Math 467 Factorizaton and Primality Testing, Fall Term 2024 Practice Exam 1 Model Solutions.

Note: Exam 1 will be 9:05-9:55, Wednesday 25th September 2024 Room 012 Walker

1. Show that n|(n-1)! for all composite n > 4.

We have n = lm with $1 < l \le m < n$. When $l \ne m$, both l and m occur in the product (n-1)! and so n = lm|(n-1)!. When l = m, since n > 4 we have $l \ge 3$ and $l < 2l < l^2 = n$ so both l and 2l occur in the product (n-1)!.

2. (25 marks) Prove that if $m \in \mathbb{N}$ and $n \in \mathbb{N}$, then there are integers a, b such that gcd(a, b) = m and [a, b] = n if and only if m|n.

If m|n, then let a = m and b = n. Then m|b, so that (a,b) = m and [a,b] = ab/(a,b) = mn/m = n. On the other hand if there are a, b with (a,b) = m and [a,b] = n, then m|a and m|b so that n = [a,b] = ab/(a,b) = (a/m)(b/m)m, whence m|n.

3. (25 marks) Factorise 4087.

$$4087 = 4096 - 9 = 2^{12} - 3^2 = (2^6 - 3)(2^6 + 3) = 61 \times 67.$$

4. (25 marks) Find x and y such that $922x + 2163y = \gcd(922, 2163)$.

j	q_j	r_{j}	x_j	y_j
-1		2163	0	1
0	2	922	1	0
1	2	319	-2	1
2	1	284	5	-2
3	8	35	-7	3
4	8	4	61	-26
5	1	3	-495	211
6		1	556	-237
$556 \times 022 + (-227) \times 2162$				

 $gcd(922, 2163) = 1 = 556 \times 922 + (-237) \times 2163$