Math 467 Factorization and Primality Testing Fall Term 2024, Solutions 3

```
1. Write a program to find x and y such that mx+ny = \gcd(m; n) where (i)
m = 8148657527, n = 8148653735, (ii) m = 8418785375, n = 7849911069,
(iii) m = 4029583209458450398503, n = 3449459408504500003009, (iv) m =304250263527210, n = 230958203482321.
\gcd(x(a,b)={
local(r,rr,u,v,uu,vv);r=a;
rr=b;
u=1;
v=0;
uu=0;vv=1;
while(rr,
  qqq=floor(r/rr);
  rrr=r-qqq*rr;
 uuu=u-qqq*uu;
  vvv=v-qqq*vv;
  u=uu;
  v=vv;
 uu=uuu;
  vv=vvv;
  r=rr;
  rr=rrr;
  );
print("gcd(",a,",",b,") = ",r," = ",u,".",a," + ",v,".",b);
r=0;
if(r,break);
}
aa=8148657527;
bb=8148653735;
cc=8418785375;
dd=7849911069;
ee=4029583209458450398503;
ff=3449459408504500003009;
gg=304250263527210;
```
 $gcd(8148657527, 8148653735) = 1 = (-1802932617)8148657527 + 1802933456 \times 8148653735$ $gcd(8418785375, 7849911069) = 1001 = 2823598 \times 8418785375 + (-3028221)7849911069$ $\gcd(4029583209458450398503, 3449459408504500003009) = 1$

230412343872401941219 × 4029583209458450398503 + (−269162672223683393684)3449459408504500003009 $gcd(304250263527210, 230958203482321) = 203$

 $= (-208202073629)304250263527210 + 274272724733 \times 230958203482321$

2. Show that if $gcd(a, b) = 1$, then $gcd(a - b, a + b) = 1$ or 2. Exactly when is the value 2?

Let $d = \gcd(a-b, a+b)$. Then $d|a-b$ and $d|a+b$. Hence $d|(a+b)+(a-b)$ 2a and $d|(a = b) - (a - b) = 2b$. Thus $d|gcd(2a, 2b) = 2gcd(a, b) = 2$. The case $d = 2$ occurs if and only if $2|a + b$ and $2|a - b$, i.e. a and b are of the same parity, but since $gcd(a, b) = 1$ they both have to be odd.

3. The Fibonacci sequence (1202) is defined iteratively by $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ $(n = 2, 3, \ldots)$. Show that if $m, n \in \mathbb{N}$ satisfy $m|F_n$ and $m|F_{n+1}$, then $m = 1$.

Proof by induction on n. Base case $n = 1$. Since $m|F_1 = 1$ we have $m = 1$. Now suppose result holds for every m with $m|F_{n-1}$ and $m|F_n$. Thus, when $m|F_{n+1}$ and $m|F_n$ we have $m|(F_{n+1}-F_n)=F_{n-1}$, so by the inductive hypothesis $m = 1$.

4. The squarefree numbers are the natural numbers which have no repeated prime factors, e.g 6, 105. Note that 1 is the only natural number which is both squarefree and a perfect square. Prove that every $n \in \mathbb{N}$ with $n > 1$ can be written uniquely as the product of a perfect square and a squarefree number.

By uniqueness of factorization $n = p_1^{k_1} \dots p_s^{k_s}$ where the primes p_j are distinct and the exponents k_j are positive. Write $k_j = 2l_j + m_j$ where m_j is 0 when k_j is even and 1 when k_j is odd, and l_j is non-negative. Let $x = p_1^{l_1} \dots p_s^{l_s}$ and $y = p_1^{m_1} \dots p_s \cdot m_s$. Then $n = x^2y$ and y is squarefree.

5. Let $a \in \mathbb{N}$ and $b \in \mathbb{Z}$. Prove that the equations $gcd(x, y) = a$ and $xy = b$ can be solved simultaneously in integers x and y if and only if $a^2|b$.

First suppose there are such x and y. Since $gcd(x, y) = a$ we have $a|x$ and $a|y$, so that $a^2|xy = b$. Conversely suppose that $a^2|b$. Let $x = a$ and $y = b/a$. Then $xy = b$ and $a^2|b = ay$ so that $a|y$. Hence $gcd(x, y) = a gcd(1, y/a) = a$.