MATH 467 FACTORIZATION AND PRIMALITY TESTING, FALL 2024, SOLUTIONS 2

1. Let $a, b, c \in \mathbb{Z}$. Prove each of the following.

(i) $a|a$. (ii) If $a|b$ and $b|a$, then $a = \pm b$. (iii) If $a|b$ and $b|c$, then $a|c$. (iv) If $ac|bc$ and $c \neq 0$, then $a|b$. (v) If $a|b$, then $ac|bc$. (vi) If $a|b$ and $a|c$, then $a|bx+cy$ for all $x, y \in \mathbb{Z}$.

(i) $1.a = a$. (ii) We have $b = am$, $a = bn$ for some m, n . If $b = 0$, then $a = 0$ and we are done. Thus it can be supposed that $b \neq 0$. By substitution, $b = am = bmm$ and cancelling *b* gives $1 = mn$. The only divisors of 1 are ± 1 . Hence either $a = b$ or $a = -b$. (iii) We have $b = am, c = bn$. By substitution, $c = bn = a(mn)$. (iv) We have $bc = acm$. Since $c \neq 0$ it can be cancelled. (v) We have $a = bm$. Hence $ac = bcm$. (vi) We have $b = am$, $c = an$. Therefore $bx + cy = amx + any = a(mx + ny)$.

2. Prove that if *n* is odd, then $8/n^2 - 1$.

Since *n* is odd, it is of the form $2k-1$. Hence $n^2-1 = (2k-1)^2-1 = 4k^2-4k = 4k(k-1)$. If *k* is even, then $8|4k$. If *k* is odd, then $k-1$ is even, so $8|4(k-1)$.

3. (i) Show that if *m* and *n* are integers of the form $4k + 1$, then so is *mn*. (ii) Show that if *m, n ∈* N, and *mn* is of the form 4*k −* 1, then so is one of *m* and *n*. (iii) Show that every number of the form $4k - 1$ has a prime factor of this form. (iv) Show that there are infinitely many primes of the form 4*k −* 1.

(i) We have $(4k+1)(4l+1) = 16kl+4k+4l+1 = 4(4kl+k+l) + 1.$ (ii) m, n must be odd so are of the form $4k \pm 1$. If both are of the form $4k + 1$, then by (i) their product cannot be of the form 4*k−*1. (iii) All the prime factors of 4*k−*1 are odd, and so of the form $4k \pm 1$. If they were all of the form $4k + 1$, then by repeated use of (i), as in (ii), it would follow that their product is of wrong form. Hence at least one of them must be of the form 4*k −* 1. (iv) Suppose that there are only a finite number of primes of the form 4*k −* 1, say p_1, p_2, \ldots, p_r . Let $n = 4p_1 \ldots p_r - 1$. Obviously $n > 1$ and so by (iii) will have at least one prime factor *p* of the form $4k - 1$. But then $p|p_1 \dots p_r$. Hence $p|4p_1 \dots p_r - n = 1$ which is impossible.

4. Find all solutions $x, y \in \mathbb{Z}$ to the equation $x^2 - y^2 = 105$.

There are sixteen solutions given by the ordered pairs (x, y) ; $(\pm 53, \pm 52)$, $(\pm 19, \pm 16)$, $(\pm 13, \pm 8), (\pm 11, \pm 4)$. One systematic way to see this is to write $d = x - y$, $s = x + y$, so that $ds = x^2 - y^2 = 105$. Solving for *x* and *y* gives $x = \frac{1}{2}$ $\frac{1}{2}(s+d), y = \frac{1}{2}$ $\frac{1}{2}(s-d)$, and since *s* and *d* are both odd this gives a bijection between the solution set and the integer divisors of 105. Moreover interchanging *s* and *d* keeps *x* fixed and replaces *y* by *−y*, and replacing *s* and *d* by *−s* and *−d* changes the sign of both *x* and *y*. Thus it suffices to check the cases with $s > d > 0$, i.e (s, d) one of the four ordered pairs $(105, 1), (35, 3), (21, 5), (15, 7)$.

5. Show that if $ad - bc = \pm 1$, then $(a + b, c + d) = 1$. We have $(a + b, c + d)|(a + b)d - (c + d)b = ad - bc = \pm 1.$