MATH 467, Legendre, Jacobi symbol (LJ), Quadratic Congruences (QC)

Algorithm LJ. Given an integer *m* and a positive integer *n*, compute $\left(\frac{m}{n}\right)_J$.

- 1. Reduction loops.
	- 1.1. Compute $m \equiv m \pmod{n}$, so that the new *m* satisfies $0 \leq m < n$. Put $t = 1$.
	- 1.2. While $m \neq 0$ {
	- 1.2.1. While *m* is even {put $m = m/2$ and, if $n \equiv 3$ or 5 (mod 8), then put $t = -t$.}
	- 1.2.2. Interchange *m* and *n*.
	- 1.2.3. If $m \equiv n \equiv 3 \pmod{4}$, then put $t = -t$.
	- 1.2.4. Compute $m \equiv m \pmod{n}$, so that the new *m* satisfies $0 \le m \le n$. *}*
- 2. Output.
	- 2.1. If $n = 1$, then return t .
	- 2.2. Else return 0.

The following are often attributed to Shanks (1973) & Tonelli (1891) , but in principle go back to Euler, Legendre & Gauss.

Algorithm QC357/8. Given a prime $p \equiv 3, 5, 7 \pmod{8}$ and an *a* with $\left(\frac{a}{p}\right)$ *p* \setminus $L = 1$, compute a solution to $x^2 \equiv a \pmod{p}$.

- 1. If $p \equiv 3$ or 7 (mod 8), then compute $x \equiv a^{(p+1)/4} \pmod{p}$. Return *x*.
- 2. If $p \equiv 5 \pmod{8}$, then compute $x \equiv a^{(p+3)/8} \pmod{p}$. Compute $x^2 \pmod{p}$. 2.1. If $x^2 \equiv a \pmod{p}$, then return *x*. 2.2. If $x^2 \not\equiv a \pmod{p}$, then compute $x \equiv x^{2(p-1)/4} \pmod{p}$. Return *x*.

Algorithm QC1/8. Given a prime $p \equiv 1 \pmod{8}$ and an *a* with $\left(\frac{a}{p}\right)$ *p* \setminus $_L = 1$, compute a solution to $x^2 \equiv a \pmod{p}$. This algorithm will work for any odd prime, but the previous algorithm is faster for $p \not\equiv 1 \pmod{8}$.

1. Compute a random integer *b* with $\left(\frac{b}{n}\right)$ *p* \setminus *L* = −1. In practice checking successively the primes $b = 2, 3, 5, \ldots$, or even crudely just the integers $b = 2, 3, 4, \ldots$, will find such a *b* quickly.

2. Factor out the powers of 2 in $p-1$, so that $p-1=2^s u$ with *u* odd. Compute $d \equiv a^u$ (mod *p*). Compute $f \equiv b^u \pmod{p}$.

3. Compute an *m* so that $df^{m} \equiv 1 \pmod{p}$ as follows.

3.1. Initialise $m = 0$.

3.2. For each $i = 0, 1, ..., s - 1$ compute $g \equiv (df^{m})^{2^{s-1-i}} \pmod{p}$. If $g \equiv -1 \pmod{p}$, then put $m = m + 2^i$.

3.3. Return *m*. This will satisfy $df^m \equiv 1 \pmod{p}$, and *m* will be even. (The mathematical proof of this is non–trivial.)

4. Compute $x \equiv a^{(u+1)/2} f^{m/2} \pmod{p}$. Return *x*.