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• In its simplest form the Miller-Rabin test is a test for
composites, although with some compromises it is also an
effective test for primality.

• The basic question is how easy is it to find a witness a in
the following theorem when n is composite and how easy
is it to determine that there is no witness when n is prime?

Theorem 1

Let n ∈ N be odd, n > 1 and take out the powers of 2 from
n − 1 so that

n − 1 = 2uv

where v is odd. Choose a ∈ {2, 3, . . . , n − 2}. If

av ̸≡ 1 (mod n) and a2
wv ̸≡ −1 (mod n) for 1 ≤ w ≤ u − 1,

(1.1)
then n is composite and a is a witness.
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• Theorem 1. Let 2 ∤ n ∈ N, n > 1 and suppose
n − 1 = 2uv and 2 ∤ v . Choose a ∈ {2, 3, . . . , n − 2}. If
av ̸≡ 1 (mod n) and

a2
wv ̸≡ −1 (mod n) for 1 ≤ w ≤ u − 1,

then n is composite and a is a witness.

• Proof. The proof of the theorem is quite simple.

• If (a, n) > 1, then (1.1) will hold and n will be composite.
Suppose that (a, n) = 1 and n were to be prime. Then by
Fermat-Euler we have n|an−1 − 1 =

a2
uv − 1 = (av − 1)(av +1)(a2v +1) . . . (a2

u−1v +1) (1.2)

and n would have to divide one of the factors on the right,
contradicting the hypothesis.
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• Theorem 1. Let 2 ∤ n ∈ N, n > 1 and suppose
n − 1 = 2uv and 2 ∤ v . Choose a ∈ {2, 3, . . . , n − 2}. If
av ̸≡ 1 (mod n) and

a2
wv ̸≡ −1 (mod n) for 1 ≤ w ≤ u − 1,

then n is composite and a is a witness.

• We would like to make this theorem the basis for an
algorithm.

• It is useful to eliminate some easily checked possibilities.

• A. Check n for small prime factors p for, say, p ≤ log n.

• B. Check that n is not a prime power, n = pk . One can do
this by checking to see if

n1/k = ⌊n1/k⌋

for 2 ≤ k ≤ log n
log 2 .

• Now if n is composite it will have to have two different
prime factors.
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• The next theorem tells us what is happening when n has
at least two different prime factors.

Theorem 2

If n is odd and has at least two different prime factors p and q,
then they can be chosen so that

p − 1 = 2j l , q − 1 = 2km, j ≤ k,

and then there are a with (a, n) = 1 and(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
> 0

and such an a is a witness.

• In other words in this case witnesses to compositeness
certainly exist.
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• Theorem 2. If n is odd and has at least two different
prime factors p and q, then they can be chosen so that

p − 1 = 2j l , q − 1 = 2km, j ≤ k,

and then there are a with (a, n) = 1 and(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
> 0

and such an a is a witness.

• As it stands this theorem only proves the existence of
witnesses.

• Since we do not expect to have found numerical values for
p or q, it does not tell us how to find the a.

• However it can be used to show that we do not have to
search very far.



Factorization
and Primality

Testing
Chapter 6

Primality and
Probability

Robert C.
Vaughan

Miller-Rabin

Miller-Rabin
Algorithm

Probability

• Theorem 2. If n is odd and has at least two different
prime factors p and q, then they can be chosen so that

p − 1 = 2j l , q − 1 = 2km, j ≤ k,

and then there are a with (a, n) = 1 and(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
> 0

and such an a is a witness.

• As it stands this theorem only proves the existence of
witnesses.

• Since we do not expect to have found numerical values for
p or q, it does not tell us how to find the a.

• However it can be used to show that we do not have to
search very far.



Factorization
and Primality

Testing
Chapter 6

Primality and
Probability

Robert C.
Vaughan

Miller-Rabin

Miller-Rabin
Algorithm

Probability

• Theorem 2. If n is odd and has at least two different
prime factors p and q, then they can be chosen so that

p − 1 = 2j l , q − 1 = 2km, j ≤ k,

and then there are a with (a, n) = 1 and(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
> 0

and such an a is a witness.

• As it stands this theorem only proves the existence of
witnesses.

• Since we do not expect to have found numerical values for
p or q, it does not tell us how to find the a.

• However it can be used to show that we do not have to
search very far.



Factorization
and Primality

Testing
Chapter 6

Primality and
Probability

Robert C.
Vaughan

Miller-Rabin

Miller-Rabin
Algorithm

Probability

• Theorem 2. If n is odd and has at least two different
prime factors p and q, then they can be chosen so that

p − 1 = 2j l , q − 1 = 2km, j ≤ k,

and then there are a with (a, n) = 1 and(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
> 0

and such an a is a witness.

• As it stands this theorem only proves the existence of
witnesses.

• Since we do not expect to have found numerical values for
p or q, it does not tell us how to find the a.

• However it can be used to show that we do not have to
search very far.



Factorization
and Primality

Testing
Chapter 6

Primality and
Probability

Robert C.
Vaughan

Miller-Rabin

Miller-Rabin
Algorithm

Probability

• Consider: a is a witness when (a, n) = 1 and(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
> 0.

• When (a, n) = 1, 1
4

(
1 +

(
a
p

)
L

)(
1−

(
a
q

)
L

)
is 0 or 1,

and when it is 1, a is a witness.
• Thus the number of witnesses for n is at least

n∑
a=1

(a,n)=1

1

4

(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
.

• It is easily shown that

n∑
a=1

(a,n)=1

(
a

p

)
L

=
n∑

a=1
(a,n)=1

(
a

q

)
L

=
n∑

a=1
(a,n)=1

(
a

pq

)
J

= 0.

• Hence
n∑

a=1
(a,n)=1

1

4

(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
=

ϕ(n)

4
.
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• Hence

n∑
a=1

(a,n)=1

1

4

(
1 +

(
a

p

)
L

)(
1−

(
a

q

)
L

)
=

ϕ(n)

4
.

• Therefore at least a quarter of all reduced residues modulo
n act as witness.

• Hence we can proceed by picking N values of a at random.

• Then the probability that none of them are witnesses is at
most (3/4)N .

• Therefore if we pick, say, at least 10 log n numbers a at
random, then we can be practically certain of finding a
witness.
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• If we want some kind of absolute certainty, then we can
assume the truth of the Riemann hypothesis for the three

functions L(s;χ) =
∞∑

m=1

χ(m)

ms
with

χ(m) =

(
m

p

)
L

, χ(m) =

(
m

q

)
L

, χ(m) =

(
m

pq

)
J

,

which means that we have to assume it for every Jacobi
symbol modulo n since we do not know the values of p
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• There is even some belief that one does not have to search
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• Theorem 2. If n is odd and has at least two different
prime factors p and q, then they can be chosen so that
p− 1 = 2j l , q− 1 = 2km, j ≤ k , and then there are a with

(a, n) = 1 and
(
1 +

(
a
p

)
L

)(
1−

(
a
q

)
L

)
> 0 and such an

a is a witness.

• Proof. Let p, q be as given. Choose a QR x modulo p
and a QNR y modulo q. Then by the Chinese Remainder
Theorem there are a with a ≡ x (mod p), ≡ y (mod q)
and (a, n) = 1 so that a satisfies the hypothesis.

• We need to show that it is a witness. Recall from
Theorem 1 that u and v are given by n− 1 = 2uv where v
is odd. We need to show that av ̸≡ 1 (mod n) and

a2
wv ̸≡ −1 (mod n) for 1 ≤ w ≤ u − 1.

• If an−1 ̸≡ 1 (mod n), then no factor on the right of

an−1−1 = a2
uv−1 = (av−1)(av+1)(a2v+1) . . . (a2

u−1v+1)

can be divisible by n, which suffices.
• Thus we can suppose that we have an−1 ≡ 1 (mod n).



Factorization
and Primality

Testing
Chapter 6

Primality and
Probability

Robert C.
Vaughan

Miller-Rabin

Miller-Rabin
Algorithm

Probability

• Theorem 2. If n is odd and has at least two different
prime factors p and q, then they can be chosen so that
p− 1 = 2j l , q− 1 = 2km, j ≤ k , and then there are a with

(a, n) = 1 and
(
1 +

(
a
p

)
L

)(
1−

(
a
q

)
L

)
> 0 and such an

a is a witness.
• Proof. Let p, q be as given. Choose a QR x modulo p

and a QNR y modulo q. Then by the Chinese Remainder
Theorem there are a with a ≡ x (mod p), ≡ y (mod q)
and (a, n) = 1 so that a satisfies the hypothesis.

• We need to show that it is a witness. Recall from
Theorem 1 that u and v are given by n− 1 = 2uv where v
is odd. We need to show that av ̸≡ 1 (mod n) and

a2
wv ̸≡ −1 (mod n) for 1 ≤ w ≤ u − 1.

• If an−1 ̸≡ 1 (mod n), then no factor on the right of

an−1−1 = a2
uv−1 = (av−1)(av+1)(a2v+1) . . . (a2

u−1v+1)

can be divisible by n, which suffices.
• Thus we can suppose that we have an−1 ≡ 1 (mod n).



Factorization
and Primality

Testing
Chapter 6

Primality and
Probability

Robert C.
Vaughan

Miller-Rabin

Miller-Rabin
Algorithm

Probability

• Theorem 2. If n is odd and has at least two different
prime factors p and q, then they can be chosen so that
p− 1 = 2j l , q− 1 = 2km, j ≤ k , and then there are a with

(a, n) = 1 and
(
1 +

(
a
p

)
L

)(
1−

(
a
q

)
L

)
> 0 and such an

a is a witness.
• Proof. Let p, q be as given. Choose a QR x modulo p

and a QNR y modulo q. Then by the Chinese Remainder
Theorem there are a with a ≡ x (mod p), ≡ y (mod q)
and (a, n) = 1 so that a satisfies the hypothesis.

• We need to show that it is a witness. Recall from
Theorem 1 that u and v are given by n− 1 = 2uv where v
is odd. We need to show that av ̸≡ 1 (mod n) and

a2
wv ̸≡ −1 (mod n) for 1 ≤ w ≤ u − 1.

• If an−1 ̸≡ 1 (mod n), then no factor on the right of

an−1−1 = a2
uv−1 = (av−1)(av+1)(a2v+1) . . . (a2

u−1v+1)

can be divisible by n, which suffices.
• Thus we can suppose that we have an−1 ≡ 1 (mod n).



Factorization
and Primality

Testing
Chapter 6

Primality and
Probability

Robert C.
Vaughan

Miller-Rabin

Miller-Rabin
Algorithm

Probability

• Theorem 2. If n is odd and has at least two different
prime factors p and q, then they can be chosen so that
p− 1 = 2j l , q− 1 = 2km, j ≤ k , and then there are a with

(a, n) = 1 and
(
1 +

(
a
p

)
L

)(
1−

(
a
q

)
L

)
> 0 and such an

a is a witness.
• Proof. Let p, q be as given. Choose a QR x modulo p

and a QNR y modulo q. Then by the Chinese Remainder
Theorem there are a with a ≡ x (mod p), ≡ y (mod q)
and (a, n) = 1 so that a satisfies the hypothesis.

• We need to show that it is a witness. Recall from
Theorem 1 that u and v are given by n− 1 = 2uv where v
is odd. We need to show that av ̸≡ 1 (mod n) and

a2
wv ̸≡ −1 (mod n) for 1 ≤ w ≤ u − 1.

• If an−1 ̸≡ 1 (mod n), then no factor on the right of

an−1−1 = a2
uv−1 = (av−1)(av+1)(a2v+1) . . . (a2

u−1v+1)

can be divisible by n, which suffices.

• Thus we can suppose that we have an−1 ≡ 1 (mod n).



Factorization
and Primality

Testing
Chapter 6

Primality and
Probability

Robert C.
Vaughan

Miller-Rabin

Miller-Rabin
Algorithm

Probability

• Theorem 2. If n is odd and has at least two different
prime factors p and q, then they can be chosen so that
p− 1 = 2j l , q− 1 = 2km, j ≤ k , and then there are a with

(a, n) = 1 and
(
1 +

(
a
p

)
L

)(
1−

(
a
q

)
L

)
> 0 and such an

a is a witness.
• Proof. Let p, q be as given. Choose a QR x modulo p

and a QNR y modulo q. Then by the Chinese Remainder
Theorem there are a with a ≡ x (mod p), ≡ y (mod q)
and (a, n) = 1 so that a satisfies the hypothesis.

• We need to show that it is a witness. Recall from
Theorem 1 that u and v are given by n− 1 = 2uv where v
is odd. We need to show that av ̸≡ 1 (mod n) and

a2
wv ̸≡ −1 (mod n) for 1 ≤ w ≤ u − 1.

• If an−1 ̸≡ 1 (mod n), then no factor on the right of

an−1−1 = a2
uv−1 = (av−1)(av+1)(a2v+1) . . . (a2

u−1v+1)

can be divisible by n, which suffices.
• Thus we can suppose that we have an−1 ≡ 1 (mod n).



Factorization
and Primality

Testing
Chapter 6

Primality and
Probability

Robert C.
Vaughan

Miller-Rabin

Miller-Rabin
Algorithm

Probability

• Recall n− 1 = 2uv where v is odd, an−1 ≡ 1 (mod n) and

an−1−1 = a2
uv−1 = (av−1)(av+1)(a2v+1) . . . (a2

u−1v+1)

• For 0 ≤ w ≤ u − 1 we have

a2
wv + 1 = (av − 1 + 1)2

v
+ 1 ≡ 2 (mod (av − 1)).

• Hence
(
av − 1, a2

wv + 1
)
|2.

• Likewise when 0 ≤ w < x ≤ u − 1

a2
xv + 1 = (a2

wv + 1− 1)2
x−w

+ 1

≡ (−1)2
x−w

+ 1 ≡ 2 (mod a2
wv + 1)

• Therefore
(
a2

wv + 1, a2
xv + 1

)
|2.

• Thus p and q, and a fortiori n, cannot divide two factors
of (av − 1)(av + 1)(a2v + 1) . . . (a2

u−1v + 1) and so it
remains to consider the case when it divides exactly one.
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• The hypothesis implies that
(

a
p

)
L
= 1,

(
a
q

)
L
= −1.

• By Euler a
p−1
2 ≡ 1 (mod p), a

q−1
2 ≡ −1 (mod q).

• Let e = ordp(a) and f = ordq(a).

• Then e
∣∣∣p−1

2 = 2j−1l , f |q − 1 = 2km, f ∤ q−1
2 , j ≤ k

• Thus e = 2i l ′, f = 2km′ with 0 ≤ i ≤ j − 1, l ′|l , m′|m.

• In particular 0 ≤ i < j ≤ k (*).

• Recall that we are supposing that n divides exactly one of
av − 1, av + 1, . . . , a2

u−1v + 1.

• If n|av − 1, then av ≡ 1 (mod q) and f |v .
• But f is even and v is odd, so this is impossible.

• If n|a2sv + 1 for some s with 0 ≤ s ≤ u − 1, then
a2

s+1v ≡ 1 (mod n), a2
sv ≡ −1 (mod n).

• Thus e|2s+1v , e ∤ 2sv , e = 2i l ′, l ′|v , i = s + 1 and
f |2s+1v , f = 2km′, 2km′|2s+1v , m′|v , k ≤ s + 1.

• Thus k ≤ i which contradicts (*).

• Hence a is a witness.
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• Let e = ordp(a) and f = ordq(a).

• Then e
∣∣∣p−1

2 = 2j−1l , f |q − 1 = 2km, f ∤ q−1
2 , j ≤ k

• Thus e = 2i l ′, f = 2km′ with 0 ≤ i ≤ j − 1, l ′|l , m′|m.

• In particular 0 ≤ i < j ≤ k (*).

• Recall that we are supposing that n divides exactly one of
av − 1, av + 1, . . . , a2

u−1v + 1.

• If n|av − 1, then av ≡ 1 (mod q) and f |v .
• But f is even and v is odd, so this is impossible.

• If n|a2sv + 1 for some s with 0 ≤ s ≤ u − 1, then
a2

s+1v ≡ 1 (mod n), a2
sv ≡ −1 (mod n).

• Thus e|2s+1v , e ∤ 2sv , e = 2i l ′, l ′|v , i = s + 1 and
f |2s+1v , f = 2km′, 2km′|2s+1v , m′|v , k ≤ s + 1.

• Thus k ≤ i which contradicts (*).

• Hence a is a witness.
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• Note that the previous theorem depends on the theory of
quadratic residues and non-residues.

• Thus it should be no surprise that showing that there is a
small witness is similar to showing that there are small
quadratic non-residues.

• Thus the best bound for a leads to questions which have a
similar provenance to that concerning the least quadratic
non-residue n2(p) discussed in Chapter 5.

• In particular Linnik’s work quoted there suggests that any
composite n with no small witnesses would be incredibly
rare.
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• No-one has come close to disproving the Riemann
Hypothesis so I recommend the second approach, via
following algorithm.

• Assume that n is odd.
• 1. Check n for small factors not exceeding log n.
• 2. Check that n is not a prime power.
• 3. Find u and v with n − 1 = 2uv with v odd.
• 4. For each a with 2 ≤ a ≤ min

{
2(log n)2, n − 2

}
check

the statements n|av − 1, n|av + 1, . . . , n|a2u−1v + 1. If
easy to do restrict a to being prime.

• 5. If there is an a such that they are all false, stop and
declare that n is composite and a is a witness.

• 6. If no witness a found with a ≤ min
{
2(log n)2, n − 2

}
,

then declare that n is prime.
• There are one further wrinkle that can be tried. Before
doing the divisibility checks in 4, check that (a, n) = 1 (or
a ∤ n if a is prime) because otherwise one has a proper
divisor of n and not only is n composite but one has found
a factor.
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• A trivial but illustrative

Example 3

Let n = 133. Then

n − 1 = 22 × 33

and
233 ≡ 50 (mod 133), 266 ≡ 106 (mod 133)

so
n ∤ 233 − 1, n ∤ 233 + 1, n ∤ 366 + 1

Thus n is composite and a is a witness.
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• Primality in a non-trivial case is best left to a computer
program. But to illustrate the method here is an example.

Example 4

Let n = 11. Then n − 1 = 2× 5 and we have the following

25 = 32 ≡ −1 (mod 11), 35 = 243 ≡ 1 (mod 11)

45 ≡ (25)2 ≡ 1 (mod 11), 55 = 3125 ≡ 1 (mod 11)

65 = (−5)5 ≡ −1 (mod 11), 75 = (−4)5 ≡ −1 (mod 11)

85 = (−3)5 ≡ −1 (mod 11), 95 = (35)2 ≡ 1 (mod 11)

There is no witness, so n is prime. Of course we knew that!

• Even for a number like 211 this would be heavy handed
and is one of the reasons for an initial range of trial
division. For large n one will only need to consider a
relatively small range of a.
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• Primality in a non-trivial case is best left to a computer
program. But to illustrate the method here is an example.

Example 4

Let n = 11. Then n − 1 = 2× 5 and we have the following

25 = 32 ≡ −1 (mod 11), 35 = 243 ≡ 1 (mod 11)

45 ≡ (25)2 ≡ 1 (mod 11), 55 = 3125 ≡ 1 (mod 11)

65 = (−5)5 ≡ −1 (mod 11), 75 = (−4)5 ≡ −1 (mod 11)

85 = (−3)5 ≡ −1 (mod 11), 95 = (35)2 ≡ 1 (mod 11)

There is no witness, so n is prime. Of course we knew that!

• Even for a number like 211 this would be heavy handed
and is one of the reasons for an initial range of trial
division. For large n one will only need to consider a
relatively small range of a.
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• We have already used the term “probabilistic” informally
in the previous section without saying precisely what we
mean.

Definition 5

Suppose that we have a finite set A of cardinality M, and a
subset B of cardinality N. In general we will suppose that the
elements of B have some special property that marks them out
from those in the complement of B with respect to A. If we
pick an element of a ∈ A without fear or favour, then we define
the probability that a ∈ B as

N

M
.

• It is also possible to define probability for elements of
infinite sets, but then we have to be concerned with how
we measure the size of the sets, and this involves the
much more sophisticated subject of measure theory.

• Fortunately we have no need of that here.
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• This comes up frequently

Example 6

Let A = {1, 2, . . . ,M}, let q ∈ N and 0 ≤ r < q and let

B(q, r) = {a ∈ A : a ≡ r (mod q)}.

Then N = cardB(q, r) = 1 +

⌊
M − r

q

⌋
.

Now
M − r

q
− 1 <

⌊
M − r

q

⌋
≤ M − r

q

and so −1 < − r

q
< N − M

q
≤ 1− r

q
< 1.

Therefore − 1

M
+

1

q
<

N

M
<

1

q
+

1

M
.

Thus if M is large compared with q, then we can see that the
probability that an element of a is in B is close to 1

q .
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• Consider the following.

• Suppose we have a class of with s students.

• What are the chances that there are two with the same
birthday?

• For simplicity assume there are no leap years.

• Well in the population at large there are 3652 pairs of
birthdays and of those pairs only 365 will be the same.

• Thus if you pick a random pair of people you might
conclude that only one in 365 pairs have the same
birthday so the class will have to be really large, with
getting on for at least 365 members.

• The fallacy here is that we are dealing with more than just
pairs.
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• Look at it this way.

• Suppose we have a group of s people.

• The number of possible configurations of birthdays for s
people is 365s - each person can have any one of 365
possibilities.

• Let A be the set of all such configurations.

• One can think of the elements as being s-tuples
(d1, d2, . . . , ds) with each entry in the s-tuple being a
number dj in the range {1, 2, . . . , 365}.

• Then M = cardA = 365s
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• In how many of those s-tuples could all the entries
(birthdays) be different?

• Let B be that subset of A and let N = cardB. Then

N = 365(365− 1) . . . (365− s + 1) (2.3)

• See it this way. The first person, d1, has 365 choices.
• Then the second d2 only has 364 choices for d2, and so on.
• Thus the number of ways in which all the birthdays are
different is the number of s-tuples in which the entries are
different and this is (2.3).

• Thus the probability that a member of A is in B is

ρ(s) =
N

M
=

(
1− 1

365

)(
1− 2

365

)
. . .

(
1− s − 1

365

)
.

• Thus the probability that at least two members of the
class share a birthday is

1− ρ(s) = 1−
(
1− 1

365

)(
1− 2

365

)
. . .

(
1− s − 1

365

)
.
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•

s ρ(s) s ρ(s)

21 .5563 . . . 22 .5243 . . .
23 .4927 . . . 24 .4616 . . .
25 .4313 . . . 26 .4017 . . .
27 .3731 . . . 28 .3455 . . .
29 .3190 . . . 30 .2936 . . .
31 .2695 . . . 32 .2466 . . .
33 .2250 . . . 34 .2046 . . .
35 .1856 . . . 36 .1678 . . .
37 .1512 . . . 38 .1359 . . .
39 .1217 . . . 40 .1087 . . .
41 .0968 . . . 42 .0859 . . .
43 .0760 . . . 44 .0671 . . .
45 .0590 . . . 46 .0517 . . .
47 .0452 . . . 48 .0394 . . .
49 .0342 . . . 50 .0296 . . .

The probability ρ(s) that a class of size s
has no two birthdays the same.
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• Thus if the class has 23 members, then it is more likely
than not that there will be two people sharing a birthday.

• This class has 48 members so it is practically certain that
two members will have the same birthday.

• This is the birthday paradox and its generalization plays an
important rôle in establishing coincidences in
computations.

• We need to generalize this.
• Let D be the number of possible values for each entry in
the s-tuple - so we are now supposing that our year has D
days!

• Then M = cardA = Ds and N = cardB is

N = D(D − 1) . . . (D − N + 1)

so that the probability that there are no coincidences in
the entries in an arbitrary s-tuple is

N

M
=

(
1− 1

D

)(
1− 2

D

)
. . .

(
1− s − 1

D

)
.
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• We need to generalize this.
• Let D be the number of possible values for each entry in
the s-tuple - so we are now supposing that our year has D
days!

• Then M = cardA = Ds and N = cardB is

N = D(D − 1) . . . (D − N + 1)

so that the probability that there are no coincidences in
the entries in an arbitrary s-tuple is

N

M
=

(
1− 1

D

)(
1− 2

D

)
. . .

(
1− s − 1

D

)
.
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•

ρ(s) =
N

M
=

(
1− 1

D

)(
1− 2

D

)
. . .

(
1− s − 1

D

)
.

• Thus if this number is smaller than 0.5 we could conclude
that amongst all the s-tuples it is more likely that at least
one s-tuple will have two entries the same than that all
s-tuples will have all entries different.

• In a particular case we might ask how large s has to be in
terms of D that this probability is smaller than some
number σ where 0 < σ < 1,

• so that

ρ(s) =
s−1∏
k=1

(
1− k

D

)
< σ.

• Since it is easier to work with sums than products, we can
rewrite this as

log
1

ρ(s)
=

s−1∑
k=1

log
1

1− k
D

> log
1

σ
.
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• log
1

ρ(s)
=

s−1∑
k=1

log
1

1− k
D

.

• It makes sense to assume s ≤ D, and so by the expansion
for the logarithmic factor,

log
1

ρ(s)
=

s−1∑
k=1

∞∑
h=1

kh

hDh
.

• and since all the terms are positive we have

log
1

ρ(s)
>

s−1∑
k=1

k

D
=

s(s − 1)

2D
,

• Thus

ρ(s) < exp

(
−s(s − 1)

2D

)
.
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• If

exp

(
−s(s − 1)

2D

)
< σ,

then

ρ(s) < exp

(
−s(s − 1)

2D

)
< σ.

• Thus we see that, once s gets somewhat larger than
√
D,

when we pick an s-tuple at random we are quite likely to
find two entries the same.

• Even for a number as small as D = 365 this quite crude
approximation shows that ρ(s) < 1

2 when s = 23.
• Thus even if σ is taken to be quite small one does not
have to take s much bigger than

√
D to achieve the

desired result.
• In other words, if s is large compared with

√
D, then it will

be almost certain that there will be coincidences.
• By the way, some attacks on security systems take
advantage of this and we will make use of it later in one of
the factoring attacks.
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