Mid-term Exam 2 will be on Wednesday 30th October. 9:05-9:55, 012 Walker.

1. Suppose that p, q and r are distinct primes. Prove that

$$p^{(q-1)(r-1)} + q^{(r-1)(p-1)} + r^{(p-1)(q-1)} \equiv 2 \pmod{pqr}.$$

By the Fermat-Euler theorem we have $q^{(r-1)(p-1)} = (q^{p-1})^{r-1} \equiv 1 \pmod{p}$ and likewise $r^{(p-1)(q-1)} \equiv 1 \pmod{p}$. Hence $p^{(q-1)(r-1)} + q^{(r-1)(p-1)} + r^{(p-1)(q-1)} \equiv 2 \pmod{p}$, and so also \pmod{q} and \pmod{r} .

2. Solve the simultaneous congruences $x \equiv 4 \pmod{19}, x \equiv 5 \pmod{31}$. Solve $31a \equiv 1 \pmod{19}$ and $19b \equiv 1 \pmod{31}$. By Euclid's algorithm, 1 = 8.31 - 13.19, Thus a = 8, $b \equiv -13 \equiv 18 \pmod{31}$. 19.31 = 589. Hence $x \equiv 4.8.31 + 5.18.19 \equiv 346 \pmod{589}$

3. (Show that 2 is a primitive root modulo 11 and draw up a table of discrete logarithms to this base modulo 11. Hence, or otherwise, find all solutions to the following congruences, (i) $x^6 \equiv 7 \pmod{11}$, (ii) $x^{48} \equiv 9 \pmod{11}$, (iii) $x^7 \equiv 8 \pmod{11}$. 2 $3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$ 1 y 2^y 8 510 9 7 3 24 6 1

(i) This is equivalent to $6y \equiv 7 \pmod{10}$. Since $(6, 10) = 2 \nmid 7$ there is no solution. (ii) $48y \equiv 6 \pmod{10}$, $24y \equiv 3 \pmod{5}$, $1 \leq y \leq 10$, $y \equiv 2 \pmod{5}$, $y \equiv 2$ or 7 (mod 10), $x \equiv 4$ or 7 (mod 11) (iii) $7y \equiv 3 \pmod{10}$, $y \equiv 9 \pmod{10}$, $x \equiv 6 \pmod{11}$.

4. Evaluate the following Legendre symbols, showing your working (i) $\left(\frac{-1}{103}\right)_L$,

We have $\left(\frac{-1}{103}\right)_L = (-1)^{(102)/2} = -1$ by Euler's criterion.

(ii) $\left(\frac{2}{103}\right)_L$.

 $103 \equiv 7 \pmod{8}$, so $(103^2 - 1)/8$ is even and $\left(\frac{2}{103}\right)_L = 1$.

(iii) $\left(\frac{7}{103}\right)_L$.

By the law of quadratic reciprocity $\left(\frac{7}{103}\right)_L = -\left(\frac{103}{7}\right)_L = -\left(\frac{5}{7}\right)_L = -\left(\frac{7}{5}\right)_L = -\left(\frac{2}{5}\right)_L = +1.$