MATH 467 FACTORIZATION AND PRIMALITY TESTING, FALL TERM 2024, SOLUTIONS 5

1. Let ${F_n : n = 0,1,...}$ be the Fibonacci sequence defined by $F_0 = 0, F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$ and let

$$
\theta = \frac{1 + \sqrt{5}}{2} = 1.6180339887498948482045868343656\dots
$$

(i) Prove that $F_n = \frac{\theta^n - (-\theta)^{-n}}{\sqrt{5}}$ $\frac{(-\theta)}{\sqrt{5}}$. (ii) Suppose that *a* and *b* are positive integers with $b \le a$ and we adopt the notation used in the description of Euclid's algorithm. Prove that for $k = 0, 1, \ldots, s - 1$ we have $F_k \leq r_{s-1-k}$ and $s \leq 1 + \frac{\log 2b\sqrt{5}}{\log \theta}$ log *θ* . *√*

(i) θ and $\phi = -1/\theta = (1 (5)/2$ are both solutions to $x^2 - x - 1 = 0$ and hence to $x^{n+1} = x^n + x^{n-1}$. Moreover (i) holds for $n = 0$ and 1 and hence by induction for all *n*. (ii) $r_{s-1} \geq 1 \geq 0 = F_0$ and $r_{s-2} \geq 1 = F_1$. Suppose that $2 \leq k \leq s-1$ and $F_j \leq r_{s-1-j}$ holds for $0 \leq j \leq k-1$. Then r_{s-1-k} $r_{s-1-(k-1)}q_{s-k+1} + r_{s-1-(k-2)} \geq r_{s-1-(k-1)} + r_{s-1-(k-2)} \geq F_{k-1} + F_{k-2}$, so by induction on *k*, $r_{s-1-k} \geq F_k$. Let $k = s-1$. Then $F_{s-1} \leq r_0 = b$ and the desired inequality follows by taking logs and applying the formula for *F^s−*¹.

2. Solve where possible. (i) $91x \equiv 84 \pmod{143}$. (ii) $91x \equiv 84 \pmod{147}$

(i) 13*|*(143*,* 91, but 13 ∤ 84, so insoluble. (ii) (91*,* 147) = 7*|*84, so 7 solutions, *x ≡* 9*,* 30*,* 51*,* 72*,* 93*,* 114*,* 135 (mod 147).

3. Prove that $7n^3 - 1$ can never be a perfect square.

A perfect square always leaves one of the remainders 0*,* 1*,* 2*,* 4 on division by 7, never the remainder $6 \equiv -1$.

4. Suppose that $m_1, m_2 \in \mathbb{N}$, $(m_1, m_2) = 1$, $a, b \in \mathbb{Z}$. Prove that $a \equiv b \pmod{m_1}$ and $a \equiv b \pmod{m_2}$ if and only if $a \equiv b \pmod{m_1 m_2}$.

If $a \equiv b \pmod{m_1 m_2}$, then $m_1 m_2 | b - a$, so each of m_j divides $b - a$. If $a \equiv b$ (mod m_1) and $a \equiv b \pmod{m_2}$, so that $m_1|b-a$ and $m_2|b-a$, then since m_1 and *m*₂ have no prime factors in common we have $m_1m_2|b-a$.

5. Solve the simultaneous congruences $x \equiv 3 \pmod{6}$, $x \equiv 5 \pmod{35}$, $x \equiv 7$ $(mod 143), x \equiv 11 \pmod{323}.$

The general solution is given by $x \equiv 3m_1n_1+5m_2n_2+7m_3n_3+11m_4n_4 \pmod{m}$ where $m = 6.35.143.323 = 9699690$, $m_1 = m/6 = 1616615 \equiv 5 \pmod{6}$, $m_2 =$ $m/35 = 277134 \equiv 4 \pmod{35}$, $m_3 = m/143 = 67830 \equiv 48 \pmod{143}$, $m_4 =$ $m/323 = 30030 \equiv 314 \pmod{323}, m_1n_1 \equiv 1 \pmod{6}, m_2n_2 \equiv 1 \pmod{35}$ $m_3 n_3 \equiv 1 \pmod{143}$, $m_4 n_4 \equiv 1 \pmod{323}$. Thus $n_1 = 5$, $n_2 = 9$, $n_3 = 3$, $n_4 =$ 287 and *x ≡* 3*.*1616615*.*5 + 5*.*277134*.*9 + 7*.*67830*.*3 + 11*.*30030*.*287 = 132949395 *≡* 6853425 (mod 9699690).