MATH 467 FACTORIZATION AND PRIMALITY TESTING, FALL 2024, PROBLEMS 10

Return by Monday 4th November

Submit any code you write to answer these questions.

1. The Martian year is approximately 668 Martian days. Compute the probability $\rho(s)$ for a class of s Martian students when $21 \le s \le 50$. For which size class of Martians is one more likely than not to have two Martians with the same birthday?

For a Mercurian the solar day appears to be longer than the solar year, so sadly on Mercury the human concept of birthday does not make sense.

2. Write a programme to implement Pollard's " ρ " and use it to factorise

(i) 3215031751,

(ii) 9912409831,

(iii) 341550071728321,

(iv) 3825123056546413051,

(v) 1296001987165015643369032371289.

3. Write a programme to implement Pollard's "p - 1" and use it to factorise

(i) 1231331,

(ii) 950161333249.