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Introduction to Factorization and Primality Testing

This course is concerned with the various mathematical
theorems which underpin the factorization of integers into
primes and the testing of integers for primality.

A substantial portion of this course is theoretical and
solutions to problems will require the writing of proofs.

Some other parts of the course will require the writing of
computer programs using multiprecision arithmetic.

In view if the close connections with security protocols this
is a rapidly moving area, and one is never quite sure of the
current state-of-the-art since many security organizations
do not publish their work.
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® But it has never been revised so has no account of later
developments such as those based on the theory of elliptic
curves or the number field sieve, topics which are normally
only covered in graduate courses.
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The text which for many years was used for this course is
Bressoud, Factorization and Primality Testing, Springer,
ISBN-10: 0387970400, ISBN-13: 978-0387970400

This was written especially for this course when it was first
put on in the late 1980s.

But it has never been revised so has no account of later
developments such as those based on the theory of elliptic
curves or the number field sieve, topics which are normally
only covered in graduate courses.

Another deficiency is that there is no proper discussion of
relative run-times. This needs some understanding of
analytic number theory, a topic which only covered fully in
graduate classes. We will give an overview of the more
elementary aspects.
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The text which for many years was used for this course is
Bressoud, Factorization and Primality Testing, Springer,
ISBN-10: 0387970400, ISBN-13: 978-0387970400

This was written especially for this course when it was first
put on in the late 1980s.

But it has never been revised so has no account of later
developments such as those based on the theory of elliptic
curves or the number field sieve, topics which are normally
only covered in graduate courses.

Another deficiency is that there is no proper discussion of
relative run-times. This needs some understanding of
analytic number theory, a topic which only covered fully in
graduate classes. We will give an overview of the more
elementary aspects.

A more advanced text which covers these topics is
Crandall and Pomerance, Prime Numbers:A
Computational Perspective, Springer, ISBN-10:
0387252827, ISBN-13: 978-0387252827
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105 =3.5.7

is a one-line proof of the factorization of 105.
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It is essential for the course that you have some familiarity
with the concept of mathematical proof.

Factorization algorithms and primality tests give absolute
proof for their assertions, and have to take account of all
possibilities.

However a proof can be very easy, e.g., the statement

105 =3.5.7

is a one-line proof of the factorization of 105.
And 101 = d.qg + r with

d=2,g=50,r=1
d=3,q=33,r=2
d=54g=20,r=1
d=7,q=14,r=3

gives a proof that 101 is prime.



® How about a not very big number like

1000065617

«O>» «Fr «Z» <

DA


https://pari.math.u-bordeaux.fr/

Factorization
and Primality

Testin, A .
Chapter 1 ® How about a not very big number like
Background
Robert C.

Vaughan 1000065617

® |s this prime, and if not what are its factors? Anybody
care to try it by hand?

Introduction


https://pari.math.u-bordeaux.fr/

Factorization
and Primality
Testing
Chapter 1
Background

Robert C.
Vaughan

Introduction

® How about a not very big number like
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® |s this prime, and if not what are its factors? Anybody
care to try it by hand?
® And how about somewhat bigger numbers

11111111111111111 17 digits,
1111111111111111111 19 digits.

One of them is prime, the other composite.
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How about a not very big number like
1000065617

Is this prime, and if not what are its factors? Anybody
care to try it by hand?

And how about somewhat bigger numbers

11111111111111111 17 digits,
1111111111111111111 19 digits.

One of them is prime, the other composite.

If you want to experiment | suggest using the package
PARI which runs on most computer systems and is
available at

https://pari.math.u-bordeaux.fr/
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® Here is an example where a bit of theory is useful.

® There is a theorem which says that if p > 2 is prime, then
2P~ leaves the remainder 1 on division by p.
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Here is an example where a bit of theory is useful.

There is a theorem which says that if p > 2 is prime, then
2P~ leaves the remainder 1 on division by p.

Now 21990 |eaves the remainder 562 on division by 1001,
so 1001 has to be composite.

Of course it is readily discovered that 1001 =7 x 11 x 13
so the above might seem overelaborate. However the idea
turns out to be very useful for much larger numbers.
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Here is an example where a bit of theory is useful.

There is a theorem which says that if p > 2 is prime, then
2P~ leaves the remainder 1 on division by p.

Now 21990 |eaves the remainder 562 on division by 1001,
so 1001 has to be composite.

Of course it is readily discovered that 1001 =7 x 11 x 13
so the above might seem overelaborate. However the idea
turns out to be very useful for much larger numbers.
Checking 21990 might seem difficult but it is actually very
easy.
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22" = 4712 = 221841 = 620,
22°92° = 256 % 620 = 158720 = 562,
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1000 = 23 4 25 4+ 26 4 27 4 28 4 99 1000 _ 2°92°2° 527922
and the 22“ can be computed by successive squaring, so
o 22° = 256, 22" = 2562 = 65536 = 471,
22" = 4712 = 221841 = 620,
22°92° = 256 % 620 = 158720 = 562,

e 22° = 6202 = 384400 = 16,
22°92°92° — 562 x 16 = 8992 = 984,

o 22" =162 = 256,
22°02°22°22" — 984 x 256 = 251904 = 653,
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1000 = 23 + 25 4 20 4 27 4 28 4 29, 21000 _ 2%92°92°9272%)2°
and the 22“ can be computed by successive squaring, so
o 22° — 256, 22" — 2562 = 65536 = 471,
22° = 4712 = 221841 = 620,

22°92° = 256 % 620 = 158720 = 562,
e 22° = 6202 = 384400 = 16,
22°92°92° — 562 x 16 = 8992 = 984,
e 22’ =162 = 256,
22°02°22°92" — 984 x 256 = 251904 = 653,
o 22° =471,
22°92°02°92"92° — 53 471 = 307563 = 256,
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1000 = 23 + 25 4 20 4 27 4 28 4 29, 21000 _ 2%92°92°9272%)2°
and the 22“ can be computed by successive squaring, so
o 22° — 256, 22" — 2562 = 65536 = 471,
22° = 4712 = 221841 = 620,

22°92° = 256 % 620 = 158720 = 562,
e 22° = 6202 = 384400 = 16,
22°92°92° — 562 x 16 = 8992 = 984,

e 22’ =162 = 256,
22°02°22°92" — 984 x 256 = 251904 = 653,
o 22° =471,
22°92°02°92"92° — 53 471 = 307563 = 256,
e 22° =620,

21000 _ 92%92792°52792%92% _ o0y » 256 = 167168 = 562.
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ene . and the 22 can be computed by successive squaring, so
Background o 22" = 256 22" — 2562 = 65536 = 471,
Robert C. 22’ = 4712 = 221841 = 620,

Vaughan

22°92° = 256 % 620 = 158720 = 562,
e 22° = 6202 = 384400 = 16,
22°92°92° — 562 x 16 = 8992 = 984,

Introduction

e 22’ =162 = 256,
22°02°22°92" — 984 x 256 = 251904 = 653,
o 22° =471,
22°92°02°92"92° — 53 471 = 307563 = 256,
e 22° =620,

21000 _ 92%92792°52792%92% _ o0y » 256 = 167168 = 562.

® So any programming language which can do double
precision can compute 2°P~1 modulo p in linear time.
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Factorization
and Primality
Testing
Chapter 1
Background

Robert C.
Vaughan

Introduction

This is a proofs based course. The proofs will be mostly
short and simple.

One is often asked why one needs formal proofs.

They are necessary, and as a general principle
understanding the proof usually reveals the underlying
structure which is the reason why the theorem is true.

There is an instructive example due to J. E. Littlewood in
1912.
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® Let 7(x) denote the number of prime numbers not

exceeding x. Gauss had suggested that

should be a good approximation to 7(x)

/X dt
o logt

m(x) ~ li(x).

For all values of x for which 7(x) has been calculated it

has been found that

7(x) < li(x).
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Littlewood

® Let 7(x) denote the number of prime numbers not
exceeding x. Gauss had suggested that

/X dt

o logt

should be a good approximation to 7(x)
m(x) ~ li(x).

For all values of x for which 7(x) has been calculated it
has been found that

7(x) < li(x).

® Here is a table of values which illustrates this for various
values of x out to 102,



Factorization
and Primality
Testing
Chapter 1
Background

Robert C.
Vaughan

Introduction

X 7(x) li(x)

10% 1229 1245

10° 9592 9628

100 78498 78626

107 664579 664917

108 5761455 5762208

10° 50847534 50849233
1010 455052511 455055613
101t 4118054813 4118066399
1012 37607912018 37607950279
1013 346065536839 346065645809
1014 3204941750802 3204942065690
101° 20844570422669 29844571475286
1016 279238341033925 279238344248555
107 2623557157654233 2623557165610820
1018 | 24739954287740860 24739954309690413
1019 | 234057667276344607 234057667376222382
1020 | 2220819602560918840 | 2220819602783663483
1021 | 21127269486018731928 | 21127269486616126182




® |n fact this table has been extended out to at least 1
So is

0%,
m(x) < li(x)
always true?
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® |n fact this table has been extended out to at least 10%7
So is

m(x) < li(x)
always true?
® No! Littlewood in 1914 showed that there are infinitely
many values of x for which

m(x) > li(x)!
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Littlewood's theorem

In fact this table has been extended out to at least 10%7.

So is
m(x) < li(x)

always true?

No! Littlewood in 1914 showed that there are infinitely
many values of x for which

m(x) > li(x)!
We now believe that the first sign change occurs when
x ~ 1.387162 x 1031° (1.1)

well beyond what can be calculated directly.



® For many years it was only known that the first sign
change in 7(x) — li(x) occurs for some x satisfying

x < 101"
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® For many years it was only known that the first sign
change in 7(x) — li(x) occurs for some x satisfying

x < 101"

® The number on the right was computed by Skewes.
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® For many years it was only known that the first sign
change in 7(x) — li(x) occurs for some x satisfying

10964
x < 10107

® The number on the right was computed by Skewes.

e G. H. Hardy once wrote that this is probably the largest
number which has ever had any practical (my emphasis)
value! But still even now the only way of establishing this
is by a proper mathematical proof.
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Introduction to Number Theory

For many years it was only known that the first sign
change in 7(x) — li(x) occurs for some x satisfying

10964
x < 10107

The number on the right was computed by Skewes.

G. H. Hardy once wrote that this is probably the largest
number which has ever had any practical (my emphasis)
value! But still even now the only way of establishing this
is by a proper mathematical proof.

Let me turn back to that table, as it illustrates something
else very interesting.
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10
10°
106
107
108
10°
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

m(x)
1229
9592
78498
664579
5761455
50847534
455052511
4118054813
37607912018
346065536839
3204941750802
29844570422669
279238341033925
2623557157654233
24739954287740860
234057667276344607
2220819602560918840
21127269486018731928

li(x)
1245
9628
78626
664917
5762208
50849233
455055613
4118066399
37607950279
346065645809
3204942065690
29844571475286
279238344248555
2623557165610820
24739954309690413
234057667376222382
2220819602783663483
21127269486616126182




® So is it really true that for any 6 > % and all large x we
have

Im(x) — li(x)| < x7?
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® So is it really true that for any 6 > % and all large x we
have

|m(x) — li(x)] < x¥?
® This is the famous Riemann Hypothesis, the most
important unsolved problem in mathematics.
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The Riemann Hypothesis

® So is it really true that for any 6 > % and all large x we

have
Im(x) = li(x)| < x%?

® This is the famous Riemann Hypothesis, the most
important unsolved problem in mathematics.

® There is a million dollar prize for a proof, or a disproof.
And probably an automatic professorship at the most
prestigious universities for anyone who wins it.
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The Riemann Hypothesis

So is it really true that for any 6 > % and all large x we
have
Im(x) = li(x)| < x%?

This is the famous Riemann Hypothesis, the most
important unsolved problem in mathematics.

There is a million dollar prize for a proof, or a disproof.
And probably an automatic professorship at the most
prestigious universities for anyone who wins it.

By the way, one might wonder if there is something
random in the distribution of the primes. This is how
random phenomena are supposed to behave.



® Number theory in its most basic form is the study of the
set of integers

Z={0,£1,4+2,...}
and its important subset

N=1{1,2,3,...},
the set of positive integers, sometimes called the natural
numbers.
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me Numbers

Introduction to Number Theory

® Number theory in its most basic form is the study of the

set of integers
Z={0,+£1,4£2,...}

and its important subset
N=1{1,2,3,...},

the set of positive integers, sometimes called the natural
numbers.

® The usual rules of arithmetic apply, and can be deduced
from a set of axioms. If you multiply any two members of
Z you get another one. Likewise for N



® |f you subtract one member of Z from another, e.g.

173 —-192 = —19
you get a third.
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® |f you subtract one member of Z from another, e.g.

173 —-192 = —19
you get a third.

e But this last fails for N.
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173 —-192 = —19
you get a third.

® But this last fails for N.
® You can do other standard things in Z, such as

x(y +2z)=xy +xz
and

Xy = yx
is always true.
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e \We start with some definitions.

® \We need some concept of divisibility and factorization.
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fundamental
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Trial Division

Differences of
Squares

The Floor
Function

® We start with some definitions.

® \We need some concept of divisibility and factorization.

® Given two integers a and b we say that a divides b when
there is a third integer ¢ such that ac = b and we write

alb.

If a|b and b|c, then alc.
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Background ® We start with some definitions.

Ff/‘jfgr;af" ® \We need some concept of divisibility and factorization.

® Given two integers a and b we say that a divides b when
there is a third integer ¢ such that ac = b and we write

Divisibility a‘ b

Prime Numbers

The _

fundamental

th f
or s If a|b and b|c, then alc.

Introduction

The integers

Trial Division

® The proof is easy.

Differences of

Squares
The Floor PrOOf
e There are d and e so that b = ad and ¢ = be. Hence
a(de) = (ad)e = be = ¢ and de is an integer. O

u}
8]
I
i
it




® There are some facts which are useful.
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® There are some facts which are useful.
® For any a we have 0a = 0.
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Prime Numbers

e |If ab=1, then a==+1 and b = £1 (with the same sign in
each case).
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Divisibility

Prime Numbers

There are some facts which are useful.
For any a we have 0a = 0.

If ab=1, then a = £1 and b = +1 (with the same sign in
each case).

Also if a # 0 and ac = ad, then c = d.



® Prime Number.

A member of N greater than 1 which is only divisible by 1 and
itself is called a prime number.
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® Prime Number.

Definition 2

A member of N greater than 1 which is only divisible by 1 and
itself is called a prime number.

® We will use the letter p to denote a prime number.
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® Prime Number.

Definition 2

A member of N greater than 1 which is only divisible by 1 and

itself is called a prime number.

® We will use the letter p to denote a prime number.

® An example

101 is a prime number.
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The Floor
Function

® Prime Number.

Definition 2

A member of N greater than 1 which is only divisible by 1 and

itself is called a prime number.

® We will use the letter p to denote a prime number.

® An example

101 is a prime number.

® Proof One has to check for divisors d with 1 < d < 100.

N
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ey Definition 2

e A member of N greater than 1 which is only divisible by 1 and
e itself is called a prime number.

Introduction

The integers ® We will use the letter p to denote a prime number.

Divisibility ® An example

Prime Numbers

The
fundamental

theorem of

arithmetic 101 is a prime number.

Trial Division

Differences of ® Proof One has to check for divisors d with 1 < d < 100.
Squares

S ® Moreover if d is a divisor, then there is an e so that
Function de = 101, and one of d, e is < 1/101 so we only need to
check out to 10.
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Chapter 1 e

ey Definition 2

e A member of N greater than 1 which is only divisible by 1 and
e itself is called a prime number.

Introduction

® We will use the letter p to denote a prime number.

The integers

Divisibility e An example

Prime Numbers

The
fundamental

theorem of

P 101 is a prime number.

Trial Division

® Proof One has to check for divisors d with 1 < d < 100.

S ® Moreover if d is a divisor, then there is an e so that
Function de = 101, and one of d, e is < 1/101 so we only need to
check out to 10.

® So we only need to check the primes 2,3,5,7. Moreover 2
and 5 are not divisors and 3 is easily checked, so only 7

needs any work, and this leaves remainder 3, not 0.
[m] = = =

Differences of
Squares
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® Since we are dealing with simple proofs for facts about N
there is one proof method which is very important.

® This is the principle of induction. It is actually embedded
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® Since we are dealing with simple proofs for facts about N
there is one proof method which is very important.

® This is the principle of induction. It is actually embedded
into the definition of N. That is, we have 1 € N and it is
the least member and given any n € N the next member is
n+ 1. In this way one sees that N is defined inductively.

e A fundamental theorem.

Theorem 4

Every member of N is a product of prime numbers.

® Proof. This uses induction.
® 1 is an “empty product” of primes, so case n =1 holds.

® Suppose that we have proved the result for all m < n. If
n—+ 1 is prime we are done. Suppose n+ 1 is not prime.
Then there is an a with ajn+1and 1 <a < n+1. Then
also 1 < %1 < n+ 1. But then on the inductive
hypothesis both a and %1 are products of primes.
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We can use this to deduce

Theorem 5 (Euclid)

There are infinitely many primes.

Hardy cites the proof as an example of beauty in
mathematics.

Proof. We argue by contradiction. Suppose there are only
a finite number of primes. Call them p1, po, ..., p, and
consider the number

m=p1p2...pn+1.

Since we already know some primes it is clear that m > 1.
Hence m is a product of primes, and in particular there is
a prime p which divides m.

But p is one of the primes p1, p, ..., pn SO

plm — pip2...pn = 1. But 1 is not divisible by any prime.
So our assumption must have been false.
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i, essentially due to Euler. It is analytic in nature and quite
different from Euclid's.

It tells us more about the distribution of primes and is the
beginning of the modern approach.

® |let 1
S(x) = Z o

n<x
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® Then

n+1 dt X dt
n 1

n<x
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Now consider

P =] -1/p)"

p<x

where the product is over the primes not exceeding x.
Then P(x) =

1 1 1
[[(t+ 5+ )= = > log x.
(+p+p2+ )_ p S(x) > log x

p<x n<x

Note that when one multiplies out the left hand side every
fraction % with n < x occurs.

Since log x — 00 as x — oo, there have to be infinitely
many primes.



® Actually one can get something a bit more precise.

«Or «Fr o«

DA



® Actually one can get something a bit more precise.
® Take logs on both sides of

P(x) > log x.

«O> «Fr «=>»

«E)»

DA



Factorization
and Primality
Testing
Chapter 1
Background

Robert C.
Vaughan

Prime Numbers

® Actually one can get something a bit more precise.
® Take logs on both sides of

® Then

P(x) > log x.

— Z log(1 —1/p) > log log x.

p<x



Factorization
and Primality
Testing
Chapter 1
Background

Robert C.
Vaughan

Prime Numbers

Actually one can get something a bit more precise.
Take logs on both sides of

P(x) > log x.
Then
— Z log(1 —1/p) > log log x.

p<x
Moreover the expression on the left is

Y loel -1/ =33

p<x p<x k=1



Factorization
and Primality

Actually one can get something a bit more precise.

Trestiig ® Take logs on both sides of
Chapter 1
Background P
x) > log x.
Robert C. ( )
Vaughan ° Then

— Z log(1 —1/p) > log log x.

p<x

Moreover the expression on the left is

— log(1—1/p) = ZZ

p<x p<x k=1

Prime Numbers

® Here the terms with k > 2 contribute at most

o0 o0

1 1 1
>3 EZ:TS n(n—1) 2

p<x



Factorization
and Primality
Testing
Chapter 1
Background

Robert C.
Vaughan

Prime Numbers

Actually one can get something a bit more precise.
Take logs on both sides of

P(x) > log x.
Then
— Z log(1 —1/p) > log log x.

p<x
Moreover the expression on the left is

— log(1—1/p) = ZZ

p<x p<x k=1

Here the terms with k > 2 contribute at most

ISEIIE S D Tt

pk = 7_ 2’
p<X p n(n—1) 2
Hence we have just proved that

1 1
Z— > loglogx — —.
p<><p 2



® FEuler's result on primes is often quoted as follows.
The sum
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® \We now come to something very important
Suppose that a € Z and d € N. Then there are unique q,
r € Z such that a=dq + r,
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Suppose that a € 7Z and d € N. Then there are unique q,
r € Z such thata=dg+r, 0<r<d.
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® \We now come to something very important

Theorem 7 (The division algorithm)

Suppose that a € 7Z and d € N. Then there are unique q,
r € Z such thata=dg+r, 0<r<d.

We call g the quotient and r the remainder.

Proof. Let D ={a—dx:x € Z}.

If a>0, then a € D, and if a <0, then a—d(a—1) > 0.
Hence D has non-negative elements, so has a least
non-negative element r. Let ¢ = x. Then

a=dg+r, 0<r.
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r € Z such thata=dg+r, 0<r<d.

We call g the quotient and r the remainder.

Proof. Let D ={a—dx:x € Z}.

If a>0, then a € D, and if a <0, then a—d(a—1) > 0.
Hence D has non-negative elements, so has a least
non-negative element r. Let ¢ = x. Then

a=dg+r, 0<r.

Moreover if r > d, then a = d(q+ 1) + (r — d) gives
another solution, but with 0 < r — d < r contradicting the
minimality of r.
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We call g the quotient and r the remainder.
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We now come to something very important

Theorem 7 (The division algorithm)

Suppose that a € 7Z and d € N. Then there are unique q,
r € Z such thata=dg+r, 0<r<d.

We call g the quotient and r the remainder.

Proof. Let D ={a—dx:x € Z}.

If a>0, then a € D, and if a <0, then a—d(a—1) > 0.
Hence D has non-negative elements, so has a least
non-negative element r. Let ¢ = x. Then

a=dg+r, 0<r.

Moreover if r > d, then a = d(q+ 1) + (r — d) gives
another solution, but with 0 < r — d < r contradicting the
minimality of r.

® Hence r < d as required.

For uniqueness note that a second solution a = dq’ + r/,
0<r' <dgives0=a—a=(dq +r')—(dg+r)
=d(q —q)+ (r' —r), and if ¢ # g, then

d <d|q" — q| = |r' — r| < d which _is impossible.
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® |t is exactly this which one uses when one performs long

division

Try dividing 17 into 192837465 by the method you were taught

at primary school.
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® \We will make frequent use of the division algorithm, e.g.

Theorem 9

Given two integers a and b, not both 0, define
D(a,b) ={ax+ by :x € Z,y € Z}.

Then D(a, b) has positive elements. Let (a, b) denote the least
positive element. Then (a, b) has the properties

(i) (a, b)|a,

(ii) (a, b)|b,

(iii) if the integer c satisfies c|a and ¢

b, then c|(a, b).

e GCD
Definition 10

The number (a, b) is called the greatest common divisor of a
and b. The symbol (a, b) has many uses in mathematics, so to
be clear one sometimes writes GCD(a, b).
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® \We will make frequent use of the division algorithm, e.g.

Theorem 9

Given two integers a and b, not both 0, define
D(a,b) ={ax+ by :x € Z,y € Z}.

Then D(a, b) has positive elements. Let (a, b) denote the least
positive element. Then (a, b) has the properties

(i) (a, b)la,

(ii) (a, b)|b,

(iii) if the integer c satisfies c|a and c|b, then c|(a, b).

e GCD
Definition 10

The number (a, b) is called the greatest common divisor of a
and b. The symbol (a, b) has many uses in mathematics, so to
be clear one sometimes writes GCD(a, b).

® Note that GCD(a, b) divides every member of D(a, b).
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Likewise if b > 0.

If a <0, then a(—1)+ b.0 > 0, and again likewise if b < 0.
The remaining case a = b = 0 which is excluded. Thus
D(a, b) does have positive elements and so (a, b) exists.
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Proof of Theorem 9. If a > 0, then 2.1+ b.0 =2 > 0.
Likewise if b > 0.

If a <0, then a(—1)+ b.0 > 0, and again likewise if b < 0.
The remaining case a = b = 0 which is excluded. Thus
D(a, b) does have positive elements and so (a, b) exists.
Assume (i) false, (a, b) { a. By the division algorithm
a=(a,b)g+rwith0<r<(ab) and (a,b)1a implies
0<r.
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Proof of Theorem 9. If a > 0, then 2.1+ b.0 =2 > 0.
Likewise if b > 0.

If a <0, then a(—1)+ b.0 > 0, and again likewise if b < 0.
The remaining case a = b = 0 which is excluded. Thus
D(a, b) does have positive elements and so (a, b) exists.
Assume (i) false, (a, b) { a. By the division algorithm
a=(a,b)g+rwith0<r<(ab) and (a,b)1a implies
0<r.

Thus r = a—(a,b)qg = a— (ax + by)q for some integers x
and y. Hence r = a(1 — xq) + b(—yq).
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Proof of Theorem 9. If a > 0, then 2.1+ b.0 =2 > 0.
Likewise if b > 0.

If a <0, then a(—1)+ b.0 > 0, and again likewise if b < 0.
The remaining case a = b = 0 which is excluded. Thus
D(a, b) does have positive elements and so (a, b) exists.
Assume (i) false, (a, b) { a. By the division algorithm
a=(a,b)g+rwith0<r<(ab) and (a,b)1a implies
0<r.

Thus r = a—(a,b)qg = a— (ax + by)q for some integers x
and y. Hence r = a(1 Xq) + b(—yq).

Since 0 < r < (a, b) this contradicts the minimality of

(a, b).
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Proof of Theorem 9. If a > 0, then 2.1+ b.0 =2 > 0.
Likewise if b > 0.

If a <0, then a(—1)+ b.0 > 0, and again likewise if b < 0.
The remaining case a = b = 0 which is excluded. Thus
D(a, b) does have positive elements and so (a, b) exists.
Assume (i) false, (a, b) { a. By the division algorithm
a=(a,b)g+rwith0<r<(ab) and (a,b)1a implies
0<r.

Thus r = a—(a,b)qg = a— (ax + by)q for some integers x
and y. Hence r = a(1 Xq) + b(—yq).

Since 0 < r < (a, b) this contradicts the minimality of

(a, b).

Likewise for (ii).
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Proof of Theorem 9. If a > 0, then 2.1+ b.0 =2 > 0.
Likewise if b > 0.

If a <0, then a(—1)+ b.0 > 0, and again likewise if b < 0.
The remaining case a = b = 0 which is excluded. Thus
D(a, b) does have positive elements and so (a, b) exists.
Assume (i) false, (a, b) { a. By the division algorithm
a=(a,b)g+rwith0<r<(ab) and (a,b)1a implies
0<r.

Thus r = a—(a,b)qg = a— (ax + by)q for some integers x
and y. Hence r = a(1 Xq) + b(—yq).

Since 0 < r < (a, b) this contradicts the minimality of

(a, b).

Likewise for (ii).

Now suppose c|a and c|b, so that a = cu and b = cv for
some integers u and v. Then

(a, b) = ax + by = cux + cvy = c(ux + vy)
so (iii) holds.
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® The GCD has some interesting properties.

® Here is one

We have ((?"‘b;, (;bb;> = 1.

To see this observe that if d = ((?"‘b;, (;bbﬂ, then d|(?"bj and

d|ﬁ, and hence d(a, b)|a and d(a, b)|b. But then
d(a, b)|(a, b) and so d|1, whence d = 1.

N
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® The GCD has some interesting properties.

® Here is one

b\ _
We have (ﬁ, W) = 1.
To see this observe that if d = ((a 5 . b)> then d|( py and

d|(a 5y, and hence d(a, b)|a and d(a, b)|b. But then
d(a, b)|(a, b) =1.

® Here is another

Suppose that a and b are not both 0. Then for any integer x
we have (a+ bx, b) = (a, b). Here is a proof. First of all

(a, b)|a and (a, b)|b, so (a, b)|a+ bx. Hence (a, b)|(a+ bx, b).
On the other hand (a + bx, b)|a+ bx and (a + bx, b)|b so that
(a+ bx)|a+ bx — bx = a. Hence (a + bx, b)|(a, b)|(a + bx, b)
and so (a, b) = (a + bx, b).

u}
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i
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Prime Numbes Suppose that (a, b) = 1 and ax = by. Then there is a z such
e that x = bz, y = az. It suffices to show that b|x, for then the

fundamental

theorem of conclusion follows on taking z = x/b. To see this observe that

arithmetic

... thereare uand v so that au+ bv = (a, b) = 1. Hence
St x = aux + bvx = byu + bvx = b(yu + vx) and so b|x.

Squares

The Floor
Function
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® Following from the previous theorem we have a corollary.

Corollary 14

Suppose that a and b are integers not both 0. Then there are
integers x and y such that

(a, b) = ax + by.
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® Following from the previous theorem we have a corollary.

Corollary 14
Suppose that a and b are integers not both 0. Then there are

integers x and y such that
(a, b) = ax + by.
® |ater we will look at a way of finding suitable x and y in

examples. As it stands the theorem gives no constructive
way of finding them. It is a pure existence proof.
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Suppose that a and b are integers not both 0. Then there are
integers x and y such that

(a, b) = ax + by.

The

fundamental ) ) . . .

theorem of ® |ater we will look at a way of finding suitable x and y in

arithmetic . . .
examples. As it stands the theorem gives no constructive

way of finding them. It is a pure existence proof.
® As a first application we establish
Theorem 15 (Euclid)

Suppose that p is a prime number, and a and b are integers
such that p|ab. Then either p|a or p|b.
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® You might think this is obvious, but look at the following

Consider the set A of integers of the form 4k + 1.
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® You might think this is obvious, but look at the following

Consider the set A of integers of the form 4k + 1.

e If you multiply two elements, e.g. (4k; + 1)(4ky + 1) =

16k1ko + 4k + 4k +1 = 4(4k1k2 + k1 + k2) + 1 you get

another of the same kind.
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® You might think this is obvious, but look at the following

Consider the set A of integers of the form 4k + 1.

e If you multiply two elements, e.g. (4ky + 1)(4ko + 1) =
16k1ko + 4k + 4k +1 = 4(4k1k2 + k1 + k2) + 1 you get
another of the same kind.

® We define a “prime” p in this system if it is only divisible
by 1 and itself in the system.

u}
8]
I
i
it
N
pe)
?



Factorization
and Primality
Testing
Chapter 1
Background

Robert C.
Vaughan

Introduction
The integers
Divisibility
Prime Numbers

The
fundamental
theorem of
arithmetic

Trial Division

Differences of
Squares

The Floor
Function

® You might think this is obvious, but look at the following

Consider the set A of integers of the form 4k + 1.

e If you multiply two elements, e.g. (4k; + 1)(4ky + 1) =

16k1ko + 4k + 4k +1 = 4(4k1k2 + k1 + k2) + 1 you get

another of the same kind.

® We define a “prime” p in this system if it is only divisible

by 1 and itself in the system.
® Here is a list of “primes” in A.

5,9,13,17,21,29,33,37,41,49. ..
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e If you multiply two elements, e.g. (4k; + 1)(4ky + 1) =
16k1ko + 4k + 4k +1 = 4(4k1k2 + k1 + k2) + 1 you get
another of the same kind.

Introduction

The integers

Ehie ® We define a “prime” p in this system if it is only divisible
el by 1 and itself in the system.

theorem of ® Here is a list of “primes” in A.

e 5,9,13,17,21,29,33,37,41,49. ..

Differences of

SRR ® 0 is one because 3 is not in the system. Likewise 21 and
B 49 because 3 and 7 are not in the system.
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e If you multiply two elements, e.g. (4k; + 1)(4ky + 1) =
16k1ko + 4k + 4k +1 = 4(4k1k2 + k1 + k2) + 1 you get
another of the same kind.
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theorem of ® Here is a list of “primes” in A.

e 5,9,13,17,21,29,33,37,41,49. ..
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S ® 0 is one because 3 is not in the system. Likewise 21 and
o 49 because 3 and 7 are not in the system.

® Also the “prime” factorisation of 45 is 5 x 9.
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e If you multiply two elements, e.g. (4ky + 1)(4ko + 1) =

16k1ko + 4k + 4k +1 = 4(4k1k2 + k1 + k2) + 1 you get

another of the same kind.

We define a “prime” p in this system if it is only divisible
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S ® 0 is one because 3 is not in the system. Likewise 21 and
S 49 because 3 and 7 are not in the system.

Also the “prime” factorisation of 45 is 5 x 9.
Now look at 441 = 9 x 49 = 212
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16k1ko + 4k + 4k +1 = 4(4k1k2 + k1 + k2) + 1 you get

another of the same kind.

We define a “prime” p in this system if it is only divisible
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e 5,9,13,17,21,29,33,37,41,49. ..

Differences of

S ® 0 is one because 3 is not in the system. Likewise 21 and
S 49 because 3 and 7 are not in the system.

Also the “prime” factorisation of 45 is 5 x 9.
Now look at 441 = 9 x 49 = 212
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Differences of
Squares

The Floor
Function

® You might think this is obvious, but look at the following

Consider the set A of integers of the form 4k + 1.

e If you multiply two elements, e.g. (4ky + 1)(4ko + 1) =
16k1ko + 4k + 4k +1 = 4(4k1k2 + k1 + k2) + 1 you get
another of the same kind.

® We define a “prime” p in this system if it is only divisible
by 1 and itself in the system.

® Here is a list of “primes” in A.

5,9,13,17,21,29,33,37,41,49. ..

® 0 is one because 3 is not in the system. Likewise 21 and
49 because 3 and 7 are not in the system.

Also the “prime” factorisation of 45 is 5 x 9.

Now look at 441 = 9 x 49 = 212,

Wait a minute, here factorisation is not unique!

The theorem is false in A because 21|9 x 49 but 21 does
not divide 9 or 49! -
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® What is the difference between Z and A?
® Well Z has an additive structure and A does not.

® Add two members of Z and you get another one.
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ST leaves the remainder 2 on division by 4, so is not in A.
i ® Amazingly we have to use the additive structure to get

something fundamental about the multiplicative structure.



Factorization
and Primality

Testing
Chapter 1
Background
Robert C.
Vaughan e What is the difference between Z and A?
® Well Z has an additive structure and A does not.
® Add two members of Z and you get another one.
me Numbers ® Add two members of A and you get a number which
ST leaves the remainder 2 on division by 4, so is not in A.
i ® Amazingly we have to use the additive structure to get

something fundamental about the multiplicative structure.

® This is of huge significance and underpins some of the
most fundamental questions in mathematics.
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(a,p)|p and (a, p)|a.
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Getting back to

Theorem 15 (Euclid). Suppose that p is a prime
number, and a and b are integers such that p|ab. Then
either p|a or p|b.

Proof of Euclid’s theorem. If a or b are 0, then clearly
pla or p|b.
Thus we may assume ab # 0.

Suppose that p 1 a. We know from the previous theorem
that there are x and y so that (a, p) = ax + py and that
(a,p)|p and (a, p)|a.

Since p is prime we must have (a,p) =1 or p.
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Getting back to

Theorem 15 (Euclid). Suppose that p is a prime
number, and a and b are integers such that p|ab. Then
either p|a or p|b.

Proof of Euclid’s theorem. If a or b are 0, then clearly
pla or p|b.

Thus we may assume ab # 0.

Suppose that p 1 a. We know from the previous theorem
that there are x and y so that (a, p) = ax + py and that
(a,p)|p and (a, p)|a.

Since p is prime we must have (a,p) =1 or p.

But we are supposing that ptaso (a,p) # p, i.e.
(a,p) = 1. Hence 1 = ax + py for some x and y.
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Getting back to

Theorem 15 (Euclid). Suppose that p is a prime
number, and a and b are integers such that p|ab. Then
either p|a or p|b.

Proof of Euclid’s theorem. If a or b are 0, then clearly
pla or p|b.
Thus we may assume ab # 0.

Suppose that p 1 a. We know from the previous theorem
that there are x and y so that (a, p) = ax + py and that
(a,p)|p and (a, p)|a.

Since p is prime we must have (a,p) =1 or p.

But we are supposing that ptaso (a,p) # p, i.e.

(a,p) = 1. Hence 1 = ax + py for some x and y.

But then b = abx + pby and since p|ab we have p|b as
required.
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® We can use Euclid's theorem to establish the following

Theorem 17

Suppose that p, p1, p2, . .., pr are prime numbers and

plpip2. .. pr.
Then p = pj for some j.

® We can prove this by induction on r.

® Proof. The case r = 1 is immediate from the definition of
prime.
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® Suppose we have established the r-th case and that we
have p|p1p2 ... pri1.
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We can prove this by induction on r.

Proof. The case r = 1 is immediate from the definition of
prime.

Suppose we have established the r-th case and that we
have p|p1p2 ... pri1.

Then by the previous theorem we have p|p,+1 or
plpip2. .. pr.
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® Suppose we have established the r-th case and that we
have p|p1p2 ... pri1.

® Then by the previous theorem we have p|p,+1 or
plpip2. .. pr.

® If p|pr+1, then we must have p = p,41.
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Robert C. Suppose that p, p1, p2, . .., p, are prime numbers and
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plpip2. .. pr.
Then p = pj for some j.

The ® We can prove this by induction on r.
fundamental
ticorem if ® Proof. The case r = 1 is immediate from the definition of

arithmetic

prime.

® Suppose we have established the r-th case and that we
have p|p1p2 ... pri1.

® Then by the previous theorem we have p|p,+1 or
plpip2. .. pr.

® If p|pr+1, then we must have p = p,41.

® If p|pip2 ... pr, then by the inductive hypothesis we must
have p = p; for some j with 1 < j <r.
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o enal for some r > 1 and prime numbers py,...,p,, and r and the
theorem of choice of sign is unique and the primes p; are unique apart

from their ordering.
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s, ® \We can now establish the main result of this section.
Background 0 .
e Theorem 18 (The Fundamental Theorem of Arithmetic)
Vaughan o o o o o -
Factorization into primes is unique apart from the order of the
factors. More precisely if a is a non-zero integer and a # +1,
then
e s a=(xL)pp2-..pr
o enal for some r > 1 and prime numbers py,...,p,, and r and the
theorem of choice of sign is unique and the primes p; are unique apart

from their ordering.

® Note that we can even write

a=(£1)pip2...pr

when a = +1 by interpreting the product over primes as
an empty product in that case.
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a > 0 and hence a > 2.

® Theorem 4 tells us that a will be a product of r primes, say
a=pip2...p, with r > 1. It remains to prove uniqueness.
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a > 0 and hence a > 2.
® Theorem 4 tells us that a will be a product of r primes, say
a=pip2...p, with r > 1. It remains to prove uniqueness.
® \We prove that by induction on r.
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Proof of Theorem 17. Clearly we may suppose that

a > 0 and hence a > 2.

Theorem 4 tells us that a will be a product of r primes, say
a=pip2...p, with r > 1. It remains to prove uniqueness.
We prove that by induction on r.

Suppose r = 1 and it is another product of primes
a=pj...p, wheres>1.
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Proof of Theorem 17. Clearly we may suppose that

a > 0 and hence a > 2.

Theorem 4 tells us that a will be a product of r primes, say
a=pip2...p, with r > 1. It remains to prove uniqueness.
We prove that by induction on r.

Suppose r = 1 and it is another product of primes
a=pj...p, wheres>1.

Then pi|p1 and so pj = p1 and ph...p, =1, whence

s =1 also.
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Proof of Theorem 17. Clearly we may suppose that

a > 0 and hence a > 2.

Theorem 4 tells us that a will be a product of r primes, say
a=pip2...p, with r > 1. It remains to prove uniqueness.
We prove that by induction on r.

Suppose r =1 and it is another product of primes
a=pj...p, wheres>1.

Then pi|p1 and so pj = p1 and ph...p, =1, whence

s =1 also.

Now suppose that r > 1 and we have established
uniqueness for all products of r primes, and we have a
product of r 4+ 1 primes, and

/

a=pip2.--Pri1=PL--- P
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Background ® Theorem 4 tells us that a will be a product of r primes, say
Robert C. a=pip2...p, with r > 1. It remains to prove uniqueness.
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® \We prove that by induction on r.
® Suppose r = 1 and it is another product of primes
a=pj...p, wheres>1.
S ® Then pj|p1 and so pj = p1 and pj...p. =1, whence
The 4 s =1 also.
fundamental ® Now suppose that r > 1 and we have established
arithmetic uniqueness for all products of r primes, and we have a
product of r + 1 primes, and

/

a=pip2-..Pre1=pPi---Ph
® Then we see from the previous theorem that pj = p; for
some j and then
P> - Ps = P1P2 o Pri1/Pj

and we can apply the inductive hypothesis to obtain the
desired conclusion.



® There are various other properties of GCDs which can now
be described.
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® There are various other properties of GCDs which can now
be described.

® Suppose a and b are positive integers. Then by the
previous theorem we can write

a=pit...pf, b=pi...pk

where the ps, ... px are the different primes in the
factorization of a and b and we allow the possibility that
the exponents r; and s; may be zero.
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VargiEn previous theorem we can write
r S,
a=pi...pS, b=pt...prk
where the py, ... px are the different primes in the
e factorization of a and b and we allow the possibility that
e the exponents r; and s; may be zero.

® For example if py =2, pp = 3, p3 = 5, then

20 = pipdp3, 75 = pip3p3, (20,75) =5 = pIp3, p3.
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Background
Robert C. ® Suppose a and b are positive integers. Then by the
VargiEn previous theorem we can write
r S,
a=pi...pS, b=pt...prk
where the py, ... px are the different primes in the
e factorization of a and b and we allow the possibility that
e the exponents r; and s; may be zero.

® For example if py =2, pp = 3, p3 = 5, then
20 = pipdp3, 75 = pip3p3, (20,75) =5 = pIp3, p3.
® Then it can be checked easily that

(a7 b) _ p;-nin(rl,sl) o p;(nin(rk,sk)



Factorization
and Primality
Testing
Chapter 1
Background

Robert C.
Vaughan

The
fundamental
theorem of
arithmetic

® We can now introduce the idea of least common multiple

Definition 19

We can also introduce here the least common multiple LCM

ab

Bl = (a,b)

and this could also be defined by

[a’ b] _ prl’nax(rl,sl) o p;(nax(rk,sk)'
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LEECIET Definition 19

We can also introduce here the least common multiple LCM

ab
me Numbers [a7 b] =
The (aa b)
fundamental
theorem of and this could also be defined by
[a,b] = prlnaX(r17S1) o p;(“ax(%sk)'

® The LCM|a, b] has the property that it is the smallest
positive integer ¢ so that a|c and b|c.
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® At this point it is useful to remind ourselves of some
further terminology

Definition 20

A composite number is a number n € N with n > 1 which is
not prime. In particular a composite number n can be written

n = mimy

with 1 < my < n, and so 1 < my < n also.
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way to try to factorize a number n is by trial division.
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® Thus m% < mymy; = n and

my < +/n.

® Hence we can try each m; < +/n in turn. If we find no
such factor, then we can deduce that n is prime.
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Background way to try to factorize a number n is by trial division.
i, e If n has a proper factor my, so that n = mym, with

1 < my < n, whence 1 < my < n also, then we can
suppose that m; < my.

® Thus m% < mymy; = n and

my < +/n.

- ® Hence we can try each my < \/n in turn. If we find no
el D such factor, then we can deduce that n is prime.
® Since the smallest proper divisor of n has to be the
smallest prime factor of n we need only check the primes p
with
2<p<+/n
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Festing ® As | hope was clear from the example 101 the simplest
EYEly . . . .
Background way to try to factorize a number n is by trial division.
i, e If n has a proper factor my, so that n = mym, with

1 < my < n, whence 1 < my < n also, then we can
suppose that m; < my.

® Thus m% < mymy; = n and

my < +/n.

- ® Hence we can try each my < \/n in turn. If we find no
el D such factor, then we can deduce that n is prime.
® Since the smallest proper divisor of n has to be the
smallest prime factor of n we need only check the primes p
with
2<p<+/n

® Even so, for large n this is hugely expensive in time.
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® The number 7(x) of primes p < x is approximately

7T(X)N/ da X
2

loga  logx

where log denotes the natural logarithm.
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where log denotes the natural logarithm.
® Thus if nis about k bits in size and turns out to be prime
or the product of two primes of about the same size, then
the number of operations will be
Trial Division 2k/2

~
~

Klog2’
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Background -
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Vaughan TI'(X)N/X do - X
2

loga  logx

where log denotes the natural logarithm.

® Thus if nis about k bits in size and turns out to be prime
or the product of two primes of about the same size, then
the number of operations will be

Trial Division 2k/2

~
~

Klog2’

® Still exponential in the bit size.
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Robert C. X dOé X

Vaughan TF(X) ~ / ~

> loga  logx
where log denotes the natural logarithm.

S ® Thus if nis about k bits in size and turns out to be prime
or the product of two primes of about the same size, then
the number of operations will be

Trial Division 2k/2
Klog2’

® Still exponential in the bit size.

® Trial division is feasible for n out to about 40 bits on a
modern PC. Much beyond that it becomes hopeless.
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® One area where trial division, or sophisticated variants
thereof, are useful is in the production of tables of primes,

- or counts of primes such as the value of 7(x).

Trial Division
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® One area where trial division, or sophisticated variants
thereof, are useful is in the production of tables of primes,
or counts of primes such as the value of 7(x).
® This is how the table | showed you earlier with gives values
of m(x) for x < 10%" was constructed.

Trial Division
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Trial Division

® One area where trial division, or sophisticated variants
thereof, are useful is in the production of tables of primes,
or counts of primes such as the value of 7(x).

® This is how the table | showed you earlier with gives values
of m(x) for x < 10%" was constructed.

® The simplest form of this is the ‘Sieve of Eratosthenes’.
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Background e Construct a L\WJ X L\/NJ array. Here N = 100.

Robert C.

Vaughan 0| 1| 2| 3| 4| 5| 6| 7| 8| 9

10|11 12|13 |14 | 15|16 |17 | 18| 19

20121 |22 23|24 |25|26|27 |28 |29

3013113233 |34|35|36|37|38|39

40 |41 [ 42743 |44 [ 45 | 46 | 47 | 48| 49

50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59

60 | 61 | 62 | 63 | 64 | 65| 66 | 67 | 68 | 69

Trial Division 70 (71|72 (73|74 |75 |76 |77 |78 |79

80 |81 82|83 |84|85 |86 |87 |88 |89

90 1911929394 |95 |96 |97 |98 |99

Forget about 0 and 1, and then for each successive
element remaining remove the proper mutliples.
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Trial Division

® Thus for 2 we remove 4,6,8,...,98.

X| X1 2] 3| X| 5[X] 7|X]| 9
X111 | X |13 | X |15 | X |17 | X |19
X121 | X |23 | X |25 | X |27 | X |29
X131 X|33 | X[3 | X]|37]|X]|39
X141 | X |43 | X |45 | X |47 | X | 49
X |51 | X |53 | X|55|X|57|X]|59
X|61|X|63|X|65|X]|67|X]|69
X| 71| X |73 | X |75 | X |77 |X]|79
X |81 | X |83 |X |8 | X|87]X]|89
X191 [ X]93 | X ]9 |X]|97|X|99
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Trial Division

® Then for the next remaining element 3 remove 6,9, ...

X| X1 2] 3| X] 5[X] 7|X]| X
X111 | X |13 | X | X[ X|17| X |19
X| X X]|23 | X |25 | X | X|X]|29
X131 | X| X[ X3 |X[|37]|X]| X
X141 | X |43 | X | X | X [47| X |49
X| X | X|53 | X |55 X]| X|X]|59
X6l | X | X | X |65 | X |67 | X| X
X171 | X |73 | X| X[ X|77|X]|79
X X|X[8 [ X |8 |X]| X|X]|389
X191 | X| X[ X9 |X]97|X]| X
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Trial Division

® | ikewise for 5 and 7.

X| X2 3[X|5|X|] 7[X| X
X111 | X 13| X | X | X |17 | X |19
X| X[ X |23 | X | X|X]| X|X]29
X131 | X | X|X|X|X]37 | X]| X
X141 | X |43 | X | X | X |47 | X | X
X| X|X|83 | X|X|X]| X|X|59
X161 | X| X[ X|X|X]|67|X| X
XI71L | X |73 | X|X|X]| X[|X|79
X| XX |8 | X|X|X]| X|X]|89
X X|X]| X[ X|X]|X]97|X]| X




Factorization ® | ikewise for 5 and 7.

jfpmg'ly XTI X[ 2] 3IX[5[X] 7[X] X
L) X [11 [ X [13 [ X | X [ X |17 | X ]| 19
e © X | XX |23 [X | X[ X[ X|X]|29
X 31 [X| X[ X|X|X[37]X]| X
X |41 [ X [43 [ X | X | X |47 | X]| X
X | X [X 53X |X|X| X|X]|59
. X 61 [ X| X | X|X|X[67|X]| X
X |71 [X |73 [ X | X | X | X|X |79
X | XX |8 [X|X|X| X|X]|89
Trial Division X X X X X X X 97 X X

® After that the next remaining element is 11 and for that
and its successors all the proper multiples have already
been removed.



Factorization ® | ikewise for 5 and 7.

jfpmg'ly XTI X[ 2] 3IX[5[X] 7[X] X
L) X [11 [ X [13 [ X | X [ X |17 | X ]| 19
e © X | XX |23 [X | X[ X[ X|X]|29
X 31 [X| X[ X|X|X[37]X]| X
X |41 [ X [43 [ X | X | X |47 | X]| X
X | X [X 53X |X|X| X|X]|59
. X 61 [ X| X | X|X|X[67|X]| X
X |71 [X |73 [ X | X | X | X|X |79
X | XX |8 [X|X|X| X|X]|89
Trial Division X X X X X X X 97 X X

® After that the next remaining element is 11 and for that
and its successors all the proper multiples have already
been removed.

® Thus we now have a table of all the primes p < 100.



Factorization ® | ikewise for 5 and 7.

jfpmg'ly XTI X[ 2] 3IX[5[X] 7[X] X
L) X [11 [ X [13 [ X | X [ X |17 | X ]| 19
e © X | XX |23 [X | X[ X[ X|X]|29
X 31 [X| X[ X|X|X[37]X]| X
X |41 [ X [43 [ X | X | X |47 | X]| X
X | X [X 53X |X|X| X|X]|59
. X 61 [ X| X | X|X|X[67|X]| X
X |71 [X |73 [ X | X | X | X|X |79
X | XX |8 [X|X|X| X|X]|89
Trial Division X X X X X X X 97 X X

® After that the next remaining element is 11 and for that
and its successors all the proper multiples have already
been removed.

® Thus we now have a table of all the primes p < 100.

® This is relatively efficient.



Factorization ® | ikewise for 5 and 7.

jfpmg'ly XTI X[ 2] 3IX[5[X] 7[X] X
L) X [11 [ X [13 [ X | X [ X |17 | X ]| 19
e © X | XX |23 [X | X[ X[ X|X]|29
X 31 [X| X[ X|X|X[37]X]| X
X |41 [ X [43 [ X | X | X |47 | X]| X
X | X [X 53X |X|X| X|X]|59
. X 61 [ X| X | X|X|X[67|X]| X
X |71 [X |73 [ X | X | X | X|X |79
X | XX |8 [X|X|X| X|X]|89
Trial Division X X X X X X X 97 X X

® After that the next remaining element is 11 and for that
and its successors all the proper multiples have already
been removed.

® Thus we now have a table of all the primes p < 100.
® This is relatively efficient.

® By counting the entries that remain one finds that
m(100) = 25.
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Vaughan ® The sieve of Eratosthenes produces approximately
n
log n
e e numbers in about
n
E — ~ nloglogn
p
Trial Division p<vn

operations.

® Another big constraint is storage.
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® Here is an idea that goes back to Fermat.

® Given n suppose we can find x and y so that
n=x?—y2

0<y<x.

«O> «Fr «=>»
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Differences of
Squares

® Here is an idea that goes back to Fermat.
® Given n suppose we can find x and y so that

n=x>-y? 0<y<x.
® Since the polynomial on the right factorises as
(x=y)x+y)

maybe we have a way of factoring n.
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Differences of
Squares

Here is an idea that goes back to Fermat.
Given n suppose we can find x and y so that
n=x>-y? 0<y<x.
Since the polynomial on the right factorises as
(x=y)x+vy)

maybe we have a way of factoring n.
We are only likely to try this if n is odd, say

n=2k+1
and then we might run in to
n=2k+1=(k+1)?—-k>=1.(2k +1)

which does not help much.
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Differences of
Squares

Here is an idea that goes back to Fermat.
Given n suppose we can find x and y so that
n=x>-y? 0<y<x.
Since the polynomial on the right factorises as
(x=y)x+vy)

maybe we have a way of factoring n.
We are only likely to try this if n is odd, say

n=2k+1
and then we might run in to
n=2k+1=(k+1)?—-k>=1.(2k +1)

which does not help much.
Of course if n is prime, then perforce x — y =1 and
x 4+ y =2k + 1 so this would be the only solution.
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Differences of
Squares

Here is an idea that goes back to Fermat.
Given n suppose we can find x and y so that

n=x>-y? 0<y<x.

Since the polynomial on the right factorises as

(x=y)(x+y)

maybe we have a way of factoring n.
We are only likely to try this if n is odd, say

n=2k+1
and then we might run in to
n=2k+1=(k+1)?—-k>=1.(2k +1)

which does not help much.

Of course if n is prime, then perforce x — y =1 and

x 4+ y =2k + 1 so this would be the only solution.

But if we could find a solution with x — y > 1, then that
would show that n is composite and would give a
factorization.



Factorization ® |f n = mymy with n odd and m; < m», then my and m»

and Primality
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Background mo + m mo —m
Robert C. X_y:m17x+y:m27X: ) =

Vaughan 2 2

Prime Numbers

Differences of
Squares
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Introduction
The integers
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Prime Numbers

The
fundamental
theorem of
arithmetic

Trial Division

Differences of
Squares

The Floor
Function

® |f n = mymy with n odd and m; < m», then my and m»

are both odd and there is a solution with

X—y=m,X+y=m,Xx= 5 , Y= 5

® A simple example

my+m  my—m

91 = 100 — 9 = 10% — 32,
x=10,y=3, m=x—y=7, m=x+y=13.
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Introduction
The integers
Divisibility
Prime Numbers

The
fundamental
theorem of
arithmetic

Trial Division

Differences of
Squares

The Floor
Function

® |f n = mymy with n odd and m; < m», then my and m»
are both odd and there is a solution with

X—y=my,x+y=m, x=

® A simple example

2

my + my

)

my —m

2

91 = 100 — 9 = 10% — 32,

x=10,y=3, m=x—y=7, m=x+y=13.

® Another

1001 = 2025 — 1024 = 452 — 322
x=45y=32 m=x—-y=13, m=x+y=177.

[m]

=
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® This method has the obvious downside that x*> = n + y?
so already one is searching among x which are greater
than /n and one could end up searching among that
many possibilities.
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Differences of
Squares

® This method has the obvious downside that x*> = n + y?
so already one is searching among x which are greater
than /n and one could end up searching among that
many possibilities.

® The chances of solving this easily for large n are quite
small.
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Differences of
Squares

® This method has the obvious downside that x*> = n + y?
so already one is searching among x which are greater
than /n and one could end up searching among that
many possibilities.

® The chances of solving this easily for large n are quite
small.

® Nevertheless we will see that this is a very fruitful idea.
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Differences of
Squares

This method has the obvious downside that x> = n + y?
so already one is searching among x which are greater
than /n and one could end up searching among that
many possibilities.

The chances of solving this easily for large n are quite
small.

Nevertheless we will see that this is a very fruitful idea.
For example suppose instead of n = x% — y? we could solve

x? —y? =kn

for a relatively small value of k.
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Differences of
Squares

This method has the obvious downside that x> = n + y?
so already one is searching among x which are greater
than /n and one could end up searching among that
many possibilities.

The chances of solving this easily for large n are quite
small.

Nevertheless we will see that this is a very fruitful idea.
For example suppose instead of n = x% — y? we could solve

x? —y? =kn

for a relatively small value of k.
It is not very likely that x — y or x + y are factors of n,
but if we could compute

g = GCD(x +y,n)

then we might find that g differs from 1 or n and so gives
a factorization.
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Differences of
Squares

This method has the obvious downside that x> = n + y?
so already one is searching among x which are greater
than /n and one could end up searching among that
many possibilities.

The chances of solving this easily for large n are quite
small.

Nevertheless we will see that this is a very fruitful idea.
For example suppose instead of n = x% — y? we could solve

x? —y? =kn

for a relatively small value of k.
It is not very likely that x — y or x + y are factors of n,
but if we could compute

g = GCD(x +y,n)

then we might find that g differs from 1 or n and so gives
a factorization.

Moreover there is a very fast way of computing greatest
common divisors.
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The Floor
Function

® To illustrate this consider

Let n = 10001. Then

Now

8n = 80008 = 80089 — 81 = 2832 — 9% = 274 x 292.

GCD(292,10001) = 73, 10001 = 73 x 137
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Introduction
The integers
Divisibility
Prime Numbers

The
fundamental
theorem of
arithmetic

Trial Division

Differences of
Squares

The Floor
Function

® To illustrate this consider

Let n = 10001. Then
8n = 80008 = 80089 — 81 = 2832 — 9% = 274 x 292.

Now
GCD(292,10001) = 73, 10001 = 73 x 137

® We will come back to this, but as a first step we want to
explore the computation of greatest common divisors.

u}
8]
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i
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Background
Vaughan
Let n = 10001. Then

Introduction

The integers 8n = 80008 = 80089 — 81 = 283% — 92 = 274 x 292.
Divisibility

ot Now

Aumdamental GCD(292,10001) = 73, 10001 = 73 x 137

armatic

Trial Division ® We will come back to this, but as a first step we want to
S explore the computation of greatest common divisors.

The Floor ® \We also want to find fast ways of solving equations like

kn = x* — y?

in the variables k,s, y.




® There is a function which we will use from time to time.
This is the floor function.
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Background . .

This is the floor function.
Robert C. . .
Yeughen ® |t is defined for all real numbers.

Definition 24

For real numbers o we define the floor function || to be the
me Numbers largest integer not exceeding a.

Occasionally it is also useful to define the ceiling function [«/]

as the smallest integer u such that a < u. The difference

a — |a] is often called the fractional part of o and is

sometimes denoted by {a}.

The Floor
Function
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The
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theorem of
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Trial Division

Differences of
Squares

The Floor
Function

® There is a function which we will use from time to time.
This is the floor function.

® |t is defined for all real numbers.

Definition 24

For real numbers o we define the floor function || to be the
largest integer not exceeding a.

Occasionally it is also useful to define the ceiling function [«]
as the smallest integer u such that o < u. The difference

a — |a] is often called the fractional part of o and is
sometimes denoted by {a}.

® By the way of illustration.

u}

8]
I
i

it




Factorization
and Primality
Testing
Chapter 1
Background

Robert C.
Vaughan

The Floor
Function

® The floor function has some useful properties.

Theorem 26 (Properties of the floor function)

(i) For any oo € R we have 0 < a — |a| < 1.

(ii) For any a € R and k € Z we have |a + k| = |a] + k.
(iii) For any o € R and any n € N we have |a/n| = ||a]/n].
(iv) Forany o, € R, |a] + [B] < e+ 8] < [af + 8] + 1.
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The Floor
Function

® The floor function has some useful properties.

Theorem 26 (Properties of the floor function)

(i) For any oo € R we have 0 < a — |a| < 1.

(ii) For any a € R and k € Z we have |a + k| = |a] + k.
(iii) For any o € R and any n € N we have |a/n| = ||a]/n].
(iv) Forany o, € R, |a] + [B] < e+ 8] < [af + 8] + 1.

¢ Proof. (i) We argue by contradiction.
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The Floor
Function

® The floor function has some useful properties.

Theorem 26 (Properties of the floor function)

(i) For any oo € R we have 0 < a — |a| < 1.

(ii) For any a € R and k € Z we have |a + k| = |a] + k.
(iii) For any o € R and any n € N we have |a/n| = ||a]/n].
(iv) Forany o, € R, |a] + [B] < e+ 8] < [af + 8] + 1.

¢ Proof. (i) We argue by contradiction.
e If  — |a] <0, then a < || contradicting the definition.
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The Floor
Function

® The floor function has some useful properties.

Theorem 26 (Properties of the floor function)

(i) For any oo € R we have 0 < a — |a| < 1.
(ii) For any a € R and k € Z we have |a + k| = |a] + k.
(iii) For any o € R and any n € N we have |a/n| = ||a]/n].
(iv) For any a, B € R, o] + 8] < la+ B < la] + 8] + 1
¢ Proof. (i) We argue by contradiction.
e If a — [a] <0, then a < | contradicting the definition.
¢ If 1 <a—|al, then 1+ [a]| < a contradicting defn.
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The Floor
Function

® The floor function has some useful properties.

Theorem 26 (Properties of the floor function)

(i) For any a € R we have 0 < a — ] < 1.
(ii) For any a € R and k € Z we have |a + k| = |a] + k.
(iii) For any o € R and any n € N we have |a/n| = ||a]/n].
(iv) Forany o, € R, |a] + [B] < e+ 8] < [af + 8] + 1.
¢ Proof. (i) We argue by contradiction.
e If a — [a] <0, then a < | contradicting the definition.
¢ If 1 <a—|al, then 1+ [a]| < a contradicting defn.
® This also shows that |«| is unique.
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The Floor
Function

® The floor function has some useful properties.

Theorem 26 (Properties of the floor function)

(i) For any oo € R we have 0 < a — |a| < 1.

(ii) For any a € R and k € Z we have |a + k| = |a] + k.
(iii) For any o € R and any n € N we have |a/n| = ||a]/n].
(iv) Forany o, € R, |a] + [B] < e+ 8] < [af + 8] + 1.

¢ Proof. (i) We argue by contradiction.

e If  — |a] <0, then a < || contradicting the definition.
e If 1 <a—|af, then 1+ |a] < « contradicting defn.
[

This also shows that |«| is unique.

(i) One way to see this is to observe that by (i) we have
a = |a] + 6 for some 6 with 0 < 6 < 1.
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The Floor
Function

® The floor function has some useful properties.
Theorem 26 (Properties of the floor function)

(i) For any oo € R we have 0 < a — |a| < 1.

(ii) For any a € R and k € Z we have |a + k| = |a] + k.
(iii) For any o € R and any n € N we have |a/n| = ||a]/n].
(iv) Forany o, € R, |a] + [B] < e+ 8] < [af + 8] + 1.

¢ Proof. (i) We argue by contradiction.

e If a — [a] <0, then a < | contradicting the definition.
¢ If 1 <a—|al, then 1+ [a]| < a contradicting defn.

® This also shows that |«| is unique.

e (ii) One way to see this is to observe that by (i) we have
a = |a] + 6 for some 6 with 0 < 6 < 1.

® Then oo+ k — |a] — k = 6 and since there is only one
integer / with 0 < a4+ k —/ < 1, and this / is [« + k| we
must have |a+ k| = |a] + k.
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Robert C.
Vaughan {a/nJ - LLO&J/”J .
(iv) For any a, 8 € R,
la] + 18] < e+ 8] < la] + (8] +1.
The Floor

Function
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® Proof continued. (iii) We know by (i) that

0 = a/n— |a/n| satisfies 0 < 0 < 1.
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e Theorem 26. (iii) For any o € R and any n € N we have
l/n| = [[ea]/n].
(iv) For any a, B € R,
la) + 8] < la+ B8] < o] + B8] +1.
® Proof continued. (iii) We know by (i) that
0 = a/n— |a/n| satisfies 0 < 0 < 1.
® Now a = n|a/n| + nf and so by (ii)
|la| = nla/n| + [nb].
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® Theorem 26. (iii) For any o € R and any n € N we have
l/n| = [[ea]/n].
(iv) For any a, B € R,
Lo + 18] < e+ B8] < o] + [B] +1.
® Proof continued. (iii) We know by (i) that
0 = a/n— |a/n| satisfies 0 < 0 < 1.
® Now a = n|a/n] + nb and so by (ii)
|la| = nla/n| + [nb].
® Hence |a|/n= |a/n] + |nf]/n and so
la/n| < |a]/n<|a/n]+1andso |a/n| =||a]/n].
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o ® Theorem 26. (iii) For any o € R and any n € N we have
Vaughan l/n| = [[ea]/n].

(iv) For any a, B € R,

la) + 8] < la+ B8] < o] + B8] +1.

® Proof continued. (iii) We know by (i) that

0 = a/n— |a/n| satisfies 0 < 0 < 1.
Now v = n|a/n| + nf and so by (ii)
|la| = nla/n| + [nb].
Hence |a|/n= |a/n] 4+ |nf]/n and so
la/n| < |a]/n<|a/n]+1andso |a/n| =||a]/n].
Ehstniee (iv) Put a = [a| +60 and B = |B] + & where 0 < 0, ¢ < 1.
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Theorem 26. (iii) For any a € R and any n € N we have
l/n| = [[ea]/n].

(iv) For any a, B € R,

Lo + 18] < e+ B8] < o] + [B] +1.

Proof continued. (iii) We know by (i) that

0 = a/n— |a/n| satisfies 0 < 0 < 1.

Now v = n|a/n| + nf and so by (ii)

|la| = nla/n| + [nb].

Hence |a|/n= |a/n] 4+ |nf]/n and so

la/n| < |a]/n<|a/n]+1andso |a/n| =||a]/n].
(v) Puta=|a|+6and B = |5] +¢ where 0 < 6,¢ < 1.
Then [a+ 3] = [0+ ¢+ o] + B8] and 0 <+ ¢ < 2.
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