> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

Factorization and Primality Testing Chapter 3 Congruences and Residue Classes

Robert C. Vaughan

September 30, 2024

イロト 不得 トイヨト イヨト ニヨー

Sac

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

• The next topic was first developed by Gauss.

Definition 1

Let $m \in \mathbb{N}$ and define the residue class \overline{r} modulo m by

$$\overline{r} = \{x \in \mathbb{Z} : m | (x - r)\}.$$

Residue Classes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

By the division algorithm every integer is in one

$$\overline{0}, \overline{1}, \ldots, \overline{m-1}.$$

This is often called a *complete* system of residues modulo *m*.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

• The next topic was first developed by Gauss.

Definition 1

Let $m \in \mathbb{N}$ and define the residue class \overline{r} modulo m by

$$\overline{r} = \{x \in \mathbb{Z} : m | (x - r)\}.$$

Residue Classes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

By the division algorithm every integer is in one

$$\overline{0}, \overline{1}, \ldots, \overline{m-1}.$$

This is often called a *complete* system of residues modulo *m*.

• The remarkable thing is that we can perform arithmetic on the residue classes just as if they were numbers.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

• The next topic was first developed by Gauss.

Definition 1

Let $m \in \mathbb{N}$ and define the residue class \overline{r} modulo m by

$$\overline{r} = \{x \in \mathbb{Z} : m | (x - r)\}.$$

By the division algorithm every integer is in one

$$\overline{0}, \overline{1}, \ldots, \overline{m-1}.$$

This is often called a *complete* system of residues modulo *m*.

- The remarkable thing is that we can perform arithmetic on the residue classes just as if they were numbers.
- The residue class $\overline{0}$ behaves like the number 0,

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

• The next topic was first developed by Gauss.

Definition 1

Let $m \in \mathbb{N}$ and define the residue class \overline{r} modulo m by

$$\overline{r} = \{x \in \mathbb{Z} : m | (x - r)\}.$$

Residue Classes

By the division algorithm every integer is in one

$$\overline{0}, \overline{1}, \ldots, \overline{m-1}.$$

This is often called a *complete* system of residues modulo *m*.

- The remarkable thing is that we can perform arithmetic on the residue classes just as if they were numbers.
- The residue class 0 behaves like the number 0,
- because 0 is the set of multiples of m and adding any one of them to an element of r does not change the remainder.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

• Thus for any r

$$\overline{0} + \overline{r} = \overline{r} = \overline{r} + \overline{0}.$$

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Thus for any r

$$\overline{0} + \overline{r} = \overline{r} = \overline{r} + \overline{0}.$$

Suppose that we are given any two residue classes r̄ and s̄ modulo m. Let t be the remainder of r + s on division by m. Then the elements of r̄ and s̄ are of the form r + mx and s + my and we know that r + s = t + mz for some z.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Thus for any r

$$\overline{0} + \overline{r} = \overline{r} = \overline{r} + \overline{0}.$$

- Suppose that we are given any two residue classes r and s modulo m. Let t be the remainder of r + s on division by m. Then the elements of r and s are of the form r + mx and s + my and we know that r + s = t + mz for some z.
- Thus r + mx + s + my = t + m(z + x + y) is in \overline{t} , and it is readily seen that the converse is true.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Thus for any r

$$\overline{0} + \overline{r} = \overline{r} = \overline{r} + \overline{0}.$$

- Suppose that we are given any two residue classes r and s modulo m. Let t be the remainder of r + s on division by m. Then the elements of r and s are of the form r + mx and s + my and we know that r + s = t + mz for some z.
- Thus r + mx + s + my = t + m(z + x + y) is in \overline{t} , and it is readily seen that the converse is true.
- Thus it makes sense to write $\overline{r} + \overline{s} = \overline{t}$, and then we have $\overline{r} + \overline{s} = \overline{s} + \overline{r}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Thus for any r

$$\overline{0} + \overline{r} = \overline{r} = \overline{r} + \overline{0}.$$

- Suppose that we are given any two residue classes r and s modulo m. Let t be the remainder of r + s on division by m. Then the elements of r and s are of the form r + mx and s + my and we know that r + s = t + mz for some z.
- Thus r + mx + s + my = t + m(z + x + y) is in \overline{t} , and it is readily seen that the converse is true.
- Thus it makes sense to write $\overline{r} + \overline{s} = \overline{t}$, and then we have $\overline{r} + \overline{s} = \overline{s} + \overline{r}$.
- One can also check that

$$\overline{r} + \overline{-r} = \overline{0}.$$

Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • In connection with this Gauss introduced a notation.

Definition 2

Let $m \in \mathbb{N}$. If two integers x and y satisfy m|x - y, then we write

$$x \equiv y \pmod{m}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

and we say that x is congruent to y modulo m.

Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • In connection with this Gauss introduced a notation.

Definition 2

Let $m \in \mathbb{N}$. If two integers x and y satisfy m|x - y, then we write

$$x \equiv y \pmod{m}$$

and we say that x is congruent to y modulo m.

• Here are some of the properties of congruences.

$$x \equiv x \pmod{m}$$
,

 $x \equiv y \pmod{m}$ iff $y \equiv x \pmod{m}$,

 $x \equiv y \pmod{m}, y \equiv z \pmod{m}$ implies $x \equiv z \pmod{m}$.

Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • In connection with this Gauss introduced a notation.

Definition 2

Let $m \in \mathbb{N}$. If two integers x and y satisfy m|x - y, then we write

$$x \equiv y \pmod{m}$$

and we say that x is congruent to y modulo m.

• Here are some of the properties of congruences.

$$x \equiv x \pmod{m}$$
,

 $x \equiv y \pmod{m}$ iff $y \equiv x \pmod{m}$,

 $x \equiv y \pmod{m}, y \equiv z \pmod{m}$ implies $x \equiv z \pmod{m}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• These say that the relationship \equiv is reflexive, symmetric and transitive.

Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • In connection with this Gauss introduced a notation.

Definition 2

Let $m \in \mathbb{N}$. If two integers x and y satisfy m|x - y, then we write

$$x \equiv y \pmod{m}$$

and we say that x is congruent to y modulo m.

• Here are some of the properties of congruences.

$$x \equiv x \pmod{m}$$
,

 $x \equiv y \pmod{m}$ iff $y \equiv x \pmod{m}$,

 $x \equiv y \pmod{m}, y \equiv z \pmod{m}$ implies $x \equiv z \pmod{m}$.

- These say that the relationship \equiv is reflexive, symmetric and transitive.
- I leave their proofs as an exercise.

Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • In connection with this Gauss introduced a notation.

Definition 2

Let $m \in \mathbb{N}$. If two integers x and y satisfy m|x - y, then we write

$$x \equiv y \pmod{m}$$

and we say that x is congruent to y modulo m.

• Here are some of the properties of congruences.

$$x \equiv x \pmod{m}$$
,

 $x \equiv y \pmod{m}$ iff $y \equiv x \pmod{m}$,

 $x \equiv y \pmod{m}, y \equiv z \pmod{m}$ implies $x \equiv z \pmod{m}$.

- These say that the relationship \equiv is reflexive, symmetric and transitive.
- I leave their proofs as an exercise.
- It follows that congruences modulo *m* partition the integers into equivalence classes.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • One can also check the following

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- One can also check the following
- If $x \equiv y \pmod{m}$ and $z \equiv t \pmod{m}$, then
 - $x + z \equiv y + t \pmod{m}$ and $xz \equiv yt \pmod{m}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- One can also check the following
- If $x \equiv y \pmod{m}$ and $z \equiv t \pmod{m}$, then $x + z \equiv y + t \pmod{m}$ and $xz \equiv yt \pmod{m}$.
- If x ≡ y (mod m), then for any n ∈ N, xⁿ ≡ yⁿ (mod m) (use induction on n).

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- One can also check the following
- If $x \equiv y \pmod{m}$ and $z \equiv t \pmod{m}$, then $x + z \equiv y + t \pmod{m}$ and $xz \equiv yt \pmod{m}$.
- If x ≡ y (mod m), then for any n ∈ N, xⁿ ≡ yⁿ (mod m) (use induction on n).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 If f is a polynomial with integer coefficients, and x ≡ y (mod m), then f(x) ≡ f(y) (mod m).

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- One can also check the following
- If $x \equiv y \pmod{m}$ and $z \equiv t \pmod{m}$, then $x + z \equiv y + t \pmod{m}$ and $xz \equiv yt \pmod{m}$.
- If x ≡ y (mod m), then for any n ∈ N, xⁿ ≡ yⁿ (mod m) (use induction on n).
- If f is a polynomial with integer coefficients, and x ≡ y (mod m), then f(x) ≡ f(y) (mod m).
- Wait a minute, this means that one can use congruences just like doing arithmetic on the integers!

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following tells us something about this structure.

Theorem 3

Suppose that
$$m \in \mathbb{N}$$
, $k \in \mathbb{Z}$, $(k,m) = 1$ and

$$\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_m$$

forms a complete set of residues modulo m. Then so does

 $\overline{ka_1}, \overline{ka_2}, \ldots, \overline{ka_m}.$

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following tells us something about this structure.

Theorem 3

Suppose that
$$m \in \mathbb{N}$$
, $k \in \mathbb{Z}$, $(k,m) = 1$ and

$$\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_m$$

forms a complete set of residues modulo m. Then so does

 $\overline{ka_1}, \overline{ka_2}, \ldots, \overline{ka_m}.$

• **Proof.** Since we have *m* residue classes, we need only check that they are disjoint.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following tells us something about this structure.

Theorem 3

Suppose that
$$m \in \mathbb{N}$$
, $k \in \mathbb{Z}$, $(k,m) = 1$ and

$$\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_m$$

forms a complete set of residues modulo m. Then so does

$$\overline{ka_1}, \overline{ka_2}, \ldots, \overline{ka_m}.$$

• **Proof.** Since we have *m* residue classes, we need only check that they are disjoint.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Consider any two of them, $\overline{ka_i}$ and $\overline{ka_i}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following tells us something about this structure.

Theorem 3

Suppose that
$$m \in \mathbb{N}$$
, $k \in \mathbb{Z}$, $(k,m) = 1$ and

$$\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_m$$

forms a complete set of residues modulo m. Then so does

$$\overline{ka_1}, \overline{ka_2}, \ldots, \overline{ka_m}.$$

- **Proof.** Since we have *m* residue classes, we need only check that they are disjoint.
- Consider any two of them, $\overline{ka_i}$ and $\overline{ka_i}$.
- Let $ka_i + mx$ and $ka_j + my$ be typical members of each.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following tells us something about this structure.

Theorem 3

Suppose that
$$m \in \mathbb{N}$$
, $k \in \mathbb{Z}$, $(k,m) = 1$ and

$$\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_m$$

forms a complete set of residues modulo m. Then so does

$$\overline{ka_1}, \overline{ka_2}, \ldots, \overline{ka_m}.$$

- **Proof.** Since we have *m* residue classes, we need only check that they are disjoint.
- Consider any two of them, $\overline{ka_i}$ and $\overline{ka_j}$.
- Let $ka_i + mx$ and $ka_j + my$ be typical members of each.
- If they were the same integer, than ka_i + mx = ka_j + my, so that k(a_i a_j) = m(y x).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following tells us something about this structure.

Theorem 3

Suppose that
$$m \in \mathbb{N}$$
, $k \in \mathbb{Z}$, $(k,m) = 1$ and

$$\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_m$$

forms a complete set of residues modulo m. Then so does

$$\overline{ka_1}, \overline{ka_2}, \ldots, \overline{ka_m}.$$

- **Proof.** Since we have *m* residue classes, we need only check that they are disjoint.
- Consider any two of them, $\overline{ka_i}$ and $\overline{ka_j}$.
- Let $ka_i + mx$ and $ka_j + my$ be typical members of each.
- If they were the same integer, than ka_i + mx = ka_j + my, so that k(a_i a_j) = m(y x).
- But then m|k(a_i a_j) and since (k, m) = 1 we would have m|a_i a_j so ā_i and ā_j would be identical residue classes, so i = j.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • An important rôle is played by the residue classes r modulo m with (r, m) = 1.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= 900

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

An important rôle is played by the residue classes r modulo m with (r, m) = 1.

• In connection with this we introduce Euler's function.

Definition 4

A function defined on $\ensuremath{\mathbb{N}}$ is called an arithmetical function.

Definition 5

Euler's function $\phi(n)$ is the number of $x \in \mathbb{N}$ with $1 \le x \le n$ and (x, n) = 1.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Definition 6

A set of $\phi(m)$ distinct residue classes \overline{r} modulo m with (r, m) = 1 is called a set of *reduced* residues modulo m.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

An important rôle is played by the residue classes r modulo m with (r, m) = 1.

• In connection with this we introduce Euler's function.

Definition 4

A function defined on $\ensuremath{\mathbb{N}}$ is called an arithmetical function.

Definition 5

Euler's function $\phi(n)$ is the number of $x \in \mathbb{N}$ with $1 \le x \le n$ and (x, n) = 1.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Definition 6

A set of $\phi(m)$ distinct residue classes \overline{r} modulo m with (r, m) = 1 is called a set of *reduced* residues modulo m.

• Since (1,1) = 1 we have $\phi(1) = 1$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences An important rôle is played by the residue classes r modulo m with (r, m) = 1.

• In connection with this we introduce Euler's function.

Definition 4

A function defined on $\ensuremath{\mathbb{N}}$ is called an arithmetical function.

Definition 5

Euler's function $\phi(n)$ is the number of $x \in \mathbb{N}$ with $1 \le x \le n$ and (x, n) = 1.

Definition 6

A set of $\phi(m)$ distinct residue classes \overline{r} modulo m with (r, m) = 1 is called a set of *reduced* residues modulo m.

- Since (1,1) = 1 we have $\phi(1) = 1$.
- If p is prime, then the x with $1 \le x \le p-1$ satisfy (x, p) = 1, but $(p, p) = p \ne 1$. Hence $\phi(p) = p-1$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

An important rôle is played by the residue classes r modulo m with (r, m) = 1.

• In connection with this we introduce Euler's function.

Definition 4

A function defined on $\ensuremath{\mathbb{N}}$ is called an arithmetical function.

Definition 5

Euler's function $\phi(n)$ is the number of $x \in \mathbb{N}$ with $1 \le x \le n$ and (x, n) = 1.

Definition 6

A set of $\phi(m)$ distinct residue classes \overline{r} modulo m with (r, m) = 1 is called a set of *reduced* residues modulo m.

- Since (1,1) = 1 we have $\phi(1) = 1$.
- If p is prime, then the x with $1 \le x \le p-1$ satisfy (x,p) = 1, but $(p,p) = p \ne 1$. Hence $\phi(p) = p-1$.
- The numbers x with $1 \le x \le 30$ and (x, 30) = 1 are 1, 7, 11, 13, 17, 19, 23, 29, so $\phi(30) = 8$.

Sar

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • One way of thinking about reduced sets of residues is to start from a complete set of fractions with denominator *m* in the interval (0, 1]

$$\frac{1}{m}, \frac{2}{m}, \ldots, \frac{m}{m}.$$

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • One way of thinking about reduced sets of residues is to start from a complete set of fractions with denominator *m* in the interval (0, 1]

$$\frac{1}{m}, \frac{2}{m}, \ldots, \frac{m}{m}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Now remove just the ones whose numerator has a common factor d > 1 with m.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • One way of thinking about reduced sets of residues is to start from a complete set of fractions with denominator *m* in the interval (0, 1]

$$\frac{1}{m}, \frac{2}{m}, \ldots, \frac{m}{m}.$$

- Now remove just the ones whose numerator has a common factor d > 1 with m.
- What is left are the φ(m) reduced fractions with denominator m.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • One way of thinking about reduced sets of residues is to start from a complete set of fractions with denominator *m* in the interval (0, 1]

$$\frac{1}{m}, \frac{2}{m}, \ldots, \frac{m}{m}.$$

- Now remove just the ones whose numerator has a common factor d > 1 with m.
- What is left are the φ(m) reduced fractions with denominator m.
- Suppose instead of removing the non-reduced ones we just write them in their lowest form.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • One way of thinking about reduced sets of residues is to start from a complete set of fractions with denominator *m* in the interval (0, 1]

$$\frac{1}{m}, \frac{2}{m}, \ldots, \frac{m}{m}.$$

- Now remove just the ones whose numerator has a common factor d > 1 with m.
- What is left are the $\phi(m)$ reduced fractions with denominator m.
- Suppose instead of removing the non-reduced ones we just write them in their lowest form.
- Then for each divisor k of m we obtain all the reduced fractions with denominator k.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • In fact we just proved the following.

Theorem 7

For each $m \in \mathbb{N}$ we have

$$\sum_{k|m}\phi(k)=m.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Ξ 9 Q (P

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • In fact we just proved the following.

Theorem 7

For each $m \in \mathbb{N}$ we have

$$\sum_{k|m}\phi(k)=m.$$

• We just saw that $\phi(1)=1, \ \phi(p)=p-1, \ \phi(30)=8$

Example 8

The divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30 and

$$\phi(6) = 2, \ \phi(10) = 4, \phi(15) = 8$$

SO

$$\sum_{k|30} \phi(k) = 1 + 1 + 2 + 4 + 2 + 4 + 8 + 8 = 30.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Sac

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Now we can prove a companion theorem to Theorem 3 for reduced residue classes.

Theorem 9

Suppose that (k, m) = 1 and that

 $a_1, a_2, \ldots, a_{\phi(m)}$

forms a set of reduced residue classes modulo m. Then

 $ka_1, ka_2, \ldots, ka_{\phi(m)}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

also forms a set of reduced residues modulo m.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Now we can prove a companion theorem to Theorem 3 for reduced residue classes.

Theorem 9

Suppose that (k, m) = 1 and that

 $a_1, a_2, \ldots, a_{\phi(m)}$

forms a set of reduced residue classes modulo m. Then

 $ka_1, ka_2, \ldots, ka_{\phi(m)}$

also forms a set of reduced residues modulo m.

• **Proof.** In view of the earlier theorem the residue classes ka_j are distinct, and since $(a_j, m) = 1$ we have $(ka_j, m) = 1$ so they give $\phi(m)$ distinct reduced residue classes, so they are all of them in some order.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and (m, n) = 1, and consider the xn + ym with $1 \le x \le m$ and $1 \le y \le n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy (x, m) = 1 and (y, n) = 1, then they form a reduced set.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and (m, n) = 1, and consider the xn + ym with $1 \le x \le m$ and $1 \le y \le n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy (x, m) = 1 and (y, n) = 1, then they form a reduced set.

• **Proof.** If $xn + ym \equiv x'n + y'm \pmod{mn}$, then $xn \equiv x'n \pmod{m}$, so $x \equiv x' \pmod{m}$, x = x'. Likewise y = y'.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and (m, n) = 1, and consider the xn + ymwith $1 \le x \le m$ and $1 \le y \le n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy (x, m) = 1 and (y, n) = 1, then they form a reduced set.

- **Proof.** If $xn + ym \equiv x'n + y'm \pmod{mn}$, then $xn \equiv x'n \pmod{m}$, so $x \equiv x' \pmod{m}$, x = x'. Likewise y = y'.
- Hence in either case the xn + ym are distinct modulo mn.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and (m, n) = 1, and consider the xn + ymwith $1 \le x \le m$ and $1 \le y \le n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy (x, m) = 1 and (y, n) = 1, then they form a reduced set.

- **Proof.** If $xn + ym \equiv x'n + y'm \pmod{mn}$, then $xn \equiv x'n \pmod{m}$, so $x \equiv x' \pmod{m}$, x = x'. Likewise y = y'.
- Hence in either case the xn + ym are distinct modulo mn.
- In the unrestricted case we have *mn* objects, so they form a complete set.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and (m, n) = 1, and consider the xn + ymwith $1 \le x \le m$ and $1 \le y \le n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy (x, m) = 1 and (y, n) = 1, then they form a reduced set.

- **Proof.** If $xn + ym \equiv x'n + y'm \pmod{mn}$, then $xn \equiv x'n \pmod{m}$, so $x \equiv x' \pmod{m}$, x = x'. Likewise y = y'.
- Hence in either case the xn + ym are distinct modulo mn.
- In the unrestricted case we have *mn* objects, so they form a complete set.
- In the restricted case (xn + ym, m) = (xn, m) = (x, m) = 1 and likewise (xn + ym, n) = 1, so (xn + ym, mn) = 1 and the xn + ym all belong to reduced residue classes.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • We now examine the structure of residue systems.

Theorem 10

Suppose m, $n \in \mathbb{N}$ and (m, n) = 1, and consider the xn + ym with $1 \le x \le m$ and $1 \le y \le n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy (x, m) = 1 and (y, n) = 1, then they form a reduced set.

- **Proof.** If $xn + ym \equiv x'n + y'm \pmod{mn}$, then $xn \equiv x'n \pmod{m}$, so $x \equiv x' \pmod{m}$, x = x'. Likewise y = y'.
- Hence in either case the xn + ym are distinct modulo mn.
- In the unrestricted case we have *mn* objects, so they form a complete set.
- In the restricted case (xn + ym, m) = (xn, m) = (x, m) = 1 and likewise (xn + ym, n) = 1, so (xn + ym, mn) = 1 and the xn + ym all belong to reduced residue classes.
- Now let (z, mn) = 1. Choose x', y', x, y so that x'n + y'm = 1, $x \equiv x'z \pmod{m}$ and $y \equiv y'z \pmod{n}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and (m, n) = 1, and consider the xn + ymwith $1 \le x \le m$ and $1 \le y \le n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy (x, m) = 1 and (y, n) = 1, then they form a reduced set.

- **Proof.** If $xn + ym \equiv x'n + y'm \pmod{mn}$, then $xn \equiv x'n \pmod{m}$, so $x \equiv x' \pmod{m}$, x = x'. Likewise y = y'.
- Hence in either case the xn + ym are distinct modulo mn.
- In the unrestricted case we have *mn* objects, so they form a complete set.
- In the restricted case (xn + ym, m) = (xn, m) = (x, m) = 1 and likewise (xn + ym, n) = 1, so (xn + ym, mn) = 1 and the xn + ym all belong to reduced residue classes.
- Now let (z, mn) = 1. Choose x', y', x, y so that x'n + y'm = 1, $x \equiv x'z \pmod{m}$ and $y \equiv y'z \pmod{n}$.
- Then $xn + ym \equiv x'zn + y'zm = z \pmod{mn}$ and hence every reduced residue is included.

> Robert C Vaughan

Example 11

Residue Classes

• Here is a table of $xn + ym \pmod{mn}$ when m = 5, n = 6.

.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Π

	Х		2	3	4	5
y						
1		11	17	23	29	5
2		16	22	28	4	10
3		21	27	3	9	15
4		26	2	8	14	20
5		1	7	13	19	25
6		6	12	18	24	30

The 30 numbers 1 through 30 appear exactly once each. The 8 reduced residue classes occur precisely in the intersection of rows 1 and 5 and columns 1 through 4.

Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Immediate from Theorem 10 we have

Corollary 12

If (m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

• Immediate from Theorem 10 we have

Corollary 12

$$f(m,n) = 1$$
, then $\phi(mn) = \phi(m)\phi(n)$.

• Thus ϕ is an example of a multiplicative function.

Definition 13

If an arithmetical function f which is not identically 0 satisfies

$$f(mn) = f(m)f(n)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

whenever (m, n) = 1 we say that f is *multiplicative*.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Immediate from Theorem 10 we have

Corollary 12

If
$$(m, n) = 1$$
, then $\phi(mn) = \phi(m)\phi(n)$.

• Thus ϕ is an example of a multiplicative function.

Definition 13

If an arithmetical function f which is not identically 0 satisfies

$$f(mn) = f(m)f(n)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

whenever (m, n) = 1 we say that f is multiplicative.

• Thus we have another

Corollary 14

Euler's function is multiplicative.

This enables a full evaluation of $\phi(n)$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences If n = p^k, then the number of reduced residue classes modulo p^k is the number of x with 1 ≤ x ≤ p^k and p ∤ x.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences If n = p^k, then the number of reduced residue classes modulo p^k is the number of x with 1 ≤ x ≤ p^k and p ∤ x.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• This is $p^k - N$ where N is the number of x with $1 \le x \le p^k$ and p|x, and $N = p^{k-1}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences If n = p^k, then the number of reduced residue classes modulo p^k is the number of x with 1 ≤ x ≤ p^k and p ∤ x.

- This is $p^k N$ where N is the number of x with $1 \le x \le p^k$ and p|x, and $N = p^{k-1}$.
- Thus $\phi(p^k) = p^k p^{k-1} = p^k(1 1/p)$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- If n = p^k, then the number of reduced residue classes modulo p^k is the number of x with 1 ≤ x ≤ p^k and p ∤ x.
- This is $p^k N$ where N is the number of x with $1 \le x \le p^k$ and p|x, and $N = p^{k-1}$.
- Thus $\phi(p^k) = p^k p^{k-1} = p^k(1 1/p).$
- Putting this all together gives

Theorem 15

Let
$$n \in \mathbb{N}$$
. Then $\phi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$ where when $n = 1$ we

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

interpret the product as an "empty" product 1.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- If n = p^k, then the number of reduced residue classes modulo p^k is the number of x with 1 ≤ x ≤ p^k and p ∤ x.
- This is $p^k N$ where N is the number of x with $1 \le x \le p^k$ and p|x, and $N = p^{k-1}$.
- Thus $\phi(p^k) = p^k p^{k-1} = p^k(1 1/p).$
- Putting this all together gives

Theorem 15

Let
$$n \in \mathbb{N}$$
. Then $\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$ where when $n = 1$ we

interpret the product as an "empty" product 1.

• Some special cases.

Example 16

We have $\phi(9) = 6$, $\phi(5) = 4$, $\phi(45) = 24$. Note that $\phi(3) = 2$ and $\phi(9) \neq \phi(3)^2$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Here is a beautiful and useful theorem.

Theorem 17 (Euler)

Suppose that $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ with (a, m) = 1. Then

 $a^{\phi(m)} \equiv 1 \pmod{m}.$

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Here is a beautiful and useful theorem.

Theorem 17 (Euler)

Suppose that $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ with (a, m) = 1. Then

$$a^{\phi(m)} \equiv 1 \pmod{m}.$$

• **Proof.** Let $a_1, a_2, \ldots, a_{\phi(m)}$ be a reduced set modulo m.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Here is a beautiful and useful theorem.

Theorem 17 (Euler)

Suppose that $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ with (a, m) = 1. Then $a^{\phi(m)} \equiv 1 \pmod{m}$.

Proof. Let a₁, a₂,..., a_{φ(m)} be a reduced set modulo m.
Then aa₁, aa₂,..., aa_{φ(m)} is another. Hence

$$a_1 a_2 \dots a_{\phi(m)} \equiv a a_1 a a_2 \dots a a_{\phi(m)} \pmod{m}$$

 $\equiv a_1 a_2 \dots a_{\phi(m)} a^{\phi(m)} \pmod{m}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Here is a beautiful and useful theorem.

Theorem 17 (Euler)

Suppose that $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ with (a, m) = 1. Then $a^{\phi(m)} \equiv 1 \pmod{m}.$

Proof. Let a₁, a₂,..., a_{φ(m)} be a reduced set modulo m.
Then aa₁, aa₂,..., aa_{φ(m)} is another. Hence

$$a_1a_2\ldots a_{\phi(m)}\equiv aa_1aa_2\ldots aa_{\phi(m)}\pmod{m}$$

 $\equiv a_1a_2\ldots a_{\phi(m)}a^{\phi(m)}\pmod{m}.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• As $(a_1a_2...a_{\phi(m)}, m) = 1$ we may cancel $a_1a_2...a_{\phi(m)}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Here is a beautiful and useful theorem.

Theorem 17 (Euler)

Suppose that $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ with (a, m) = 1. Then $a^{\phi(m)} \equiv 1 \pmod{m}.$

Proof. Let a₁, a₂,..., a_{φ(m)} be a reduced set modulo m.
Then aa₁, aa₂,..., aa_{φ(m)} is another. Hence

$$a_1a_2\ldots a_{\phi(m)}\equiv aa_1aa_2\ldots aa_{\phi(m)}\pmod{m}\ \equiv a_1a_2\ldots a_{\phi(m)}a^{\phi(m)}\pmod{m}.$$

As (a₁a₂...a_{φ(m)}, m) = 1 we may cancel a₁a₂...a_{φ(m)}.
 Thus

Corollary 18 (Fermat)

Let p be a prime and $a \in \mathbb{Z}$. Then $a^p \equiv a \pmod{p}$. If $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Could Fermat's theorem give a primality test?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that $a^{n-1} \equiv 1 \pmod{n}$ when *n* is not prime, although this is rare.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that $a^{n-1} \equiv 1 \pmod{n}$ when *n* is not prime, although this is rare.
- For example, when are n = 341, 561, 645

$$2^{n-1} \equiv 1 \pmod{n}$$

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that $a^{n-1} \equiv 1 \pmod{n}$ when *n* is not prime, although this is rare.
- For example, when are n = 341, 561, 645

$$2^{n-1} \equiv 1 \pmod{n}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Such *n* are called *pseudoprimes*.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that $a^{n-1} \equiv 1 \pmod{n}$ when *n* is not prime, although this is rare.
- For example, when are n = 341, 561, 645

$$2^{n-1} \equiv 1 \pmod{n}$$

- Such *n* are called *pseudoprimes*.
- There are 245 less than 10⁶, compared with 78498 primes.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that $a^{n-1} \equiv 1 \pmod{n}$ when *n* is not prime, although this is rare.
- For example, when are n = 341, 561, 645

$$2^{n-1} \equiv 1 \pmod{n}$$

- Such *n* are called *pseudoprimes*.
- There are 245 less than 10⁶, compared with 78498 primes.
- Moreover

$$3^{341-1} \equiv 56 \neq 1 \pmod{341}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

suggests a possible primality test.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that $a^{n-1} \equiv 1 \pmod{n}$ when *n* is not prime, although this is rare.
- For example, when are n = 341, 561, 645

$$2^{n-1} \equiv 1 \pmod{n}$$

- Such *n* are called *pseudoprimes*.
- There are 245 less than 10⁶, compared with 78498 primes.
- Moreover

$$3^{341-1} \equiv 56 \neq 1 \pmod{341}$$

suggests a possible primality test.

• Given *n* try trial division a few times, say for *d* = 2, 3, 5, 7 and then check successively for *a* = 2, 3, 5, 7

$$a^{n-1} \equiv 1 \pmod{n}$$
.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that $a^{n-1} \equiv 1 \pmod{n}$ when *n* is not prime, although this is rare.
- For example, when are n = 341, 561, 645

$$2^{n-1} \equiv 1 \pmod{n}$$

- Such *n* are called *pseudoprimes*.
- There are 245 less than 10⁶, compared with 78498 primes.
- Moreover

$$3^{341-1} \equiv 56 \neq 1 \pmod{341}$$

suggests a possible primality test.

• Given *n* try trial division a few times, say for *d* = 2, 3, 5, 7 and then check successively for *a* = 2, 3, 5, 7

$$a^{n-1} \equiv 1 \pmod{n}$$
.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Unfortunately one can still have false positives.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that $a^{n-1} \equiv 1 \pmod{n}$ when *n* is not prime, although this is rare.
- For example, when are n = 341, 561, 645

$$2^{n-1} \equiv 1 \pmod{n}$$

- Such *n* are called *pseudoprimes*.
- There are 245 less than 10⁶, compared with 78498 primes.
- Moreover

$$3^{341-1} \equiv 56
eq 1 \pmod{341}$$

suggests a possible primality test.

• Given *n* try trial division a few times, say for *d* = 2, 3, 5, 7 and then check successively for *a* = 2, 3, 5, 7

$$a^{n-1} \equiv 1 \pmod{n}$$
.

- Unfortunately one can still have false positives.
- Thus 561 = 3.11.17 satisfies

$$a^{560} \equiv 1 \pmod{561}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

for *all a* with (a, 561) = 1.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Such numbers are interesting

Definition 19

A composite *n* which satisfies $a^{n-1} \equiv 1 \pmod{n}$ for all *a* with (a, n) = 1 is called a Carmichael number.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Such numbers are interesting

Definition 19

A composite *n* which satisfies $a^{n-1} \equiv 1 \pmod{n}$ for all *a* with (a, n) = 1 is called a Carmichael number.

• There are infinitely Carmichael number. The smallest is 561 and there are 2163 of them below 25×10^9 .

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

• Such numbers are interesting

Definition 19

A composite *n* which satisfies $a^{n-1} \equiv 1 \pmod{n}$ for all *a* with (a, n) = 1 is called a Carmichael number.

- There are infinitely Carmichael number. The smallest is 561 and there are 2163 of them below 25×10^9 .
- Also of interest.

Definition 20

Define $M(n) = 2^n - 1$. If it is prime it is a Mersenne prime.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Such numbers are interesting

Definition 19

A composite *n* which satisfies $a^{n-1} \equiv 1 \pmod{n}$ for all *a* with (a, n) = 1 is called a Carmichael number.

- There are infinitely Carmichael number. The smallest is 561 and there are 2163 of them below 25×10^9 .
- Also of interest.

Definition 20

Define $M(n) = 2^n - 1$. If it is prime it is a Mersenne prime.

• If n = ab, then $M(ab) = (2^a - 1)(2^{a(b-1)} + \dots + 2^a + 1)$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Such numbers are interesting

Definition 19

A composite *n* which satisfies $a^{n-1} \equiv 1 \pmod{n}$ for all *a* with (a, n) = 1 is called a Carmichael number.

- There are infinitely Carmichael number. The smallest is 561 and there are 2163 of them below 25×10^9 .
- Also of interest.

Definition 20

Define $M(n) = 2^n - 1$. If it is prime it is a Mersenne prime.

- If n = ab, then $M(ab) = (2^a 1)(2^{a(b-1)} + \dots + 2^a + 1)$.
- Thus for M(n) to be prime it is necessary that n be prime.

Example 21

We have $3 = 2^2 - 1$, $7 = 2^3 - 1$, $31 = 2^5 - 1127 = 2^7 - 1$. However that is not sufficient. $2^{11} - 1 = 2047 = 23 \times 89$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • As with linear equations, linear congruences are easiest.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- As with linear equations, linear congruences are easiest.
- We have already solved ax ≡ b (mod m) in principle since it is equivalent to ax + my = b.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem 22

The congruence $ax \equiv b \pmod{m}$ is soluble iff (a, m)|b, and the general solution is given by a residue class x_0 modulo m/(a, m). x_0 can be found by applying Euclid's algorithm.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- As with linear equations, linear congruences are easiest.
- We have already solved ax ≡ b (mod m) in principle since it is equivalent to ax + my = b.

Theorem 22

The congruence $ax \equiv b \pmod{m}$ is soluble iff (a, m)|b, and the general solution is given by a residue class x_0 modulo m/(a, m). x_0 can be found by applying Euclid's algorithm.

• **Proof.** The congruence is equivalent to the equation ax + my = b and there can be no solution if $(a, m) \nmid b$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- As with linear equations, linear congruences are easiest.
- We have already solved ax ≡ b (mod m) in principle since it is equivalent to ax + my = b.

Theorem 22

The congruence $ax \equiv b \pmod{m}$ is soluble iff (a, m)|b, and the general solution is given by a residue class x_0 modulo m/(a, m). x_0 can be found by applying Euclid's algorithm.

- **Proof.** The congruence is equivalent to the equation ax + my = b and there can be no solution if $(a, m) \nmid b$.
- If (a, m)|b, then Euclid's algorithm solves

$$\frac{a}{(a,m)}x+\frac{m}{(a,m)}y=\frac{b}{(a,m)}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- As with linear equations, linear congruences are easiest.
- We have already solved ax ≡ b (mod m) in principle since it is equivalent to ax + my = b.

Theorem 22

The congruence $ax \equiv b \pmod{m}$ is soluble iff (a, m)|b, and the general solution is given by a residue class x_0 modulo m/(a, m). x_0 can be found by applying Euclid's algorithm.

- **Proof.** The congruence is equivalent to the equation ax + my = b and there can be no solution if $(a, m) \nmid b$.
- If (a, m)|b, then Euclid's algorithm solves

$$\frac{a}{(a,m)}x+\frac{m}{(a,m)}y=\frac{b}{(a,m)}.$$

• Let x_0 , y_0 be such a solution and let x, y be any solution. Then $a/(a, m)(x - x_0) \equiv 0 \pmod{m/(a, m)}$ and since (a/(a, m), m/(a, m)) = 1 it follows that x is in the residue class $x_0 \pmod{m/(a, m)}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)

Let p be a prime number, then $(p-1)! \equiv -1 \pmod{p}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)

Let p be a prime number, then $(p-1)! \equiv -1 \pmod{p}$.

Proof. The cases p = 2 and p = 3 are (2 - 1)! = 1 ≡ -1 (mod 2) and (3 - 1)! = 2 ≡ -1 (mod 3).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)

Let p be a prime number, then $(p-1)! \equiv -1 \pmod{p}$.

Proof. The cases p = 2 and p = 3 are (2 - 1)! = 1 ≡ -1 (mod 2) and (3 - 1)! = 2 ≡ -1 (mod 3).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Thus we may suppose p ≥ 5. Observe now that x² ≡ 1 (mod p) implies x ≡ ±1 (mod p)

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)

Let p be a prime number, then $(p-1)! \equiv -1 \pmod{p}$.

- **Proof.** The cases p = 2 and p = 3 are $(2 1)! = 1 \equiv -1 \pmod{2}$ and $(3 1)! = 2 \equiv -1 \pmod{3}$.
- Thus we may suppose p ≥ 5. Observe now that x² ≡ 1 (mod p) implies x ≡ ±1 (mod p)
- Thus the numbers $2, 3, \ldots, p-2$ can be paired off into $\frac{p-3}{2}$ mutually exclusive pairs a, b such that $ab \equiv 1 \pmod{p}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)

Let p be a prime number, then $(p-1)! \equiv -1 \pmod{p}$.

- **Proof.** The cases p = 2 and p = 3 are $(2 1)! = 1 \equiv -1 \pmod{2}$ and $(3 1)! = 2 \equiv -1 \pmod{3}$.
- Thus we may suppose p ≥ 5. Observe now that x² ≡ 1 (mod p) implies x ≡ ±1 (mod p)
- Thus the numbers 2, 3, ..., p 2 can be paired off into ^{p-3}/₂ mutually exclusive pairs a, b such that ab ≡ 1 (mod p).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Thus $(p-1)! \equiv p-1 \equiv -1 \pmod{p}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)

Let p be a prime number, then $(p-1)! \equiv -1 \pmod{p}$.

- **Proof.** The cases p = 2 and p = 3 are $(2 1)! = 1 \equiv -1 \pmod{2}$ and $(3 1)! = 2 \equiv -1 \pmod{3}$.
- Thus we may suppose p ≥ 5. Observe now that x² ≡ 1 (mod p) implies x ≡ ±1 (mod p)
- Thus the numbers 2, 3, ..., p 2 can be paired off into ^{p-3}/₂ mutually exclusive pairs a, b such that ab ≡ 1 (mod p).
- Thus $(p-1)! \equiv p-1 \equiv -1 \pmod{p}$.
- This theorem actually gives a necessary and sufficient condition for p to be a prime, since if p were to be composite, then we would have ((p - 1)!, p) > 1.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)

Let p be a prime number, then $(p-1)! \equiv -1 \pmod{p}$.

- **Proof.** The cases p = 2 and p = 3 are $(2 1)! = 1 \equiv -1 \pmod{2}$ and $(3 1)! = 2 \equiv -1 \pmod{3}$.
- Thus we may suppose p ≥ 5. Observe now that x² ≡ 1 (mod p) implies x ≡ ±1 (mod p)
- Thus the numbers 2, 3, ..., p 2 can be paired off into ^{p-3}/₂ mutually exclusive pairs a, b such that ab ≡ 1 (mod p).
- Thus $(p-1)! \equiv p-1 \equiv -1 \pmod{p}$.
- This theorem actually gives a necessary and sufficient condition for p to be a prime, since if p were to be composite, then we would have ((p - 1)!, p) > 1.
- However this is useless since (p-1)! grows very rapidly.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • What about simultaneous linear congruences?

$$\begin{cases} a_1 x \equiv b_1 \pmod{q_1}, \\ \dots & \dots \\ a_r x \equiv b_r \pmod{q_r}. \end{cases}$$
(2.1)

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • What about simultaneous linear congruences?

$$\begin{cases} a_1 x \equiv b_1 \pmod{q_1}, \\ \dots & \dots \\ a_r x \equiv b_r \pmod{q_r}. \end{cases}$$
(2.1)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• There can only be a solution when each individual equation is soluble, so we require $(a_j, q_j)|b_j$ for every j.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • What about simultaneous linear congruences?

$$\begin{cases} a_1 x \equiv b_1 \pmod{q_1}, \\ \dots & \dots \\ a_r x \equiv b_r \pmod{q_r}. \end{cases}$$
(2.1)

- There can only be a solution when each individual equation is soluble, so we require $(a_j, q_j)|b_j$ for every j.
- Then we know that each individual equation is soluble by some residue class modulo $q_j/(a_j, q_j)$. Thus for some values of c_j and m_j this reduces to

$$\begin{cases} x \equiv c_1 \pmod{m_1}, \\ \dots & \dots \\ x \equiv c_r \pmod{m_r} \end{cases}$$
(2.2)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • What about simultaneous linear congruences?

$$\begin{cases} a_1 x \equiv b_1 \pmod{q_1}, \\ \dots & \dots \\ a_r x \equiv b_r \pmod{q_r}. \end{cases}$$
(2.1)

- There can only be a solution when each individual equation is soluble, so we require $(a_j, q_j)|b_j$ for every j.
- Then we know that each individual equation is soluble by some residue class modulo $q_j/(a_j, q_j)$. Thus for some values of c_i and m_i this reduces to

$$\begin{cases} x \equiv c_1 \pmod{m_1}, \\ \dots & \dots \\ x \equiv c_r \pmod{m_r} \end{cases}$$
(2.2)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Suppose for some *i* and $j \neq i$ we have $(m_i, m_j) = d > 1$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • What about simultaneous linear congruences?

$$\begin{cases} a_1 x \equiv b_1 \pmod{q_1}, \\ \dots & \dots \\ a_r x \equiv b_r \pmod{q_r}. \end{cases}$$
(2.1)

- There can only be a solution when each individual equation is soluble, so we require $(a_j, q_j)|b_j$ for every j.
- Then we know that each individual equation is soluble by some residue class modulo $q_j/(a_j, q_j)$. Thus for some values of c_i and m_i this reduces to

$$\begin{cases} x \equiv c_1 \pmod{m_1}, \\ \dots & \dots \\ x \equiv c_r \pmod{m_r} \end{cases}$$
(2.2)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- Suppose for some i and $j \neq i$ we have $(m_i, m_j) = d > 1$.
- Then x has to satisfy $c_i \equiv x \equiv c_j \pmod{d}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • What about simultaneous linear congruences?

$$\begin{cases} a_1 x \equiv b_1 \pmod{q_1}, \\ \dots & \dots \\ a_r x \equiv b_r \pmod{q_r}. \end{cases}$$
(2.1)

- There can only be a solution when each individual equation is soluble, so we require $(a_j, q_j)|b_j$ for every j.
- Then we know that each individual equation is soluble by some residue class modulo $q_j/(a_j, q_j)$. Thus for some values of c_i and m_i this reduces to

$$\begin{cases} x \equiv c_1 \pmod{m_1}, \\ \dots & \dots \\ x \equiv c_r \pmod{m_r} \end{cases}$$
(2.2)

- Suppose for some i and $j \neq i$ we have $(m_i, m_j) = d > 1$.
- Then x has to satisfy $c_i \equiv x \equiv c_j \pmod{d}$.
- This imposes conditions on c_j which can get complicated.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • What about simultaneous linear congruences?

$$\begin{cases} a_1 x \equiv b_1 \pmod{q_1}, \\ \dots & \dots \\ a_r x \equiv b_r \pmod{q_r}. \end{cases}$$
(2.1)

- There can only be a solution when each individual equation is soluble, so we require $(a_j, q_j)|b_j$ for every j.
- Then we know that each individual equation is soluble by some residue class modulo $q_j/(a_j, q_j)$. Thus for some values of c_i and m_i this reduces to

$$\begin{cases} x \equiv c_1 \pmod{m_1}, \\ \dots & \dots \\ x \equiv c_r \pmod{m_r} \end{cases}$$
(2.2)

- Suppose for some *i* and $j \neq i$ we have $(m_i, m_j) = d > 1$.
- Then x has to satisfy $c_i \equiv x \equiv c_j \pmod{d}$.
- This imposes conditions on c_j which can get complicated.
- Thus it is convenient to assume $(m_i, m_j) = 1$ when $i \neq j$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following is known as the Chinese Remainder Theorem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem 24

Suppose that $(m_i, m_j) = 1$ for every $i \neq j$. Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo $m_1 m_2 \dots m_r$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following is known as the Chinese Remainder Theorem

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Theorem 24

Suppose that $(m_i, m_j) = 1$ for every $i \neq j$. Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo $m_1 m_2 \dots m_r$.

• **Proof.** We first show that there is a solution.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following is known as the Chinese Remainder Theorem

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Theorem 24

Suppose that $(m_i, m_j) = 1$ for every $i \neq j$. Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo $m_1 m_2 \dots m_r$.

- **Proof.** We first show that there is a solution.
- Let $M = m_1 m_2 \dots m_r$ and $M_j = M/m_j$, so that $(M_j, m_j) = 1$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following is known as the Chinese Remainder Theorem

Theorem 24

Suppose that $(m_i, m_j) = 1$ for every $i \neq j$. Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo $m_1m_2 \dots m_r$.

- **Proof.** We first show that there is a solution.
- Let $M = m_1 m_2 \dots m_r$ and $M_j = M/m_j$, so that $(M_j, m_j) = 1$.
- We know that there is an N_j so that $M_j N_j \equiv c_j \pmod{m_j}$ (solve $yM_j \equiv c_j \pmod{m_j}$ in y).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following is known as the Chinese Remainder Theorem

Theorem 24

Suppose that $(m_i, m_j) = 1$ for every $i \neq j$. Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo $m_1m_2 \dots m_r$.

- **Proof.** We first show that there is a solution.
- Let $M = m_1 m_2 \dots m_r$ and $M_j = M/m_j$, so that $(M_j, m_j) = 1$.
- We know that there is an N_j so that $M_j N_j \equiv c_j \pmod{m_j}$ (solve $yM_j \equiv c_j \pmod{m_j}$ in y).
- Let x be any member of the residue class

$$V_1M_1 + \cdots + N_rM_r \pmod{M}$$
.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The following is known as the Chinese Remainder Theorem

Theorem 24

Suppose that $(m_i, m_j) = 1$ for every $i \neq j$. Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo $m_1m_2 \dots m_r$.

- **Proof.** We first show that there is a solution.
- Let $M = m_1 m_2 \dots m_r$ and $M_j = M/m_j$, so that $(M_j, m_j) = 1$.
- We know that there is an N_j so that $M_j N_j \equiv c_j \pmod{m_j}$ (solve $yM_j \equiv c_j \pmod{m_j}$ in y).
- Let x be any member of the residue class

 $N_1M_1 + \cdots + N_rM_r \pmod{M}$.

• Then for every j, since $m_j | M_i$ when $i \neq j$ we have

$$x \equiv N_j M_j \pmod{m_j}$$
$$\equiv c_j \pmod{m_j}$$

Sac

so the residue class $x \pmod{M}$ gives a solution.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences $\begin{cases} x \equiv c_1 \pmod{m_1}, \\ \dots & \dots \\ x \equiv c_r \pmod{m_r} \end{cases}$

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

$$\begin{cases} x \equiv c_1 \pmod{m_1}, \\ \dots & \dots \\ x \equiv c_r \pmod{m_r} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Now we have to show that the solution modulo *M* is unique.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

$$\begin{cases} x \equiv c_1 \pmod{m_1}, \\ \dots & \dots \\ x \equiv c_r \pmod{m_r} \end{cases}$$

- Now we have to show that the solution modulo *M* is unique.
- Suppose *y* is also a solution of the system.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

$$\begin{cases} x \equiv c_1 \pmod{m_1}, \\ \dots & \dots \\ x \equiv c_r \pmod{m_r} \end{cases}$$

- Now we have to show that the solution modulo *M* is unique.
- Suppose y is also a solution of the system.
- Then for every *j* we have

$$y \equiv c_j \pmod{m_j}$$
$$\equiv x \pmod{m_j}$$

and so $m_j | y - x$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

$$\begin{cases} x \equiv c_1 \pmod{m_1}, \\ \dots & \dots \\ x \equiv c_r \pmod{m_r} \end{cases}$$

- Now we have to show that the solution modulo *M* is unique.
- Suppose *y* is also a solution of the system.
- Then for every *j* we have

$$y \equiv c_j \pmod{m_j}$$
$$\equiv x \pmod{m_j}$$

and so $m_j | y - x$.

• Since the m_j are pairwise co-prime we have M|y - x, so y is in the residue class x modulo M.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Consider

Example 25

$$x \equiv 3 \pmod{4},$$

$$x \equiv 5 \pmod{21},$$

$$x \equiv 7 \pmod{25}.$$

◆□ > ◆□ > ◆ □ > ● □ >

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Consider

Example 25

 $x \equiv 3 \pmod{4},$ $x \equiv 5 \pmod{21},$ $x \equiv 7 \pmod{25}.$

•
$$m_1 = 4$$
, $m_2 = 21$, $m_3 = 25$, $M = 2100$, $M_1 = 525$, $M_2 = 100$, $M_3 = 84$. Thus first we have to solve

 $525N_1 \equiv 3 \pmod{4},$ $100N_2 \equiv 5 \pmod{21},$ $84N_3 \equiv 7 \pmod{25}.$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences $525N_1 \equiv 3 \pmod{4},$ $100N_2 \equiv 5 \pmod{21},$ $84N_3 \equiv 7 \pmod{25}.$

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences $525N_1 \equiv 3 \pmod{4}, \\ 100N_2 \equiv 5 \pmod{21}, \\ 84N_3 \equiv 7 \pmod{25}.$

• Reducing the constants gives

$$\begin{array}{l} \mathcal{N}_1\equiv 3 \pmod{4},\\ (-5)\mathcal{N}_2\equiv 5 \pmod{21},\\ 9\mathcal{N}_3\equiv 7 \pmod{25}. \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- $525N_1 \equiv 3 \pmod{4}, \\ 100N_2 \equiv 5 \pmod{21}, \\ 84N_3 \equiv 7 \pmod{25}.$
- Reducing the constants gives

$$\begin{split} N_1 &\equiv 3 \pmod{4}, \\ (-5)N_2 &\equiv 5 \pmod{21}, \\ 9N_3 &\equiv 7 \pmod{25}. \end{split}$$

• Thus we can take $N_1 = 3$, $N_2 = 20$, $7 \equiv -18 \pmod{25}$ so $N_3 \equiv -2 \equiv 23 \pmod{25}$. Then the complete solution is

$$x \equiv N_1 M_1 + N_2 M_2 + N_3 M_3 = 3 \times 525 + 20 \times 100 + 23 \times 84 = 5507 \equiv 1307 \pmod{2100}.$$

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The solution of a general polynomial congruence can be quite tricky, even for a polynomial with a single variable

$$f(x) := a_0 + a_1 x + \dots + a_j x^j + \dots + a_J x^J \equiv 0 \pmod{m}$$
 (3.3)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

where the a_i are integers.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The solution of a general polynomial congruence can be quite tricky, even for a polynomial with a single variable

$$f(x) := a_0 + a_1 x + \dots + a_j x^j + \dots + a_J x^J \equiv 0 \pmod{m} \quad (3.3)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

= nac

where the a_j are integers.

1

• The largest k such that $a_k \not\equiv 0 \pmod{m}$ is the degree of f modulo m.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The solution of a general polynomial congruence can be quite tricky, even for a polynomial with a single variable

$$f(x) := a_0 + a_1 x + \dots + a_j x^j + \dots + a_J x^J \equiv 0 \pmod{m} \quad (3.3)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where the a_j are integers.

1

- The largest k such that $a_k \not\equiv 0 \pmod{m}$ is the degree of f modulo m.
- If a_j ≡ 0 (mod m) for every j, then the degree of f modulo m is not defined.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The solution of a general polynomial congruence can be quite tricky, even for a polynomial with a single variable

$$f(x) := a_0 + a_1 x + \dots + a_j x^j + \dots + a_J x^J \equiv 0 \pmod{m} \quad (3.3)$$

where the a_j are integers.

- The largest k such that a_k ≠ 0 (mod m) is the degree of f modulo m.
- If a_j ≡ 0 (mod m) for every j, then the degree of f modulo m is not defined.
- We have already seen that

$$x^2 \equiv 1 \pmod{8}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

is solved by any odd x, so that it has four solutions modulo 8, $x \equiv 1$, 3, 5, 7 (mod 8).

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • The solution of a general polynomial congruence can be quite tricky, even for a polynomial with a single variable

$$f(x) := a_0 + a_1 x + \dots + a_j x^j + \dots + a_J x^J \equiv 0 \pmod{m} \quad (3.3)$$

where the a_j are integers.

- The largest k such that a_k ≠ 0 (mod m) is the degree of f modulo m.
- If a_j ≡ 0 (mod m) for every j, then the degree of f modulo m is not defined.
- We have already seen that

$$x^2 \equiv 1 \pmod{8}$$

is solved by any odd x, so that it has four solutions modulo 8, $x \equiv 1$, 3, 5, 7 (mod 8).

• That is, more than the degree 2. However, when the modulus is prime we have a more familiar conclusion.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • When we have a solution x to a polynomial congruence such as (3.3) we may sometimes refer to such values as a *root* of the polynomial modulo m.

Theorem 26 (Lagrange)

Suppose that p is prime, and $f(x) = a_0 + a_1x + \cdots + a_jx^j + \cdots$ is a polynomial with integer coefficients a_j and it has degree k modulo p. Then the number of incongruent solutions of

 $f(x) \equiv 0 \pmod{p}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

is at most k.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • When we have a solution x to a polynomial congruence such as (3.3) we may sometimes refer to such values as a *root* of the polynomial modulo m.

Theorem 26 (Lagrange)

Suppose that p is prime, and $f(x) = a_0 + a_1x + \cdots + a_jx^j + \cdots$ is a polynomial with integer coefficients a_j and it has degree k modulo p. Then the number of incongruent solutions of

 $f(x) \equiv 0 \pmod{p}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

is at most k.

• **Proof.** Degree 0 is obvious so we suppose $k \ge 1$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • When we have a solution x to a polynomial congruence such as (3.3) we may sometimes refer to such values as a *root* of the polynomial modulo m.

Theorem 26 (Lagrange)

Suppose that p is prime, and $f(x) = a_0 + a_1x + \cdots + a_jx^j + \cdots$ is a polynomial with integer coefficients a_j and it has degree k modulo p. Then the number of incongruent solutions of

$$f(x) \equiv 0 \pmod{p}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

is at most k.

- **Proof.** Degree 0 is obvious so we suppose $k \ge 1$.
- We use induction on the degree k.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • When we have a solution x to a polynomial congruence such as (3.3) we may sometimes refer to such values as a *root* of the polynomial modulo m.

Theorem 26 (Lagrange)

Suppose that p is prime, and $f(x) = a_0 + a_1x + \cdots + a_jx^j + \cdots$ is a polynomial with integer coefficients a_j and it has degree k modulo p. Then the number of incongruent solutions of

 $f(x) \equiv 0 \pmod{p}$

is at most k.

- **Proof.** Degree 0 is obvious so we suppose $k \ge 1$.
- We use induction on the degree k.
- If a polynomial f has degree 1 modulo p, so that
 f(x) = a₀ + a₁x with p ∤ a₁, then the congruence becomes
 a₁x ≡ -a₀ (mod p) and since a₁ ≠ 0 (mod p) (because
 f has degree 1) we know that this is soluble by precisely
 the members of a unique residue class modulo p.

> Robert C. Vaughan

Residue Classes

Linear congruence:

General polynomial congruences • Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

 $f = a_0 + \cdots + a_{k+1} x^{k+1}$ has degree k + 1.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that
 - $f = a_0 + \cdots + a_{k+1} x^{k+1}$ has degree k+1.
- If $f(x) \equiv 0 \pmod{p}$ has no solutions, then we are done.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that
 - $f = a_0 + \cdots + a_{k+1} x^{k+1}$ has degree k+1.
- If $f(x) \equiv 0 \pmod{p}$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_0 \pmod{p}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that
 - $f = a_0 + \cdots + a_{k+1} x^{k+1}$ has degree k+1.
- If $f(x) \equiv 0 \pmod{p}$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_0 \pmod{p}$.
- By the division algorithm for polynomials we have

$$f(x) = (x - x_0)q(x) + f(x_0)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that
 - $f = a_0 + \cdots + a_{k+1} x^{k+1}$ has degree k+1.
- If $f(x) \equiv 0 \pmod{p}$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_0 \pmod{p}$.
- By the division algorithm for polynomials we have

$$f(x) = (x - x_0)q(x) + f(x_0)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where q(x) is a polynomial of degree k.

 Moreover the leading coefficient of q(x) is a_{k+1} ≠ 0 (mod p).

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that
 - $f = a_0 + \cdots + a_{k+1} x^{k+1}$ has degree k+1.
- If $f(x) \equiv 0 \pmod{p}$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_0 \pmod{p}$.
- By the division algorithm for polynomials we have

$$f(x) = (x - x_0)q(x) + f(x_0)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Moreover the leading coefficient of q(x) is a_{k+1} ≠ 0 (mod p).
- But $f(x_0) \equiv 0 \pmod{p}$, so that $f(x) \equiv (x x_0)q(x) \pmod{p}$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that
 - $f = a_0 + \cdots + a_{k+1} x^{k+1}$ has degree k + 1.
- If $f(x) \equiv 0 \pmod{p}$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_0 \pmod{p}$.
- By the division algorithm for polynomials we have

$$f(x) = (x - x_0)q(x) + f(x_0)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- Moreover the leading coefficient of q(x) is a_{k+1} ≠ 0 (mod p).
- But $f(x_0) \equiv 0 \pmod{p}$, so that $f(x) \equiv (x x_0)q(x) \pmod{p}$.
- If $f(x_1) \equiv 0 \pmod{p}$, with $x_1 \not\equiv x_0 \pmod{p}$, then $p \nmid x_1 x_0$ so that $p \mid q(x_1)$.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that
 - $f = a_0 + \cdots + a_{k+1} x^{k+1}$ has degree k+1.
- If $f(x) \equiv 0 \pmod{p}$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_0 \pmod{p}$.
- By the division algorithm for polynomials we have

$$f(x) = (x - x_0)q(x) + f(x_0)$$

Sac

- Moreover the leading coefficient of q(x) is a_{k+1} ≠ 0 (mod p).
- But $f(x_0) \equiv 0 \pmod{p}$, so that $f(x) \equiv (x x_0)q(x) \pmod{p}$.
- If $f(x_1) \equiv 0 \pmod{p}$, with $x_1 \not\equiv x_0 \pmod{p}$, then $p \nmid x_1 x_0$ so that $p \mid q(x_1)$.
- By the inductive hypothesis there are at most k possibilities for x₁, so at most k + 1 in all.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences • Non-linear polynomials in one variable are complicated.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Non-linear polynomials in one variable are complicated.
- The general modulus can be reduced to a prime power modulus, and that case can be reduced to the prime modulus. I will include the theory in the class text for those interested. In general the prime case leads to algebraic number theory.

> Robert C. Vaughan

Residue Classes

Linear congruences

General polynomial congruences

- Non-linear polynomials in one variable are complicated.
- The general modulus can be reduced to a prime power modulus, and that case can be reduced to the prime modulus. I will include the theory in the class text for those interested. In general the prime case leads to algebraic number theory.
- The quadratic case we will need and will look at later.