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• There have been many factorization algorithms developed
with the intent of finding t, x , y so that

tn = x2 − y2, (1.1)

• going back to Fermat in the case t = 1 and Legendre for
general t.

• One of the lines of attack was through the use of
continued fractions.

• It seems to have been periodically rediscovered, for
example by Kraitchik and, most notably, by Lehmer and
Powers in 1931 and then developed further by Morrison
and Brillhart in 1975 who showed that the advent of
modern computers made it a practical method.
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• The idea is to consider the continued fraction of
√
tn

√
tn = a0 +

1

a1 +
1

a2+···
.

• This expansion is actually periodic, and truncating the
expansion after k terms produces an approximation

Ak

Bk
(1.2)

to
√
tn.

• In particular
A2
k − tnB2

k = (−1)k−1Rk (1.3)

where Rk is relatively small.
• By the way the approximation (1.2) turns out to be
exactly the approximation that would arise from an
application of Dirichlet’s theorem, Theorem 2.2.

• Thus we have a solution to

A2
k ≡ (−1)k−1Rk (mod n).
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• Thus we have a solution to

A2
k ≡ (−1)k−1Rk (mod n).

• Having computed (−1)k−1Rk for k = 0, . . .K one looks
for a subset K of the k such that the product∏

k∈K
(−1)k−1Rk

is a perfect square.

• Then for

R ≡
∏
k∈K

(−1)k−1Rk (mod n), A ≡
∏
k∈K

Ak (mod n)

one has
A2 ≡ R2 (mod n)

• and hopefully GCD(A±R, n) provides a proper factor of n.
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• Things then developed very rapidly culminating in 1981
with what we now know as the Quadratic Sieve (QS).

• The expression in (1.3) on the left

A2
k − tnB2

k = (−1)k−1Rk

can be thought of as an indefinite binary quadratic form

x2 − tny2.

• Gauss had already studied such forms and had introduced
the idea of “composition” of forms.

• This lead Shanks to bring such structural ideas to the
party, and gave arise to an alternative version of the
method usually known as SQUFOF.

• This has a worse case runtime proportional to n1/4, so
does not compete in that regard to the other methods
described here.

• However SQUFOF (SQUareFOrmsFactorization) is
sufficiently simple that it can be implemented on a pocket
calculator and the instructor of this course has a version
on his mobile phone.
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The Quadratic Sieve

• Recall that in Lehman’s method the aim is to find x , t so
that

x2 − 4tn

is a perfect square.

• In the discussion above of the continued fraction approach
we saw that an alternative way to achieve this is to find
x1, . . . , xr and y1, . . . , yr such that

yi ≡ x2i (mod n)

and
(x1 . . . xr )

2 ≡ y1 . . . yr = z2 (mod n).

• However we want something better than trial and error.
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The Quadratic Sieve

• Idea. Initially we consider

x2 − n = y

with for a sequence of values of x = xj .

• The data we garner from this will ultimately enable us to
find t, x such that x2 − tn is a perfect square.

• Suppose that each of the yj has only small prime factors,
say we have p ≤ B for every p|yj .

• For example we just look for prime factors p ≤ B = 7 and
suppose we found y1 = 6, y2 = 15, y3 = 21, y4 = 35.

• Then we would have y1 = 21315070,

y2 = 20315170, y3 = 20315071, y4 = 20305171

• so we can associate with these the four vectors

v1 = ⟨1, 1, 0, 0⟩,v2 = ⟨0, 1, 1, 0⟩,
v3 = ⟨0, 1, 0, 1⟩,v4 = ⟨0, 0, 1, 1⟩.
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The Quadratic Sieve

• We have y1 = 21315070,

y2 = 20315170, y3 = 20315071, y4 = 20305171

• so we can associate with these the four vectors

v1 = ⟨1, 1, 0, 0⟩,v2 = ⟨0, 1, 1, 0⟩,
v3 = ⟨0, 1, 0, 1⟩,v4 = ⟨0, 0, 1, 1⟩.

• Then we want to find integers ej = 0 or 1 so that

e1v1 + e2v2 + e3v3 + e4v4 ≡ 0 (mod 2)

where 0 = ⟨0, 0, 0, 0⟩.
• Thus e1 = 0, e2 = e3 = e4 = 1 will do and

y01 y
1
2 y

1
3 y

1
4 = 15.21.35 = (3.5.7)2 = (105)2.

• Thus we can find perfect squares by vector addition. In
other words solving linear equations.

• In practice this in turn means Gaussian elimination.
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Definition 1

Given a positive real number B we say that an integer z is
B-factorable when every prime factor p of z satisfies p ≤ B.
To emphasise the fact that in our situation only certain primes
(but also −1) may occur we will also use the term P-factorable
where P is a set of primes, probably augmented by −1.

• Note that the term B-smooth is commonly used instead.
The word “smooth” has many better uses in mathematics.
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• The Quadratic Sieve (QS)
We are given an odd number n which we know to be
composite and not a perfect power. The objective is to
find a non–trivial factor of n.

• 1. Initialization.
1.1. Pick a number B as the upper bound for the primes
in the factor base P. Theory says take B =

⌈
L(n)1/2

⌉
where L(n) = exp(

√
log n log log n), but in practice a B

somewhat smaller works well.

• Also, adding extra primes suggested by the sieving process
can be useful and if one uses the wrinkle in 5.3 below,
then the prime p is adjoined to the factor base.

• 1.2. Set p0 = −1, p1 = 2 and find the odd primes

p2 < p3 < . . . < pK ≤ B such that

(
n

pk

)
L

= 1.

• (LJ) is useful here.

• 1.3. For k = 2, . . . ,K find the solutions ±tpk to x2 ≡ n
(mod pk) by using (QC).
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• 2. Sieving.
2.1. Let N = ⌈

√
n⌉. Sieve the sequence x2 − n with

x = N + j , j = 0,±1,±2, . . . until one has obtained a list
of at least K + 2 B-factorable x2j − n and their
factorizations (K + 2 is somewhat arbitrary and in the first
example below is K + 1).

• This could be done by using a matrix, with K + 2 rows so
that the j–th column is a K + 3 dimensional vector in
which the first entry is xj , the second is x2j − n, and the

k + 3–rd entry is the exponent of pk in x2j − n.

• 2.2. For each prime pk in P divide out all the prime
factors pk in each entry x2j − n with xj ≡ ±tpk (mod pk),
recording the exponent in the k + 3-rd entry in the
associated j-th vector. Once the primes start to grow this
speeds things up significantly.

• 2.3. If the bottom entry in the j–th vector has reduced to
1, then x2j − n is B–factorable. If it has not completely
factored then one can discard that column, or at least put
it aside in case one needs to extend the factor base.
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• 3. Linear Algebra.
3.1. Form a (K + 1)× (K + 2) matrix M with the
columns being formed by the 3–rd through K + 3–rd
entries of the column vectors arising in 2.2, but with the
entries reduced modulo 2.

• 3.2. Use linear algebra (Gaussian elimination, for
example) to solve

Me = 0 (mod 2)

where e is a K + 2 dimensional vector of 0s and 1s (not all
0!).

• Note that the solution space may well be of dimension
greater than 1 so then there would be multiple solutions.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• 3. Linear Algebra.
3.1. Form a (K + 1)× (K + 2) matrix M with the
columns being formed by the 3–rd through K + 3–rd
entries of the column vectors arising in 2.2, but with the
entries reduced modulo 2.

• 3.2. Use linear algebra (Gaussian elimination, for
example) to solve

Me = 0 (mod 2)

where e is a K + 2 dimensional vector of 0s and 1s (not all
0!).

• Note that the solution space may well be of dimension
greater than 1 so then there would be multiple solutions.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• 3. Linear Algebra.
3.1. Form a (K + 1)× (K + 2) matrix M with the
columns being formed by the 3–rd through K + 3–rd
entries of the column vectors arising in 2.2, but with the
entries reduced modulo 2.

• 3.2. Use linear algebra (Gaussian elimination, for
example) to solve

Me = 0 (mod 2)

where e is a K + 2 dimensional vector of 0s and 1s (not all
0!).

• Note that the solution space may well be of dimension
greater than 1 so then there would be multiple solutions.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• 4. Factorization.
4.1. Compute x = xe11 xe22 . . . x

eK+2

K+2 modulo n and

y =
√

(x21 − n)e1(x22 − n)e2 . . . (x2K+2 − n)eK+2

modulo n.

• The value of x can be computed by using the first entries
in the j–vectors.

• The square root should NOT be computed directly but by
using the factorisations of each x2j − n obtained in 2.2.

• 4.2. Compute m =gcd(x − y , n).

• 4.3. Return m.

• 4.4. If necessary repeat for all solutions e until a
non-trivial factor found.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• 4. Factorization.
4.1. Compute x = xe11 xe22 . . . x

eK+2

K+2 modulo n and

y =
√

(x21 − n)e1(x22 − n)e2 . . . (x2K+2 − n)eK+2

modulo n.

• The value of x can be computed by using the first entries
in the j–vectors.

• The square root should NOT be computed directly but by
using the factorisations of each x2j − n obtained in 2.2.

• 4.2. Compute m =gcd(x − y , n).

• 4.3. Return m.

• 4.4. If necessary repeat for all solutions e until a
non-trivial factor found.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• 4. Factorization.
4.1. Compute x = xe11 xe22 . . . x

eK+2

K+2 modulo n and

y =
√

(x21 − n)e1(x22 − n)e2 . . . (x2K+2 − n)eK+2

modulo n.

• The value of x can be computed by using the first entries
in the j–vectors.

• The square root should NOT be computed directly but by
using the factorisations of each x2j − n obtained in 2.2.

• 4.2. Compute m =gcd(x − y , n).

• 4.3. Return m.

• 4.4. If necessary repeat for all solutions e until a
non-trivial factor found.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• 4. Factorization.
4.1. Compute x = xe11 xe22 . . . x

eK+2

K+2 modulo n and

y =
√

(x21 − n)e1(x22 − n)e2 . . . (x2K+2 − n)eK+2

modulo n.

• The value of x can be computed by using the first entries
in the j–vectors.

• The square root should NOT be computed directly but by
using the factorisations of each x2j − n obtained in 2.2.

• 4.2. Compute m =gcd(x − y , n).

• 4.3. Return m.

• 4.4. If necessary repeat for all solutions e until a
non-trivial factor found.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• 4. Factorization.
4.1. Compute x = xe11 xe22 . . . x

eK+2

K+2 modulo n and

y =
√

(x21 − n)e1(x22 − n)e2 . . . (x2K+2 − n)eK+2

modulo n.

• The value of x can be computed by using the first entries
in the j–vectors.

• The square root should NOT be computed directly but by
using the factorisations of each x2j − n obtained in 2.2.

• 4.2. Compute m =gcd(x − y , n).

• 4.3. Return m.

• 4.4. If necessary repeat for all solutions e until a
non-trivial factor found.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• 4. Factorization.
4.1. Compute x = xe11 xe22 . . . x

eK+2

K+2 modulo n and

y =
√

(x21 − n)e1(x22 − n)e2 . . . (x2K+2 − n)eK+2

modulo n.

• The value of x can be computed by using the first entries
in the j–vectors.

• The square root should NOT be computed directly but by
using the factorisations of each x2j − n obtained in 2.2.

• 4.2. Compute m =gcd(x − y , n).

• 4.3. Return m.

• 4.4. If necessary repeat for all solutions e until a
non-trivial factor found.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• 5. Aftermath.
5.1. If no proper factor of n found, try one or more of the
following.

• 5.2. Extend the sieving in 2.1 to obtain more e and pairs
x , y .

• 5.3 As a matter of policy the original sieving probably
should be conducted so as to obtain K ′ pairs with K ′

somewhat more than K + 2.

• 5.3. Use another polynomial in place of x2 − n, or rather,
be a bit more cunning about the choice of the x in 2.1.
Choose a large prime p for which b2 − n ≡ 0 (mod p) is
soluble, and compute b. Then (px + b)2 − n ≡ 0 (mod p)
and x can be chosen so that f (x) = ((px + b)2 − n)/p is
comparatively small since p is large, so the sieving
proceeds relatively speedily, there is a better chance of a
complete factorization of f (x), and we only have to
augment the factor base with the prime p.
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• 5.3. Use another polynomial in place of x2 − n, or rather,
be a bit more cunning about the choice of the x in 2.1.
Choose a large prime p for which b2 − n ≡ 0 (mod p) is
soluble, and compute b. Then (px + b)2 − n ≡ 0 (mod p)
and x can be chosen so that f (x) = ((px + b)2 − n)/p is
comparatively small since p is large, so the sieving
proceeds relatively speedily, there is a better chance of a
complete factorization of f (x), and we only have to
augment the factor base with the prime p.
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• The most time consuming part of this algorithm is the
sieving.

• Note that just restricting the x to x ≡ ±tpk already speeds
it up considerably but this is still usually the slowest part.

• The linear algebra can also be speeded up by various
techniques, especially those developed for dealing with
sparse matrices.

• Although the numbers in the following example are much
smaller than would occur in a practice the example does
illustrate the complexity of the basic quadratic sieve.
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• Example 8.1. Let n = 9487 and B = 30.

• We first need to check which primes p ≤ 30 will occur.

• Thus for each odd prime p ≤ 30 we need to ascertain
whether n is a QR or a QNR modulo p.(

9487
3

)
L
=

(
1
3

)
L
= 1,

(
9487
13

)
L
=

(
10
13

)
L
=

(
36
13

)
L
= 1,(

9487
5

)
L
=

(
2
5

)
L
= −1,

(
9487
17

)
L
=

(
1
17

)
= 1,(

9487
7

)
L
=

(
2
7

)
L
= 1,

(
9487
19

)
L
=

(
6
19

)
L
=

(
25
19

)
L
= 1,(

9487
11

)
L
=

(
5
11

)
L
= 1,

(
9487
23

)
L
=

(
11
23

)
L
= −

(
23
11

)
L
= −1,(

9487
29

)
L
=

(
4
29

)
L
= 1.

• Thus P = {−1, 2, 3, 7, 11, 13, 17, 19, 29}.
• Then by bf (QC) t3 = ±1, t7 = ±3, t11 = ±4,

t13 = ±5, t17 = ±1, t19 = ±5, t29 = ±2.

• Now for a range of values of x near
√
n ≈ 97 we factorise

f (x) = x2 − n. At this stage we throw away the x which
do not completely factor in our factor base.
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• Show Class467-08T1.pdf.

• In the table above, in the column below each prime I have
included the exponent of the prime which occurs in the
factorisation and the residual factor after that prime has
been factored out.
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• I have included one such value, x = 82, below, so that you
can see what happens. If n is proving awkward to
factorise, one might go back and check to see if there are
primes outside the factor base which occur in multiple
places and then add them to the factor base. For example,
f (92) and f (94) would completely factorise if we included
the prime 31 in the factor base.

x 82 92 94

f (x) −2763 −1023 −651

−1 2763,1 2763,0 651,1
2 2763,0 1023,1 651,0
3 307,2 341,1 217,1
7 307,0 341,0 31,1
11 307,0 31,0 31,0
13 307,0 31,0 31,0
17 307,0 31,0 31,0
19 307,0 31,0 31,0
29 307,0 31,0 31,0
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• Let v(x) denote the vector of exponents in the
factorization of f (x), so that

v(85) = ⟨1, 1, 1, 0, 0, 1, 0, 0, 1⟩,
v(89) = ⟨1, 1, 3, 0, 0, 0, 0, 0, 1⟩,
v(98) = ⟨0, 0, 2, 0, 0, 1, 0, 0, 0⟩,

• Then v(85) + v(89) + v(98) = ⟨2, 2, 6, 0, 0, 2, 0, 0, 2⟩ and
the entries in this are all even.

• Thus, modulo 9487,

852 × 892 × 982 ≡ (852 − n)(892 − n)(982 − n)

7413702 ≡ (−1× 2× 33 × 13× 29)2 = 203582.

• Unfortunately

(741370 + 20358, 9487) = 1,

(741370− 20358, 9487) = 9487.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• Let v(x) denote the vector of exponents in the
factorization of f (x), so that

v(85) = ⟨1, 1, 1, 0, 0, 1, 0, 0, 1⟩,
v(89) = ⟨1, 1, 3, 0, 0, 0, 0, 0, 1⟩,
v(98) = ⟨0, 0, 2, 0, 0, 1, 0, 0, 0⟩,

• Then v(85) + v(89) + v(98) = ⟨2, 2, 6, 0, 0, 2, 0, 0, 2⟩ and
the entries in this are all even.

• Thus, modulo 9487,

852 × 892 × 982 ≡ (852 − n)(892 − n)(982 − n)

7413702 ≡ (−1× 2× 33 × 13× 29)2 = 203582.

• Unfortunately

(741370 + 20358, 9487) = 1,

(741370− 20358, 9487) = 9487.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• Let v(x) denote the vector of exponents in the
factorization of f (x), so that

v(85) = ⟨1, 1, 1, 0, 0, 1, 0, 0, 1⟩,
v(89) = ⟨1, 1, 3, 0, 0, 0, 0, 0, 1⟩,
v(98) = ⟨0, 0, 2, 0, 0, 1, 0, 0, 0⟩,

• Then v(85) + v(89) + v(98) = ⟨2, 2, 6, 0, 0, 2, 0, 0, 2⟩ and
the entries in this are all even.

• Thus, modulo 9487,

852 × 892 × 982 ≡ (852 − n)(892 − n)(982 − n)

7413702 ≡ (−1× 2× 33 × 13× 29)2 = 203582.

• Unfortunately

(741370 + 20358, 9487) = 1,

(741370− 20358, 9487) = 9487.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• Let v(x) denote the vector of exponents in the
factorization of f (x), so that

v(85) = ⟨1, 1, 1, 0, 0, 1, 0, 0, 1⟩,
v(89) = ⟨1, 1, 3, 0, 0, 0, 0, 0, 1⟩,
v(98) = ⟨0, 0, 2, 0, 0, 1, 0, 0, 0⟩,

• Then v(85) + v(89) + v(98) = ⟨2, 2, 6, 0, 0, 2, 0, 0, 2⟩ and
the entries in this are all even.

• Thus, modulo 9487,

852 × 892 × 982 ≡ (852 − n)(892 − n)(982 − n)

7413702 ≡ (−1× 2× 33 × 13× 29)2 = 203582.

• Unfortunately

(741370 + 20358, 9487) = 1,

(741370− 20358, 9487) = 9487.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• We also have

v(81) + v(95) + v(100) = ⟨2, 2, 4, 2, 2, 0, 0, 2, 0⟩,

• so that

812×952×1002 ≡ (−1×2×32×7×11×19)2 (mod 9487).

• This gives

7695002 ≡ 263342 (mod 9487)

• and

(769500 + 26334, 9487) = 179,

(769500− 26334, 9487) = 53.
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• There is a lot to take away from this.

• 1. We need to use the theory of quadratic residues, via the
Legendre symbol and quadratic reciprocity to see which
primes to include in the factor base.

• 2. We then need to sieve out the x , i.e remove those x for
which f (x) does not completely factor in the factor base,
and then to store the vector of exponents for each x which
survives.

• This can take a lot of memory.

• 3. Whilst not apparent in the simple example above, we
will need to work hard to find linear combinations of the
vectors of exponents in which all the entries are even.

• This will involve some form of Gaussian elimination. The
complexity is somewhat reduced by the fact that we only
need to do this modulo 2, but it will still also require quite
a lot of memory.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• There is a lot to take away from this.

• 1. We need to use the theory of quadratic residues, via the
Legendre symbol and quadratic reciprocity to see which
primes to include in the factor base.

• 2. We then need to sieve out the x , i.e remove those x for
which f (x) does not completely factor in the factor base,
and then to store the vector of exponents for each x which
survives.

• This can take a lot of memory.

• 3. Whilst not apparent in the simple example above, we
will need to work hard to find linear combinations of the
vectors of exponents in which all the entries are even.

• This will involve some form of Gaussian elimination. The
complexity is somewhat reduced by the fact that we only
need to do this modulo 2, but it will still also require quite
a lot of memory.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• There is a lot to take away from this.

• 1. We need to use the theory of quadratic residues, via the
Legendre symbol and quadratic reciprocity to see which
primes to include in the factor base.

• 2. We then need to sieve out the x , i.e remove those x for
which f (x) does not completely factor in the factor base,
and then to store the vector of exponents for each x which
survives.

• This can take a lot of memory.

• 3. Whilst not apparent in the simple example above, we
will need to work hard to find linear combinations of the
vectors of exponents in which all the entries are even.

• This will involve some form of Gaussian elimination. The
complexity is somewhat reduced by the fact that we only
need to do this modulo 2, but it will still also require quite
a lot of memory.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• There is a lot to take away from this.

• 1. We need to use the theory of quadratic residues, via the
Legendre symbol and quadratic reciprocity to see which
primes to include in the factor base.

• 2. We then need to sieve out the x , i.e remove those x for
which f (x) does not completely factor in the factor base,
and then to store the vector of exponents for each x which
survives.

• This can take a lot of memory.

• 3. Whilst not apparent in the simple example above, we
will need to work hard to find linear combinations of the
vectors of exponents in which all the entries are even.

• This will involve some form of Gaussian elimination. The
complexity is somewhat reduced by the fact that we only
need to do this modulo 2, but it will still also require quite
a lot of memory.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

• There is a lot to take away from this.

• 1. We need to use the theory of quadratic residues, via the
Legendre symbol and quadratic reciprocity to see which
primes to include in the factor base.

• 2. We then need to sieve out the x , i.e remove those x for
which f (x) does not completely factor in the factor base,
and then to store the vector of exponents for each x which
survives.

• This can take a lot of memory.

• 3. Whilst not apparent in the simple example above, we
will need to work hard to find linear combinations of the
vectors of exponents in which all the entries are even.

• This will involve some form of Gaussian elimination. The
complexity is somewhat reduced by the fact that we only
need to do this modulo 2, but it will still also require quite
a lot of memory.
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• Going back to the table. Show Class467-08T1.pdf.

• We can extract the exponents of each prime thus

M =



1 1 1 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0 1 1
0 0 1 3 1 1 2 3 1 1
1 0 0 0 1 0 0 0 1 0
1 1 0 0 1 0 0 0 1 1
0 1 1 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 0 0


.

• Then we wish to find solutions to Me ≡ 0 (mod 2) other
than 0.

• In other words we want the exponents in the prime
factorisation of

f (x1)
e1 . . . f (xK )

eK

to be even in a non-trivial way.
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• The standard way of doing this is through Gaussian
elimination, and it suffices to perform it modulo 2,
although for the matrices which occur for large n, which
are sparse there are faster methods. For the numbers used
here Gauss’ method will suffice.

• On Class467-08T2.pdf I have listed the successive row
operations, beginning with using the first row to eliminate
the first entries in the other rows, and then using
successive rows to eliminate the entries in the column
corresponding to their leading entry.

• Here is the final form of the matrix, from which we can
read off the equations for e
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1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


e1 + e8 ≡ 0 (mod 2), e2 + e10 ≡ 0 (mod 2),

e3 + e7 ≡ 0 (mod 2), e4 + e7 ≡ 0 (mod 2),

e5 + e8 ≡ 0 (mod 2), e6 + e10 ≡ 0 (mod 2),

e9 ≡ 0 (mod 2).
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•

e1 + e8 ≡ 0 (mod 2), e2 + e10 ≡ 0 (mod 2),

e3 + e7 ≡ 0 (mod 2), e4 + e7 ≡ 0 (mod 2),

e5 + e8 ≡ 0 (mod 2), e6 + e10 ≡ 0 (mod 2),

e9 ≡ 0 (mod 2).

• Thus taking e7, e8 and e10 as the independent variables we
see that(

f (x3)f (x4)f (x7)
)e7(f (x1)f (x5)f (x8))e8×(

f (x2)f (x6)f (x10)
)e10

is always a perfect square.

• The choices e7 = 1, e8 = e10 = 0 and e8 = 1, e7 = e10 = 0
correspond to the solutions used above.

• The solution e10 = 1, e7 = e8 = 0 does not give a
factorization.
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• Here is another example with a somewhat larger n.

• Example 8.3. Let n = 5479879 and take the sieving limit
B = 50.

• We first need to check which primes p ≤ 50 will occur in
the method.

• Thus for each odd prime p ≤ 50 we need to ascertain
whether n is a QR or a QNR modulo p.

• By (LJ) we obtain a factor base

P = {−1, 2, 3, 5, 11, 31, 47}.

• We have
√
n ≈ 2340. For larger numbers such as n it is

harder to obtain complete factorisations of f (x) = x2 − n.

• Either the range for x has to be increased, or alternatively
extend the factor base P.
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• See Class467-08T3.pdf.

• Now we extract the parity of the exponents for each prime
and form the matrix

M =



1 1 1 0 0 0
0 1 0 1 1 1
1 1 1 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1


.

• We now apply Gaussian elimination and obtain

1 0 0 1 0 0
0 1 0 1 1 0
0 0 1 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.
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• 

1 0 0 1 0 0
0 1 0 1 1 0
0 0 1 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

• Thus we find that

e1 + e4 ≡ 0 (mod 2),

e2 + e4 + e5 ≡ 0 (mod 2),

e3 + e5 ≡ 0 (mod 2),

e6 ≡ 0 (mod 2),
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• Taking e4 and e5 as the independent variables we see that

e1 ≡ e4 (mod 2),

e2 ≡ e4 + e5 (mod 2),

e3 ≡ e5 (mod 2),
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• Taking e4 and e5 as the independent variables we see that

e1 ≡ e4 (mod 2),

e2 ≡ e4 + e5 (mod 2),

e3 ≡ e5 (mod 2),

e6 ≡ 0 (mod 2),

• and so each of

f (x1)f (x2)f (x4),

f (x2)f (x3)f (x5),

is a perfect square.
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• Each of the following are squares.

f (x1)f (x2)f (x4),

f (x2)f (x3)f (x5),

• We have

x1 × x2 × x4 = 2198× 2225× 2373 = 11605275150

f (x1)f (x2)f (x4) = (−1)2 × 22 × 310 × 56 × 114 × 312

= (2× 35 × 53 × 112 × 31)2 = 2278732502

• Thus

(11605275150− 227873250, n)

= (11377401900, 5479879) = 5431

and

(1105275150 + 227873250, 5479879) = 1009.
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• We can also check the second relationship.

x2 × x3 × x5 = 2225× 2252× 2383 = 11940498100

f (x2)f (x3)f (x5) = (−1)2 × 22 × 312 × 54 × 114 × 472

= (2× 36 × 52 × 112 × 47)2 = 2072911502

Then

11940498100− 207291150 = 11733206950,

11940498100 + 207291150 = 12147789250,

(11733206950, 5479879) = 1009

and
(12147789250, 5479879) = 5431.
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Note on Gaussian Elimination

• As part of the quadratic sieve we need to solve systems of
linear congruences of the kind

a11e1 + a12e2 + · · ·+ a1mem ≡ 0 (mod 2),

a21e1 + a22e2 + · · ·+ a2mem ≡ 0 (mod 2),

...
...

al1e1 + al2e2 + · · ·+ almem ≡ 0 (mod 2).

• In our situation the ajk can be taken to be 1 or 0 which
simplifies computation.

• For the numbers we will deal with Gaussian elimination is
adequate, and has the merit of being straightforward.
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Note on Gaussian Elimination

• As part of the quadratic sieve we need to solve systems of
linear congruences of the kind

a11e1 + a12e2 + · · ·+ a1mem ≡ 0 (mod 2),

a21e1 + a22e2 + · · ·+ a2mem ≡ 0 (mod 2),

...
...

al1e1 + al2e2 + · · ·+ almem ≡ 0 (mod 2).

• In our situation the ajk can be taken to be 1 or 0 which
simplifies computation.

• For the numbers we will deal with Gaussian elimination is
adequate, and has the merit of being straightforward.
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Note on Gaussian Elimination

• As part of the quadratic sieve we need to solve systems of
linear congruences of the kind

a11e1 + a12e2 + · · ·+ a1mem ≡ 0 (mod 2),

a21e1 + a22e2 + · · ·+ a2mem ≡ 0 (mod 2),

...
...

al1e1 + al2e2 + · · ·+ almem ≡ 0 (mod 2).

• In our situation the ajk can be taken to be 1 or 0 which
simplifies computation.

• For the numbers we will deal with Gaussian elimination is
adequate, and has the merit of being straightforward.
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Note on Gaussian Elimination

a11e1 + a12e2 + · · ·+ a1mem ≡ 0 (mod 2),

a21e1 + a22e2 + · · ·+ a2mem ≡ 0 (mod 2),

...
...

al1e1 + al2e2 + · · ·+ almem ≡ 0 (mod 2).

• We can write this more succinctly in matrix notation as

Ae = 0

where

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm

 , e =


e1
e2
...
em

 , 0 =


0
0
...
0
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A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm


• The first observation that can be made is that it is
immaterial as to the order in which we write the equations
so at any state we can interchange them if it is convenient
to do so. Thus we can suppose initially that a left-most
non-zero entry is in the top row. This is sometimes called
a pivot.

• Our second observation is that in our original system of
linear congruences we can take one equation and subtract
it from another. This is equivalent to taking the
corresponding row in the matrix and subtracting it from
the second corresponding row.



Factorization
and Primality

Testing
Chapter 8 The

Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

The Quadratic
Sieve

Note on
Gaussian
Elimination

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm


• The first observation that can be made is that it is
immaterial as to the order in which we write the equations
so at any state we can interchange them if it is convenient
to do so. Thus we can suppose initially that a left-most
non-zero entry is in the top row. This is sometimes called
a pivot.

• Our second observation is that in our original system of
linear congruences we can take one equation and subtract
it from another. This is equivalent to taking the
corresponding row in the matrix and subtracting it from
the second corresponding row.
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A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm


• When Gaussian elimination is applied generally in the real
world one can even take real multiples of one row from
another, but in this world we have the much simple
environment of having only zeros and ones. Note that if
subtraction gives −1 this is the same as 1.

• Denote the pivot in the top row by aj1. We now take the
first row and subtract it from every row with ajk = 1.
Thus the new matrix will have aj1 = 1 and all the entries
to the left and below it are 0.

• We now repeat this process with the submatrix formed
from the rows j + 1 through m.
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A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm


• When Gaussian elimination is applied generally in the real
world one can even take real multiples of one row from
another, but in this world we have the much simple
environment of having only zeros and ones. Note that if
subtraction gives −1 this is the same as 1.

• Denote the pivot in the top row by aj1. We now take the
first row and subtract it from every row with ajk = 1.
Thus the new matrix will have aj1 = 1 and all the entries
to the left and below it are 0.

• We now repeat this process with the submatrix formed
from the rows j + 1 through m.
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A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
...

al1 al2 · · · alm


• When Gaussian elimination is applied generally in the real
world one can even take real multiples of one row from
another, but in this world we have the much simple
environment of having only zeros and ones. Note that if
subtraction gives −1 this is the same as 1.

• Denote the pivot in the top row by aj1. We now take the
first row and subtract it from every row with ajk = 1.
Thus the new matrix will have aj1 = 1 and all the entries
to the left and below it are 0.

• We now repeat this process with the submatrix formed
from the rows j + 1 through m.
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• We continue in this way until we have reduced the matrix
to echelon form

1 a12 a13 a14 · · · a1m
0 1 a23 a24 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · ·
...

...
...

 .

• Note that the matrix might well have zeros on the
diagonal from some point on. If so some of the rows at
the bottom of the matrix are likely to consist of all zeros.

• The first 1 in a row is called a pivot.
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• We continue in this way until we have reduced the matrix
to echelon form

1 a12 a13 a14 · · · a1m
0 1 a23 a24 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · ·
...

...
...

 .

• Note that the matrix might well have zeros on the
diagonal from some point on. If so some of the rows at
the bottom of the matrix are likely to consist of all zeros.

• The first 1 in a row is called a pivot.
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• We continue in this way until we have reduced the matrix
to echelon form

1 a12 a13 a14 · · · a1m
0 1 a23 a24 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · ·
...

...
...

 .

• Note that the matrix might well have zeros on the
diagonal from some point on. If so some of the rows at
the bottom of the matrix are likely to consist of all zeros.

• The first 1 in a row is called a pivot.
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1 a12 a13 a14 · · · a1m
0 1 a23 a24 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · ·
...

...
...

 .

• Starting from the bottom of the matrix we now use these
pivots to remove any non-zero entry above the pivot.

• Thus the last matrix would take on the shape
1 0 a13 0 · · · a1m
0 1 a23 0 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · ·
...

...
...

 .

• This is called reduced echelon form.
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1 a12 a13 a14 · · · a1m
0 1 a23 a24 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · ·
...

...
...

 .

• Starting from the bottom of the matrix we now use these
pivots to remove any non-zero entry above the pivot.

• Thus the last matrix would take on the shape
1 0 a13 0 · · · a1m
0 1 a23 0 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · ·
...

...
...

 .

• This is called reduced echelon form.
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1 a12 a13 a14 · · · a1m
0 1 a23 a24 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · ·
...

...
...

 .

• Starting from the bottom of the matrix we now use these
pivots to remove any non-zero entry above the pivot.

• Thus the last matrix would take on the shape
1 0 a13 0 · · · a1m
0 1 a23 0 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · ·
...

...
...

 .

• This is called reduced echelon form.
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1 0 a13 0 · · · a1m
0 1 a23 0 · · · a2m
0 0 0 1 · · · a3m

0 0 0 0 · · ·
...

...
...

 .

• The variables corresponding to pivots are the dependent
variables and the other variables are the independent ones.
The values for the dependent variables are then easily read
off in terms of the independent ones.
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• Thus in Example 8.1 the reduced echelon form is

1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


e1, e2, e3, e4, e5, e6 and e9 are dependent variables and
the e7, e8 and e10 can be chosen at random.
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