MATH 467 FACTORIZATION AND PRIMALITY TESTING, FALL 2024, PROBLEMS 8

Return by Monday 21st October

1. Evaluate the following Legendre symbols.

(i)
$$\left(\frac{2}{127}\right)_L$$
, (ii) $\left(\frac{-1}{127}\right)_L$, (iii) $\left(\frac{5}{127}\right)_L$, (iv) $\left(\frac{11}{127}\right)_L$.

2. (i) Prove that 3 is a QR modulo p when $p \equiv \pm 1 \pmod{12}$ and is a QNR when $p \equiv \pm 5 \pmod{12}$.

(ii) Prove that -3 is a QR modulo p for primes p with $p \equiv 1 \pmod{6}$ and is a QNR for primes $p \equiv -1 \pmod{6}$.

(iii) By considering $4x^2 + 3$ show that there are infinitely many primes in the residue class 1 (mod 6).

3. (i) Prove that if p is an odd prime $a, b \in \mathbb{Z}$ and (a, p) = 1, then

$$\sum_{n=1}^{p} \left(\frac{an+b}{p}\right)_{L} = 0.$$

(ii) Prove that if p is an odd prime, then $\sum_{r=1}^{p-1} \left(\frac{r(r+1)}{p} \right)_L = \sum_{s=1}^{p-1} \left(\frac{1+s}{p} \right)_L = -1.$ Hint: Observe that for every reduced residue class r modulo p there is a unique

reduced residue class r modulo p there is a unique reduced residue class s_r modulo p such that $rs_r \equiv 1 \pmod{p}$, and that for every reduced residue class s modulo p one has $s_r \equiv s \pmod{p}$ for some r.

(iii) Prove that if p is an odd prime, then the number of residues r modulo p for which both r and r+1 are quadratic residues is $\frac{p-(-1)^{\frac{p-1}{2}}}{4}-1$. Note that with our definitions 0 is neither a quadratic residue nor a quadratic non-residue.

4. Prove that if n is odd and p|n, then

$$\sum_{\substack{m=1\\(m,n)=1}}^{n} \left(\frac{m}{p}\right)_{L} = 0$$

5. Write computer programs to implement LJ and QC, and use them to evaluate the Legendre symbols

$$\left(\frac{a}{p}\right)_L$$

when a = 40000000003 and a = 40000000031, and p = 100000000019 and p = 100000000057, and when it is 1 to solve $x^2 \equiv a \pmod{p}$.