

**MATH 467 FACTORIZATION AND PRIMALITY  
TESTING, FALL 2025, PROBLEMS 7**

*Return by Monday 13th October*

1. Suppose that  $a_1, \dots, a_k$  are non-zero integers and define the least common multiple,  $\text{lcm}[a_1, \dots, a_k]$  of  $a_1, \dots, a_k$  to be the smallest positive integer  $\ell$  such that  $a_j|\ell$  for all  $j$  with  $1 \leq j \leq k$ . Suppose further that  $b$  is a positive integer such that  $a_j|b$  for all  $j$  with  $1 \leq j \leq k$ .

(i) Prove that  $\text{lcm}[a_1, \dots, a_k]|b$ .

(ii) For each positive integer  $m$  the Carmichael function  $\lambda(m)$  is defined to be the smallest positive number such that for every  $a$  with  $(a, m) = 1$  and  $1 \leq a \leq m$  we have  $\text{ord}_m(a)|\lambda(m)$ . Prove that  $\lambda(m)|\phi(m)$ .

2. Suppose that  $k \in \mathbb{N}$ . Prove that

$$1^k + 2^k + \dots + (p-1)^k \equiv \begin{cases} 0 & \text{when } p-1 \nmid k, \\ -1 & \text{when } p-1|k, \end{cases} \pmod{p}$$

3. Prove that for any prime number  $p \neq 3$  the product of its primitive roots lies in the residue class 1 modulo  $p$ .

4. Suppose that  $p$  is an odd prime and  $g$  is a primitive root modulo  $p$ . Prove that the congruence  $x^2 \equiv g \pmod{p}$  is insoluble.

5. Find a complete set of quadratic residues  $r$  modulo 23 in the range  $1 \leq r \leq 22$ .