 = 1, y−1 = 0, x0 = 0, y0 = 1 and then lay the
calculations out as follows.

r−1 = r0q1 + r1, x1 = x−1 − q1x0, y1 = y−1 − q1y0
r0 = r1q2 + r2, x2 = x0 − q2x1, y2 = y0 − q2y1
r1 = r2q3 + r3, x3 = x1 − q3x2, y3 = y1 − q3y2
...

...
...

rs−2 = rs−1qs .

• The claim is that x = xs−1, y = ys−1. More generally
rj = axj + byj and this can be proved by induction.

• By construction we have r−1 = ax−1 + by−1,
r0 = ax0 + by0.

• Suppose rj = axj + byj is established for all j ≤ k . Then

rk+1 = rk−1 − qk+1rk

= (axk−1 + byk−1)− qk+1(axk + byk)

= axk+1 + byk+1.

• In particular (a, b) = rs−1 = axs−1 + bys−1.
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• Hence laying out the example above in this expanded form
we have

r−1 = 10678, r0 = 42, x−1 = 1, x0 = 0, y−1 = 0, y0 = 1,

10678 = 42 · 254 + 10, x1 = 1, y1 = −254
42 = 10 · 4 + 2, x2 = −4, y2 = 1017
10 = 2 · 5.

(10678, 42) = 2 = 10678 · (−4) + 42 · (1017).

• It is also possible to set this up using matrices.
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• Lay out the sequences in rows

r−1, x−1, y−1

r0, x0, y0
...

...
...

• Now proceed to compute each successive row as follows.

• If the s-th row is the last one to be computed, calculate
qs = ⌊rs−1/rs⌋.

• Then take the last two rows computed and pre multiply by
(1,−qs)

(1,−qs)
(
rs−1, xs−1, ys−1

rs , xs , ys

)
= (rs+1, xs+1, ys+1)

to obtain the s + 1-st row.
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• Here is a simple example.

Example 2

Let a = 4343, b = 973. We can lay this out as follows

4343 1 0
4 973 0 1
2 451 1 −4
6 71 −2 9
2 25 13 −58
1 21 −28 125
5 4 41 −183

1 −233 1040

Thus (4343, 973) = 1 = (−233)4343 + (1040)973.
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• We can use Euclid’s algorithm to find the complete
solution in integers to linear diophantine equations of the
kind

ax + by = c .

• Here a, b, c are integers and we wish to find all integers x
and y which satisfy this.

• There are some obvious necessary conditions.

• First of all if a = b = 0, then it is not soluble unless c = 0
and then it is soluble by any x and y , which is not very
interesting.

• Thus it makes sense to suppose that one of a or b is
non-zero.

• Then since (a, b) divides the left hand side, we can only
have solutions if (a, b)|c .
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• We are considering ax + by = c and we are assuming that
a and b are not both 0 and (a, b)|c.

• If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + b(yc/(a, b)) = (ax + by)c/(a, b) = c

so we certainly have a solution of our equation.

• Call it x0, y0.

• Now consider any other solution. Then

ax + by − ax0 − by0 = c − c = 0, a(x − x0) = b(y0 − y).

• Hence
a

(a, b)
(x − x0) =

b

(a, b)
(y0 − y).

• Then as
(

a
(a,b) ,

b
(a,b)

)
= 1 we have by an earlier example

that y0 − y = z a
(a,b) and x − x0 = z b

(a,b) for some z .

• But any x and y of this form give a solution, so we have
found the complete solution set.
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• We have

Theorem 3

Suppose that a and b are not both 0 and (a, b)|c. Suppose
further that ax0 + by0 = c. Then every solution of

ax + by = c

is given by

x = x0 + z
b

(a, b)
, y = y0 − z

a

(a, b)

where z is any integer.

• One can see here that the solutions x all leave the same
remainder on division by b

(a,b) and likewise for y on

division by a
(a,b) . This suggests that there may be a useful

way of classifying integers.
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• Here is an algorithm due to R. S. Lehmen based on
differences of squares which is a small improvement on
trial division.

• 1. Apply trial division with d = 2, 3, . . ., d ≤ n1/3.

• 2. For 1 ≤ t ≤ n1/3 + 1 consider the numbers x with

√
4tn ≤ x ≤

√
4tn + n2/3.

Check each x2 − 4tn to see if it is a perfect square y2

(compute 4tn − ⌊
√
4tn⌋2).

• 3. If there are x and y such that

x2 − 4tn = y2,

then compute
GCD(x + y , n).

• 4. If there is no t ≤ n1/3 + 1 for which there are x and y ,
then n is prime.
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• We already saw this in Example 1.23, but now it does not
look like a fluke.

Example 4

Let n = 10001. Then ⌊(10001)1/3⌋ = 21.
Trial division with d = 2, 3, 5, 7, 11, 13, 17, 19 finds no factors.
Let t = 1, so that 4tn = 40004. Then

⌊
√
4n⌋ = 200, ⌊

√
4n + n2/3⌋ = ⌊(40445)1/2⌋ = 201,

(201)2 = 40401, 397 ̸= y2.

Let t = 2, so that 4tn = 80008. Then

⌊
√
8n⌋ = 282, ⌊

√
8n + n2/3⌋ = ⌊(80449)1/2⌋ = 283,

x = 283, (283)2 − 8n = 80089− 80008 = 81 = 92,

y = 9, x + y = 292, (292, 10001) = 73.
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• The proof that Lehman’s algorithm works depends on a
subject called diophantine approximation.

• The normal way in to this is via continued fractions, which
in turn has some connections with Euclid’s algorithm.

• Fortunately we can take a short cut by appealing to

Theorem 5 (Dirichlet)

For any real number α and any integer Q ≥ 1 there exist
integers a and q with 1 ≤ q ≤ Q such that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q(Q + 1)
.

• As an immediate consequence of casting out all common
factors of a and q in a/q we have

Corollary 6

The conclusion holds with the additional condition (a, q) = 1.
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in turn has some connections with Euclid’s algorithm.

• Fortunately we can take a short cut by appealing to

Theorem 5 (Dirichlet)

For any real number α and any integer Q ≥ 1 there exist
integers a and q with 1 ≤ q ≤ Q such that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q(Q + 1)
.

• As an immediate consequence of casting out all common
factors of a and q in a/q we have

Corollary 6

The conclusion holds with the additional condition (a, q) = 1.
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• Proof of Lehman’s algorithm. We have to show that
when there is a d |n with n1/3 < d ≤ n1/2, then there is a
t with 1 ≤ t ≤ n1/3 + 1 and x , y such that

4tn ≤ x2 ≤ 4tn + n2/3, x2 − y2 = 4tn.

• We use Dirichlet’s theorem with α = n
d2 , Q =

⌊
d

n1/3

⌋
.

• As d > n1/3 we have Q > 1. Thus there are a ∈ Z, q ∈ N
such that 1 ≤ q ≤ Q and∣∣∣∣ nd2

− a

q

∣∣∣∣ ≤ 1

q(Q + 1)
<

n1/3

qd
,
∣∣∣n
d
q − ad

∣∣∣ < n1/3.

• Let x =
n

d
q + ad , y =

∣∣∣n
d
q − ad

∣∣∣ , t = aq.

• Then x2 =
n2

d2
q2 + 2nqa+ a2d2 = y2 + 4tn.

• Moreover y2 < n2/3 and

t = aq <
n

d2
q2 + n1/3

q

d
≤ n

d2
Q2 + n1/3

Q

d
≤ n1/3 + 1.
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• I will not go into details but the runtime is bounded by
n1/3.

• A little more precisely, since y2 = x2 − 4tn y is determined
by t and x it suffices to bound the number of pairs t, x
which need to be considered and this can be shown to be
of order n1/3.
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• Theorem 5 (Dirichlet). For any real number α and any
integer Q ≥ 1 there exist integers a and q with 1 ≤ q ≤ Q

such that

∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q(Q + 1)
.

• Proof. Let In denote the interval
[
n−1
Q+1 ,

n
Q+1

)
and

consider the Q numbers {α}, {2α}, . . . , {Qα} where we
use {β} = β − ⌊β⌋ to denote the “fractional” part of β.

• If one of these, say {qα}, lies in I1, then we are done with
a = ⌊qα⌋, and then 0 ≤ qα− a < 1

Q+1 .

• Similarly when one of them lies in IQ+1, then 1− 1
Q+1 ≤

qα− ⌊qα⌋ < 1, whence − 1
Q+1 ≤ qα− (⌊qα⌋+ 1) < 0

and we can take a = ⌊qα⌋+ 1.

• When neither situation occurs the Q numbers will lie in
the Q − 1 intervals I2, . . . , IQ , so there is at least one
interval containing at least two (the pigeon hole principle.

• Thus there are q1, q2 with q1 < q2 such that
|(αq2 − ⌊αq2⌋)− (αq1 − ⌊αq1⌋)| < 1

Q+1 .

• We put q = (q2 − q1), a = (⌊αq2⌋ − ⌊αq1⌋).
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