> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence

Factorization and Primality Testing Chapter 5 Quadratic Residues

Robert C. Vaughan

October 11, 2023

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sac

and Primality Testing Chapter 5 Quadratic Residues

Eactorization

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Our long term aim is to facotorize *n* by finding *t*, *x*, *y* so that $4tn = x^2 - y^2$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Factorization and Primality Testing Chapter 5 Quadratic Residues

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Our long term aim is to facotorize *n* by finding *t*, *x*, *y* so that $4tn = x^2 y^2$.
- An essential ingredient will be a good understanding of quadratic congruences, and especially

$$x^2 \equiv c \pmod{m}$$
.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Factorization and Primality Testing Chapter 5 Quadratic Residues

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Our long term aim is to facotorize *n* by finding *t*, *x*, *y* so that $4tn = x^2 y^2$.
- An essential ingredient will be a good understanding of quadratic congruences, and especially

$$x^2 \equiv c \pmod{m}.$$

• The structure here is especially rich and was thus subject to much work in the eighteenth century, culminating in a famous theorem of Gauss.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Factorization and Primality Testing Chapter 5 Quadratic Residues

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Our long term aim is to facotorize *n* by finding *t*, *x*, *y* so that $4tn = x^2 y^2$.
- An essential ingredient will be a good understanding of quadratic congruences, and especially

$$x^2 \equiv c \pmod{m}.$$

- The structure here is especially rich and was thus subject to much work in the eighteenth century, culminating in a famous theorem of Gauss.
- From the various theories we have developed we know that the first, or base, case we need to understand is that when the modulus is a prime *p*,

Factorization and Primality Testing Chapter 5 Quadratic Residues

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Our long term aim is to facotorize *n* by finding *t*, *x*, *y* so that $4tn = x^2 y^2$.
- An essential ingredient will be a good understanding of quadratic congruences, and especially

$$x^2 \equiv c \pmod{m}$$
.

- The structure here is especially rich and was thus subject to much work in the eighteenth century, culminating in a famous theorem of Gauss.
- From the various theories we have developed we know that the first, or base, case we need to understand is that when the modulus is a prime *p*,
- and since the case p = 2 is rather easy we can suppose that p > 2.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Then we are interested in

$$x^2 \equiv c \pmod{p}.$$
 (1.1)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Then we are interested in

$$x^2 \equiv c \pmod{p}.$$
 (1.1)

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sac

• By the way, the apparently more general congruence

$$ax^2 + bx + c \equiv 0 \pmod{p}$$

(with $p \nmid a$ of course) can be reduced by "completion of the square" via

$$4a(ax^2+bx+c)\equiv 0 \pmod{p}$$

to

$$(2ax+b)^2\equiv b^2-4ac \pmod{p}$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Then we are interested in

$$x^2 \equiv c \pmod{p}.$$
 (1.1)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• By the way, the apparently more general congruence

$$ax^2 + bx + c \equiv 0 \pmod{p}$$

(with $p \nmid a$ of course) can be reduced by "completion of the square" via

$$4a(ax^2 + bx + c) \equiv 0 \pmod{p}$$

to

$$(2ax+b)^2 \equiv b^2 - 4ac \pmod{p}$$

 and since 2ax + b ranges over a complete set of residues as x does this is equivalent to solving

$$x^2 \equiv b^2 - 4ac \pmod{p},$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Then we are interested in

$$x^2 \equiv c \pmod{p}.$$
 (1.1)

• By the way, the apparently more general congruence

$$ax^2 + bx + c \equiv 0 \pmod{p}$$

(with $p \nmid a$ of course) can be reduced by "completion of the square" via

$$4a(ax^2 + bx + c) \equiv 0 \pmod{p}$$

to

$$(2ax+b)^2 \equiv b^2 - 4ac \pmod{p}$$

 and since 2ax + b ranges over a complete set of residues as x does this is equivalent to solving

$$x^2 \equiv b^2 - 4ac \pmod{p},$$

• Thus it suffices to know about the solubility of the congruence (1.1).

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

• We know that (1.1)

$$x^2 \equiv c \pmod{p}$$
.

ヘロト 人間 ト 人造 ト 人造 ト

has at most two solutions,

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence

• We know that (1.1)

$$x^2 \equiv c \pmod{p}$$
.

has at most two solutions,

• and that sometimes it is soluble and sometimes not.

Example 1

 $x^2 \equiv 6 \mod 7$ has no solution (check $x \equiv 0, 1, 2, 3 \pmod{7}$), but

$$x^2 \equiv 5 \pmod{11}$$

has the solutions

$$x \equiv 4,7 \pmod{11}$$
.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We know that (1.1)

$$x^2 \equiv c \pmod{p}$$
.

has at most two solutions,

• and that sometimes it is soluble and sometimes not.

Example 1

 $x^2 \equiv 6 \mod 7$ has no solution (check $x \equiv 0, 1, 2, 3 \pmod{7}$), but

$$x^2 \equiv 5 \pmod{11}$$

has the solutions

$$x \equiv 4,7 \pmod{11}$$
.

If c ≡ 0 (mod p), then the only solution to (1.1) is x ≡ 0 (mod p) (note that p|x² implies that p|x).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We know that (1.1)

$$x^2 \equiv c \pmod{p}$$
.

has at most two solutions,

• and that sometimes it is soluble and sometimes not.

Example 1

 $x^2 \equiv 6 \mod 7$ has no solution (check $x \equiv 0, 1, 2, 3 \pmod{7}$), but

$$x^2 \equiv 5 \pmod{11}$$

has the solutions

$$x \equiv 4,7 \pmod{11}$$
.

- If c ≡ 0 (mod p), then the only solution to (1.1) is x ≡ 0 (mod p) (note that p|x² implies that p|x).
- If $c \not\equiv 0 \pmod{p}$ and the congruence has one solution, say $x \equiv x_0 \pmod{p}$, then $x \equiv p x_0 \pmod{p}$ gives another.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • The fundamental question here is can we characterise or classify those *c* for which the congruence (1.1)

$$x^2 \equiv c \pmod{p}$$
.

・ロット (雪) (キョット (日)) ヨー

500

is soluble?

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • The fundamental question here is can we characterise or classify those *c* for which the congruence (1.1)

$$x^2 \equiv c \pmod{p}$$
.

is soluble?

• Better still can we quickly determine, given *c*, whether it is soluble?

・ロト ・ 同ト ・ ヨト ・ ヨト

= nac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • The fundamental question here is can we characterise or classify those *c* for which the congruence (1.1)

$$x^2 \equiv c \pmod{p}$$
.

is soluble?

- Better still can we quickly determine, given *c*, whether it is soluble?
- There is then the even more difficult question of finding a solution.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence

• Important

Definition 2

If $c \not\equiv 0 \pmod{p}$, and (1.1) has a solution, then we call c a *quadratic residue* which we abbreviate to QR. If it does not have a solution, then we call c a *quadratic non-residue* or QNR.

イロト 不得 トイヨト イヨト ニヨー

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

• Important

Definition 2

If $c \neq 0 \pmod{p}$, and (1.1) has a solution, then we call c a *quadratic residue* which we abbreviate to QR. If it does not have a solution, then we call c a *quadratic non-residue* or QNR.

• Some authors also call 0 a quadratic residue. Others leave it undefined.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

Important

Definition 2

If $c \neq 0 \pmod{p}$, and (1.1) has a solution, then we call c a *quadratic residue* which we abbreviate to QR. If it does not have a solution, then we call c a *quadratic non-residue* or QNR.

• Some authors also call 0 a quadratic residue. Others leave it undefined.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• We will follow the latter course. Zero does behave differently.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Now we prove the following simple but useful theorem.

Theorem 3

Let p be an odd prime. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

イロト 不得 トイヨト イヨト ニヨー

Sar

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Now we prove the following simple but useful theorem.

Theorem 3

Let p be an odd prime. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

• **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Now we prove the following simple but useful theorem.

Theorem 3

Let p be an odd prime. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$.
- If $p|y^2 x^2 = (y x)(y + x)$, then p|y x or p|y + x.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Now we prove the following simple but useful theorem.

Theorem 3

Let p be an odd prime. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$.
- If $p|y^2 x^2 = (y x)(y + x)$, then p|y x or p|y + x.
- But 0 < y − x < y + x < 2y ≤ p − 1 < p so the numbers in the list above are distinct modulo p.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Now we prove the following simple but useful theorem.

Theorem 3

Let p be an odd prime. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$.
- If $p|y^2 x^2 = (y x)(y + x)$, then p|y x or p|y + x.
- But 0 < y − x < y + x < 2y ≤ p − 1 < p so the numbers in the list above are distinct modulo p.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Suppose that c is a QR modulo p. Then there is an x with 1 ≤ x ≤ p − 1 such that x² ≡ c (mod p).

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Now we prove the following simple but useful theorem.

Theorem 3

Let p be an odd prime. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$.
- If $p|y^2 x^2 = (y x)(y + x)$, then p|y x or p|y + x.
- But 0 < y − x < y + x < 2y ≤ p − 1 < p so the numbers in the list above are distinct modulo p.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- Suppose that c is a QR modulo p. Then there is an x with 1 ≤ x ≤ p − 1 such that x² ≡ c (mod p).
- If $x \leq \frac{1}{2}(p-1)$, then x^2 is in our list and represents c.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Now we prove the following simple but useful theorem.

Theorem 3

Let p be an odd prime. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$.
- If $p|y^2 x^2 = (y x)(y + x)$, then p|y x or p|y + x.
- But 0 < y − x < y + x < 2y ≤ p − 1 < p so the numbers in the list above are distinct modulo p.
- Suppose that c is a QR modulo p. Then there is an x with 1 ≤ x ≤ p − 1 such that x² ≡ c (mod p).
- If $x \leq \frac{1}{2}(p-1)$, then x^2 is in our list and represents c.
- If $\frac{1}{2}(p-1) < x \le p-1$, then $(p-x)^2 \equiv x^2 \equiv c \pmod{p}$, $(p-x)^2$ represents c, and is in our list.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Now we prove the following simple but useful theorem.

Theorem 3

Let p be an odd prime. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$.
- If $p|y^2 x^2 = (y x)(y + x)$, then p|y x or p|y + x.
- But 0 < y − x < y + x < 2y ≤ p − 1 < p so the numbers in the list above are distinct modulo p.
- Suppose that c is a QR modulo p. Then there is an x with 1 ≤ x ≤ p − 1 such that x² ≡ c (mod p).
- If $x \leq \frac{1}{2}(p-1)$, then x^2 is in our list and represents c.
- If $\frac{1}{2}(p-1) < x \le p-1$, then $(p-x)^2 \equiv x^2 \equiv c \pmod{p}$, $(p-x)^2$ represents c, and is in our list.
- So each QR is listed and there are exactly $\frac{1}{2}(p-1)$ QR.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Now we prove the following simple but useful theorem.

Theorem 3

Let p be an odd prime. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$.
- If $p|y^2 x^2 = (y x)(y + x)$, then p|y x or p|y + x.
- But 0 < y − x < y + x < 2y ≤ p − 1 < p so the numbers in the list above are distinct modulo p.
- Suppose that c is a QR modulo p. Then there is an x with $1 \le x \le p-1$ such that $x^2 \equiv c \pmod{p}$.
- If $x \leq \frac{1}{2}(p-1)$, then x^2 is in our list and represents c.
- If $\frac{1}{2}(p-1) < x \le p-1$, then $(p-x)^2 \equiv x^2 \equiv c \pmod{p}$, $(p-x)^2$ represents c, and is in our list.
- So each QR is listed and there are exactly $\frac{1}{2}(p-1)$ QR.
- The remaining $\frac{1}{2}(p-1)$ non-zero residues have to be QNR.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can use this in various ways.

Example 4

Find a complete set of quadratic residues r modulo 19 with $1 \le r \le 18$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can use this in various ways.

Example 4

Find a complete set of quadratic residues r modulo 19 with $1 \le r \le 18$.

• We can solve this by first observing that

$$1^2 = 1, 2^2 = 4, 3^2 = 9, 4^2 = 16, 5^2 = 25, \\ 6^2 = 36, 7^2 = 49, 8^2 = 64, 9^2 = 81$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

is a complete set of quadratic residues modulo 19

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can use this in various ways.

Example 4

Find a complete set of quadratic residues r modulo 19 with $1 \le r \le 18$.

• We can solve this by first observing that

$$1^2 = 1, 2^2 = 4, 3^2 = 9, 4^2 = 16, 5^2 = 25, \\ 6^2 = 36, 7^2 = 49, 8^2 = 64, 9^2 = 81$$

is a complete set of quadratic residues modulo 19and then reduce them modulo 19 to give

$$1, 4, 9, 16, 6, 17, 11, 7, 5\\$$

• which we can rearrange as

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • We require the following definition.

Definition 5

Given a prime p > 2 and $c \in \mathbb{Z}$ we define the Legendre symbol

$$\left(\frac{c}{p}\right)_{L} = \begin{cases} 0 & c \equiv 0 \pmod{p}, \\ 1 & c \in QR \pmod{p}, \\ -1 & c \in QNR \pmod{p}, \end{cases}$$
(1.2)

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We require the following definition.

Definition 5

Given a prime p>2 and $c\in\mathbb{Z}$ we define the Legendre symbol

$$\left(\frac{c}{p}\right)_{L} = \begin{cases} 0 & c \equiv 0 \pmod{p}, \\ 1 & c \text{ a QR } \pmod{p}, \\ -1 & c \text{ a QNR } \pmod{p}, \end{cases}$$
(1.2)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• The Legendre symbol has lots of interesting properties.

Example 6

The Legendre symbol has the same value on replacing c by c + kp. Thus given p it is periodic in c with period p.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

Cancellation

Example 7

Suppose that p is an odd prime and $a \not\equiv 0 \pmod{p}$. Then

$$\sum_{x=1}^{p} \left(\frac{ax+b}{p}\right)_{L} = 0.$$
(1.3)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The proof of this is rather easy. The expression ax + b runs through a complete set of residues as x does and so one of the terms is 0, half the rest are +1, and the remainder are -1.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

• Counting solutions

Example 8

The number of solutions of the congruence

$$x^2 \equiv c \pmod{p}$$

is

$$1 + \left(\frac{c}{p}\right)_L$$

We already know that the number of solutions is 1 when p|c, 2 when c is a QR, and 0 when c is a QNR and this matches the above exactly.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • We can use this on more complicated congruences.

Example 9

Let N(p; c) be the number of x, y with $x^2 + y^2 \equiv c \pmod{p}$. Rewrite this as $z + w \equiv c \pmod{p}$ and count the number of x, y with $x^2 \equiv z \pmod{p}$ and $y^2 \equiv w \pmod{p}$. This is

$$\left(1+\left(\frac{z}{p}\right)_L\right)\left(1+\left(\frac{w}{p}\right)_L\right).$$

Also $w \equiv c - z \pmod{p}$, thus the total number of solutions is

$$\begin{split} N(p;c) &= \sum_{z=1}^{p} \left(1 + \left(\frac{z}{p} \right)_{L} \right) \left(1 + \left(\frac{c-z}{p} \right)_{L} \right) \\ &= p + \sum_{z=1}^{p} \left(\frac{z}{p} \right)_{L} + \sum_{z=1}^{p} \left(\frac{c-z}{p} \right)_{L} + \sum_{z=1}^{p} \left(\frac{z}{p} \right)_{L} \left(\frac{c-z}{p} \right)_{L}. \end{split}$$

The two sums are 0, so $N(p; c) = p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$. The last sum can be evaluated, but we need to know more.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can combine the definition of the Legendre symbol with a criterion first enunciated by Euler.

Theorem 10 (Euler's Criterion)

Suppose that p is an odd prime number. Then

$$\left(\frac{c}{p}\right)_{L} \equiv c^{\frac{p-1}{2}} \pmod{p}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

and the Legendre symbol, as a function of c, is totally multiplicative.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can combine the definition of the Legendre symbol with a criterion first enunciated by Euler.

Theorem 10 (Euler's Criterion)

Suppose that p is an odd prime number. Then

$$\left(\frac{c}{p}\right)_{L} \equiv c^{\frac{p-1}{2}} \pmod{p}$$

and the Legendre symbol, as a function of c, is totally multiplicative.

• Reminder

Remark 1

Recall that by multiplicative we mean a function f which satisfies

$$f(n_1n_2)=f(n_1)f(n_2)$$

whenever $(n_1, n_2) = 1$. Totally multiplicative means that the condition $(n_1, n_2) = 1$ can be dropped.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

Important

Remark 2

The totally multiplicative property means that if x and y are both QR, or both QNR, then their product is a QR, and their product can only be a QNR if one is a QR and the other is a QNR.

イロト 不得 トイヨト イヨト 二日

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Theorem 10. Suppose *p* is an odd number. Then

$$\binom{c}{p}_{L} \equiv c^{\frac{p-1}{2}} \pmod{p}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sac

and the Legendre symbol is totally multiplicative.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • **Theorem 10.** Suppose *p* is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sac

and the Legendre symbol is totally multiplicative.

• If c is a QR, then there is an $x \not\equiv 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • **Theorem 10.** Suppose *p* is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sac

and the Legendre symbol is totally multiplicative.

• If c is a QR, then there is an $x \neq 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.

• Hence
$$c^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 = \left(\frac{c}{p}\right)_L \pmod{p}.$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Theorem 10. Suppose p is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

and the Legendre symbol is totally multiplicative.

- If c is a QR, then there is an $x \not\equiv 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.
- Hence $c^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 = \left(\frac{c}{p}\right)_L \pmod{p}$.
- We know that the congruence c^{p-1}/₂ ≡ 1 (mod p) has at most ^{p-1}/₂ solutions and so we have just shown that it has exactly that many solutions.
- We also have

$$\left(c^{\frac{p-1}{2}}-1\right)\left(c^{\frac{p-1}{2}}+1\right)=c^{p-1}-1$$

・ロット (雪) (キョット (日)) ヨー

Sac

and we know that this has exactly p-1 roots modulo p.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Theorem 10. Suppose p is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

and the Legendre symbol is totally multiplicative.

- If c is a QR, then there is an $x \not\equiv 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.
- Hence $c^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 = \left(\frac{c}{p}\right)_L \pmod{p}$.
- We know that the congruence c^{p-1}/₂ ≡ 1 (mod p) has at most ^{p-1}/₂ solutions and so we have just shown that it has exactly that many solutions.
- We also have

$$\left(c^{\frac{p-1}{2}}-1\right)\left(c^{\frac{p-1}{2}}+1\right)=c^{p-1}-1$$

and we know that this has exactly p-1 roots modulo p.

• In particular every QNR is a solution, but cannot be a root of $c^{\frac{p-1}{2}} - 1$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Theorem 10. Suppose p is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

and the Legendre symbol is totally multiplicative.

- If c is a QR, then there is an $x \not\equiv 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.
- Hence $c^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 = \left(\frac{c}{p}\right)_L \pmod{p}$.
- We know that the congruence c^{p-1}/₂ ≡ 1 (mod p) has at most ^{p-1}/₂ solutions and so we have just shown that it has exactly that many solutions.
- We also have

$$\left(c^{\frac{p-1}{2}}-1\right)\left(c^{\frac{p-1}{2}}+1\right)=c^{p-1}-1$$

and we know that this has exactly p-1 roots modulo p.

• In particular every QNR is a solution, but cannot be a root of $c^{\frac{p-1}{2}} - 1$.

• Hence if c is a QNR, then $c^{\frac{p-1}{2}} \equiv -1 = \left(\frac{c}{p}\right)_{l} \pmod{p}$.

・ロット (雪) (キョット (日)) ヨー

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Theorem 10. Suppose p is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

and the Legendre symbol is totally multiplicative.

- If c is a QR, then there is an $x \not\equiv 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.
- Hence $c^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 = \left(\frac{c}{p}\right)_L \pmod{p}$.
- We know that the congruence c^{p-1}/₂ ≡ 1 (mod p) has at most ^{p-1}/₂ solutions and so we have just shown that it has exactly that many solutions.
- We also have

$$\left(c^{\frac{p-1}{2}}-1\right)\left(c^{\frac{p-1}{2}}+1\right)=c^{p-1}-1$$

and we know that this has exactly p-1 roots modulo p.

- In particular every QNR is a solution, but cannot be a root of c^{p-1/2} - 1.
- Hence if c is a QNR, then $c^{\frac{p-1}{2}} \equiv -1 = \left(\frac{c}{p}\right)$, (mod p).

ъ

This proves the first part of the theorem,

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • To prove the second part, we have to show that for any integers c_1 , c_2 we have

$$\left(\frac{c_1c_2}{p}\right)_L = \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • To prove the second part, we have to show that for any integers c_1 , c_2 we have

$$\left(\frac{c_1c_2}{p}\right)_L = \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

• If $c_1 \equiv 0 \pmod{p}$ or $c_2 \equiv 0 \pmod{p}$, then both sides are 0, so we can suppose that $c_1c_2 \not\equiv 0 \pmod{p}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sar

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • To prove the second part, we have to show that for any integers c_1 , c_2 we have

$$\left(\frac{c_1c_2}{p}\right)_L = \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

• If $c_1 \equiv 0 \pmod{p}$ or $c_2 \equiv 0 \pmod{p}$, then both sides are 0, so we can suppose that $c_1c_2 \not\equiv 0 \pmod{p}$.

• Now

$$\begin{pmatrix} \frac{c_1 c_2}{p} \end{pmatrix}_L \equiv (c_1 c_2)^{\frac{p-1}{2}} \\ \equiv c_1^{\frac{p-1}{2}} c_2^{\frac{p-1}{2}} \\ \equiv \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L \pmod{p}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

-

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • To prove the second part, we have to show that for any integers c_1 , c_2 we have

$$\left(\frac{c_1c_2}{p}\right)_L = \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

• If $c_1 \equiv 0 \pmod{p}$ or $c_2 \equiv 0 \pmod{p}$, then both sides are 0, so we can suppose that $c_1c_2 \not\equiv 0 \pmod{p}$.

• Now

$$\begin{pmatrix} \frac{c_1 c_2}{p} \end{pmatrix}_L \equiv (c_1 c_2)^{\frac{p-1}{2}} \equiv c_1^{\frac{p-1}{2}} c_2^{\frac{p-1}{2}} \equiv \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L \pmod{p}.$$

• Thus p divides

$$\left(\frac{c_1c_2}{p}\right)_L - \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • To prove the second part, we have to show that for any integers c_1 , c_2 we have

$$\left(\frac{c_1c_2}{p}\right)_L = \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

• If $c_1 \equiv 0 \pmod{p}$ or $c_2 \equiv 0 \pmod{p}$, then both sides are 0, so we can suppose that $c_1c_2 \not\equiv 0 \pmod{p}$.

• Now

$$\begin{pmatrix} \frac{c_1 c_2}{p} \end{pmatrix}_L \equiv (c_1 c_2)^{\frac{p-1}{2}} \equiv c_1^{\frac{p-1}{2}} c_2^{\frac{p-1}{2}} \equiv \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L \pmod{p}.$$

• Thus p divides

$$\left(\frac{c_1c_2}{p}\right)_L - \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

• But this is -2,0 or 2 and so has to be 0 since $p \ge 2$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

・ロット (雪) (キョット (日)) ヨー

Sar

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• This example has some interesting consequences.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

- This example has some interesting consequences.
- 1. Every p > 2 dividing $x^2 + 1$ satisfies $p \equiv 1 \pmod{4}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

- This example has some interesting consequences.
- 1. Every p > 2 dividing $x^2 + 1$ satisfies $p \equiv 1 \pmod{4}$.
- 2. There are infinitely many primes of the form 4k + 1.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

- This example has some interesting consequences.
- 1. Every p > 2 dividing $x^2 + 1$ satisfies $p \equiv 1 \pmod{4}$.
- 2. There are infinitely many primes of the form 4k + 1.
- To see 1. observe that for any such prime factor -1 has to be a quadratic residue, so its Legendre symbol is 1.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

- This example has some interesting consequences.
- 1. Every p > 2 dividing $x^2 + 1$ satisfies $p \equiv 1 \pmod{4}$.
- 2. There are infinitely many primes of the form 4k + 1.
- To see 1. observe that for any such prime factor -1 has to be a quadratic residue, so its Legendre symbol is 1.
- To deduce 2., follow Euclid's argument by assuming there are only finitely many and take x to be twice their product.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences A famous question, first asked by I. M. Vinogradov in 1919, concerns the size n₂(p) of the *least* positive QNR modulo p.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- A famous question, first asked by I. M. Vinogradov in 1919, concerns the size n₂(p) of the *least* positive QNR modulo p.
- One thing one can see straight away is that n₂(p) has to be prime, since it must have a prime factor which is a QNR.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- A famous question, first asked by I. M. Vinogradov in 1919, concerns the size n₂(p) of the *least* positive QNR modulo p.
- One thing one can see straight away is that n₂(p) has to be prime, since it must have a prime factor which is a QNR.
- Vinogradov conjectured that for any fixed positive number $\varepsilon > 0$ we should have

$$n_2(p) < C(\varepsilon)p^{\varepsilon}$$

and then proceeded to prove this at least when $\varepsilon > \frac{1}{2\sqrt{e}}$ where *e* is the base of the natural logarithm!

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- A famous question, first asked by I. M. Vinogradov in 1919, concerns the size n₂(p) of the *least* positive QNR modulo p.
- One thing one can see straight away is that n₂(p) has to be prime, since it must have a prime factor which is a QNR.
- Vinogradov conjectured that for any fixed positive number $\varepsilon > 0$ we should have

$$n_2(p) < C(\varepsilon)p^{\varepsilon}$$

and then proceeded to prove this at least when $\varepsilon > \frac{1}{2\sqrt{e}}$ where *e* is the base of the natural logarithm!

• In 1959 David Burgess, in his PhD thesis reduced this to any $\varepsilon > \frac{1}{4\sqrt{e}}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- A famous question, first asked by I. M. Vinogradov in 1919, concerns the size n₂(p) of the *least* positive QNR modulo p.
- One thing one can see straight away is that n₂(p) has to be prime, since it must have a prime factor which is a QNR.
- Vinogradov conjectured that for any fixed positive number $\varepsilon > 0$ we should have

$$n_2(p) < C(\varepsilon)p^{\varepsilon}$$

and then proceeded to prove this at least when $\varepsilon > \frac{1}{2\sqrt{e}}$ where *e* is the base of the natural logarithm!

• In 1959 David Burgess, in his PhD thesis reduced this to any $\varepsilon > \frac{1}{4\sqrt{e}}$.

• Where on earth does the \sqrt{e} come from?

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- A famous question, first asked by I. M. Vinogradov in 1919, concerns the size n₂(p) of the *least* positive QNR modulo p.
- One thing one can see straight away is that n₂(p) has to be prime, since it must have a prime factor which is a QNR.
- Vinogradov conjectured that for any fixed positive number $\varepsilon > 0$ we should have

$$n_2(p) < C(\varepsilon)p^{\varepsilon}$$

and then proceeded to prove this at least when $\varepsilon > \frac{1}{2\sqrt{e}}$ where *e* is the base of the natural logarithm!

- In 1959 David Burgess, in his PhD thesis reduced this to any $\varepsilon > \frac{1}{4\sqrt{e}}$.
- Where on earth does the \sqrt{e} come from?
- This was one of the things that got me interested in number theory when I was a student.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq \frac{1}{2}+\sqrt{p-\frac{3}{4}}.$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq \frac{1}{2}+\sqrt{p-\frac{3}{4}}.$$

• **Proof.** Let k be the smallest k such that $p < kn_2(p)$.

・ロット (雪) (キョット (日)) ヨー

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

• **Proof.** Let k be the smallest k such that $p < kn_2(p)$.

イロト 不得 トイヨト イヨト ニヨー

Sac

• $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

• **Proof.** Let k be the smallest k such that $p < kn_2(p)$.

- $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.
- Thus $kn_2(p)$ is a QR, and so k is a QNR.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

• **Proof.** Let k be the smallest k such that $p < kn_2(p)$.

- $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.
- Thus $kn_2(p)$ is a QR, and so k is a QNR.
- Therefore $n_2(p) \leq k$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

• **Proof.** Let k be the smallest k such that $p < kn_2(p)$.

- $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.
- Thus $kn_2(p)$ is a QR, and so k is a QNR.
- Therefore $n_2(p) \leq k$.
- Hence $n_2(p)^2 \le p + n_2(p) 1$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

- **Proof.** Let k be the smallest k such that $p < kn_2(p)$.
- $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.
- Thus $kn_2(p)$ is a QR, and so k is a QNR.
- Therefore $n_2(p) \leq k$.
- Hence $n_2(p)^2 \le p + n_2(p) 1$.
- This can be rearranged as $n_2(p)^2 n_2(p) \le p 1$, so $(n_2(p) \frac{1}{2})^2 \le p \frac{3}{4}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

- **Proof.** Let k be the smallest k such that $p < kn_2(p)$.
- $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.
- Thus $kn_2(p)$ is a QR, and so k is a QNR.
- Therefore $n_2(p) \leq k$.
- Hence $n_2(p)^2 \le p + n_2(p) 1$.
- This can be rearranged as $n_2(p)^2 n_2(p) \le p 1$, so $(n_2(p) \frac{1}{2})^2 \le p \frac{3}{4}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• The theorem follows by taking the square root.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • The multiplicative property of the Legendre symbol tells us that it suffices to understand

 $\left(\frac{q}{p}\right)_{r}$

・ロット (雪) (キョット (日)) ヨー

Sac

when p is an odd prime and q is prime.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • The multiplicative property of the Legendre symbol tells us that it suffices to understand

$$\left(\frac{q}{p}\right)_L$$

when p is an odd prime and q is prime.

• When *q* is also odd, Euler found a remarkable relationship between this Legendre symbol and

$$\left(\frac{p}{q}\right)_L$$

but no one in the eighteenth century was able to prove it.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • The multiplicative property of the Legendre symbol tells us that it suffices to understand

$$\left(\frac{q}{p}\right)_L$$

when p is an odd prime and q is prime.

• When *q* is also odd, Euler found a remarkable relationship between this Legendre symbol and

$$\left(\frac{p}{q}\right)_L$$

but no one in the eighteenth century was able to prove it.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Gauss proved it when he was 19!

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • The multiplicative property of the Legendre symbol tells us that it suffices to understand

$$\left(\frac{q}{p}\right)_L$$

when p is an odd prime and q is prime.

• When *q* is also odd, Euler found a remarkable relationship between this Legendre symbol and

$$\left(\frac{p}{q}\right)_{L}$$

but no one in the eighteenth century was able to prove it.

- Gauss proved it when he was 19!
- The relationship enables one to imitate the Euclid algorithm and so rapidly evaluate the Legendre symbol.

Quadratic Reciprocity

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

-

Factorization and Primality Testing Chapter 5 Quadratic Residues

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • What Euler spotted was a very curious relationship between the values of

 $\left(\frac{q}{p}\right)_L$

when p and q are different odd primes, which only depended on their residue classes modulo 4.

Quadratic Reciprocity

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Factorization and Primality Testing Chapter 5 Quadratic Residues

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • What Euler spotted was a very curious relationship between the values of

 $\left(\frac{q}{p}\right)_L$

when p and q are different odd primes, which only depended on their residue classes modulo 4.

• Of course, this was before the Legendre symbol was invented and he described the phenomenon in terms of quadratic residues and non-residues.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence

Example 13

.

$p \setminus q$	3	5	7	11	13	17	19	23	29
3	0	-1	1	-1	1	-1	1	-1	-1
5	-1	0	-1	1	-1	-1	1	-1	1
7	-1	-1	0	1	-1	-1	-1	1	1
11	1	1	-1	0	-1	-1	-1	1	-1
13	1	-1	-1	-1	0	1	-1	1	1
17	-1	-1	-1	-1	1	0	-1	-1	-1
19	-1	1	1	1	-1	1	0	1	-1
23	1	-1	-1	-1	1	-1	-1	0	1
29	-1	1	1	-1	1	-1	-1	1	0

・ロット 御マ マロマ

3

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence

Example 13

.

$p \setminus q$	3	5	7	11	13	17	19	23	29
3	0	-1	1	-1	1	-1	1	-1	-1
5	-1	0	-1	1	-1	-1	1	-1	1
7	-1	-1	0	1	-1	-1	-1	1	1
11	1	1	-1	0	-1	-1	-1	1	-1
13	1	-1	-1	-1	0	1	-1	1	1
17	-1	-1	-1	-1	1	0	-1	-1	-1
19	-1	1	1	1	-1	1	0	1	-1
23	1	-1	-1	-1	1	-1	-1	0	1
29	-1	1	1	-1	1	-1	-1	1	0

• If $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$, then $\left(\frac{q}{p}\right)_L = \left(\frac{p}{q}\right)_L$, but if $p \equiv q \equiv 3 \pmod{4}$, then $\left(\frac{q}{p}\right)_L \neq \left(\frac{p}{q}\right)_L$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Gauss was fascinated by this and eventually found at least seven (!) different proofs.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Gauss was fascinated by this and eventually found at least seven (!) different proofs.

• The first step in many of them is Gauss' Lemma.

Theorem 14 (Gauss' Lemma)

Suppose that p is an odd prime and (a, p) = 1. Apply the division algorithm to write each of the $\frac{1}{2}(p-1)$ numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then we have

$$\left(\frac{a}{p}\right)_L = (-1)^m$$

where

$$m \equiv \sum_{1 \leq x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Gauss was fascinated by this and eventually found at least seven (!) different proofs.

• The first step in many of them is Gauss' Lemma.

Theorem 14 (Gauss' Lemma)

Suppose that p is an odd prime and (a, p) = 1. Apply the division algorithm to write each of the $\frac{1}{2}(p-1)$ numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then we have

$$\left(\frac{a}{p}\right)_L = (-1)^m$$

where

$$m \equiv \sum_{1 \leq x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}.$$

 This theorem enables us to evaluate quite a number of cases.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

・ロット (雪) (キョット (日)) ヨー

Sac

Example 15

Take a = 2.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

Consider the numbers 2x with 1 ≤ x < ½p. They satisfy 2 ≤ 2x < p and are their own remainder, so we need to count the x with ½p < 2x < p, that is ¼p < x < ½p.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

Consider the numbers 2x with 1 ≤ x < ½p. They satisfy 2 ≤ 2x < p and are their own remainder, so we need to count the x with ½p < 2x < p, that is ¼p < x < ½p.

• Hence the number of such x is $m = \lfloor \frac{p}{2} \rfloor - \lfloor \frac{p}{4} \rfloor$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

- Consider the numbers 2x with 1 ≤ x < ½p. They satisfy 2 ≤ 2x < p and are their own remainder, so we need to count the x with ½p < 2x < p, that is ¼p < x < ½p.
- Hence the number of such x is $m = \lfloor \frac{p}{2} \rfloor \lfloor \frac{p}{4} \rfloor$.
- Now suppose that p = 8k + 1. Then m = 4k 2k is even. Likewise when p = 8k + 7, m = 2k + 2 is also even.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

- Consider the numbers 2x with $1 \le x < \frac{1}{2}p$. They satisfy $2 \le 2x < p$ and are their own remainder, so we need to count the x with $\frac{1}{2}p < 2x < p$, that is $\frac{1}{4}p < x < \frac{1}{2}p$.
- Hence the number of such x is $m = \lfloor \frac{p}{2} \rfloor \lfloor \frac{p}{4} \rfloor$.
- Now suppose that p = 8k + 1. Then m = 4k 2k is even.
 Likewise when p = 8k + 7, m = 2k + 2 is also even.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Similarly if $p \equiv 3$ or 5 (mod 8), then *m* is odd.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

- Consider the numbers 2x with 1 ≤ x < ¹/₂p. They satisfy 2 ≤ 2x 1</sup>/₂p < 2x < p, that is ¹/₄p < x < ¹/₂p.
- Hence the number of such x is $m = \lfloor \frac{p}{2} \rfloor \lfloor \frac{p}{4} \rfloor$.
- Now suppose that p = 8k + 1. Then m = 4k 2k is even. Likewise when p = 8k + 7, m = 2k + 2 is also even.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- Similarly if $p \equiv 3$ or 5 (mod 8), then m is odd.
- $\left(\frac{2}{p}\right)_L = \pm 1$ according as $p \equiv \pm 1$ or $\pm 3 \pmod{8}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

- Consider the numbers 2x with 1 ≤ x < ¹/₂p. They satisfy 2 ≤ 2x 1</sup>/₂p < 2x < p, that is ¹/₄p < x < ¹/₂p.
- Hence the number of such x is $m = \lfloor \frac{p}{2} \rfloor \lfloor \frac{p}{4} \rfloor$.
- Now suppose that p = 8k + 1. Then m = 4k 2k is even. Likewise when p = 8k + 7, m = 2k + 2 is also even.

500

- Similarly if $p \equiv 3$ or 5 (mod 8), then *m* is odd.
- $\left(\frac{2}{p}\right)_L = \pm 1$ according as $p \equiv \pm 1$ or $\pm 3 \pmod{8}$.
- Alternatively $\left(\frac{2}{p}\right)_L = (-1)^{\frac{p^2-1}{8}}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Sar

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruence

- **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.
- **Proof.** The proof is a counting argument. Consider

$$a^{\frac{p-1}{2}}\prod_{1\leq x< p/2} x = \prod_{1\leq x< p/2} ax.$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence

- **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.
- **Proof.** The proof is a counting argument. Consider

$$a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x = \prod_{1 \le x < p/2} ax.$$

イロト 不得 トイヨト イヨト ニヨー

Sac

• This is $\equiv \prod_{1 \le x < p/2} r_x \pmod{p}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence

- **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.
- **Proof.** The proof is a counting argument. Consider

$$a^{\frac{p-1}{2}}\prod_{1\leq x < p/2} x = \prod_{1\leq x < p/2} ax$$

- This is $\equiv \prod_{1 \le x < p/2} r_x \pmod{p}$.
- Let A be the set of x with $p/2 < r_x < p$ and B the rest.

イロト 不得 トイヨト イヨト ニヨー

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence

- **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.
- **Proof.** The proof is a counting argument. Consider

$$a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x = \prod_{1 \le x < p/2} ax$$

- This is $\equiv \prod_{1 \le x < p/2} r_x \pmod{p}$.
- Let \mathcal{A} be the set of x with $p/2 < r_x < p$ and \mathcal{B} the rest.
- Then card $\mathcal{A} = m$ and rearranging gives $a^{rac{p-1}{2}} \prod_{1 \leq x < p/2} x \equiv$

$$\left(\prod_{x\in\mathcal{A}}r_{x}\right)\prod_{x\in\mathcal{B}}r_{x}\equiv(-1)^{m}\left(\prod_{x\in\mathcal{A}}(p-r_{x})\right)\prod_{x\in\mathcal{B}}r_{x}\pmod{p}$$
(2.4)

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruence • $a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x \equiv$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

・ロト ・ 四ト ・ 回ト ・ 回ト

æ

990

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

$$\prod_{1 \le x < p/2} x \equiv$$

а

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Sac

• Since $|r_x - r_y| < p$ and $r_x - r_y \equiv a(x - y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

$$\frac{p-1}{2}\prod_{1\leq x< p/2}x\equiv$$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sar

- Since $|r_x r_y| < p$ and $r_x r_y \equiv a(x y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.
- Also since $p \nmid a$ and $1 \leq x, y < p/2$ we have

$$p-r_x-r_y\equiv -a(x+y)\not\equiv 0 \pmod{p}.$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

$$\frac{p-1}{2}\prod_{1\leq x< p/2}x\equiv$$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

- Since $|r_x r_y| < p$ and $r_x r_y \equiv a(x y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.
- Also since $p \nmid a$ and $1 \le x, y < p/2$ we have $p r_x r_y \equiv -a(x + y) \not\equiv 0 \pmod{p}$.
- Thus the $p r_x$ with $x \in \mathcal{A}$ differ from the r_y with $y \in \mathcal{B}$.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sar

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • $a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x \equiv$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

- Since $|r_x r_y| < p$ and $r_x r_y \equiv a(x y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.
- Also since $p \nmid a$ and $1 \le x, y < p/2$ we have $p r_x r_y \equiv -a(x + y) \not\equiv 0 \pmod{p}$.
- Thus the $p r_x$ with $x \in \mathcal{A}$ differ from the r_y with $y \in \mathcal{B}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Hence the $\frac{1}{2}(p-1)$ numbers $p - r_x$ and r_x are just a permutation of the numbers z with $1 \le z \le \frac{1}{2}(p-1)$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

$$\sum_{1 \le x < p/2}^{p-1} \prod_{1 \le x < p/2} x \equiv x$$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

- Since $|r_x r_y| < p$ and $r_x r_y \equiv a(x y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.
- Also since $p \nmid a$ and $1 \le x, y < p/2$ we have $p r_x r_y \equiv -a(x + y) \not\equiv 0 \pmod{p}$.
- Thus the $p r_x$ with $x \in \mathcal{A}$ differ from the r_y with $y \in \mathcal{B}$.
- Hence the $\frac{1}{2}(p-1)$ numbers $p r_x$ and r_x are just a permutation of the numbers z with $1 \le z \le \frac{1}{2}(p-1)$.
- Thus (2.4) becomes

$$a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x \equiv (-1)^m \prod_{1 \le x < p/2} x \pmod{p}$$

and, by Euler's Criterion, $\left(rac{a}{p}
ight)_L\equiv a^{rac{p-1}{2}}\equiv (-1)^m.$

590

・ロト ・ 同ト ・ ヨト ・ ヨト

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

$$\sum_{1 \le x < p/2}^{p-1} \prod_{1 \le x < p/2} x \equiv x$$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

- Since $|r_x r_y| < p$ and $r_x r_y \equiv a(x y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.
- Also since $p \nmid a$ and $1 \le x, y < p/2$ we have $p r_x r_y \equiv -a(x + y) \not\equiv 0 \pmod{p}$.
- Thus the $p r_x$ with $x \in \mathcal{A}$ differ from the r_y with $y \in \mathcal{B}$.
- Hence the $\frac{1}{2}(p-1)$ numbers $p r_x$ and r_x are just a permutation of the numbers z with $1 \le z \le \frac{1}{2}(p-1)$.
- Thus (2.4) becomes

$$a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x \equiv (-1)^m \prod_{1 \le x < p/2} x \pmod{p}$$

and, by Euler's Criterion, $\left(\frac{a}{p}\right)_{r} \equiv a^{\frac{p-1}{2}} \equiv (-1)^{m}$.

• Now the difference is -2, 0 or 2.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruence • For the final formula we note that

$$r_x = ax - p \left\lfloor \frac{ax}{p} \right\rfloor \tag{2.5}$$

so that $0 \leq r_x < p$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • For the final formula we note that

$$r_x = ax - p \left\lfloor \frac{ax}{p} \right\rfloor \tag{2.5}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

so that $0 \leq r_x < p$.

• Now $0 < 2r_x/p < 2$ and so $\lfloor 2r_x/p \rfloor = 0$ or 1 and is 1 precisely when $p/2 < r_x < p$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • For the final formula we note that

$$r_x = ax - p \left\lfloor \frac{ax}{p} \right\rfloor \tag{2.5}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

so that $0 \leq r_x < p$.

• Now $0 < 2r_x/p < 2$ and so $\lfloor 2r_x/p \rfloor = 0$ or 1 and is 1 precisely when $p/2 < r_x < p$.

Thus

$$m = \sum_{1 \le x < p/2} \lfloor 2r_x/p \rfloor.$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • For the final formula we note that

$$r_x = ax - p \left\lfloor \frac{ax}{p} \right\rfloor \tag{2.5}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

∃ <\0<</p>

so that $0 \leq r_x < p$.

• Now $0 < 2r_x/p < 2$ and so $\lfloor 2r_x/p \rfloor = 0$ or 1 and is 1 precisely when $p/2 < r_x < p$.

Thus

$$m = \sum_{1 \leq x < p/2} \lfloor 2r_x/p \rfloor.$$

• Moreover, by (2.5)

$$\lfloor 2r_{x}/p \rfloor = \left\lfloor \frac{2ax}{p} - 2 \left\lfloor \frac{ax}{p} \right\rfloor \right\rfloor = \left\lfloor \frac{2ax}{p} \right\rfloor - 2 \left\lfloor \frac{ax}{p} \right\rfloor$$
$$\equiv \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$$

and the final formula follows.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruence • Restricting to odd *a* gives a useful variant.

Theorem 16

Suppose
$$p > 2$$
 and $(a, 2p) = 1$. Then $\left(\frac{a}{p}\right)_{L} = (-1)^{n}$ where $n = \sum_{1 \le x < p/2} \left\lfloor \frac{ax}{p} \right\rfloor$. We also have $\left(\frac{2}{p}\right)_{L} = (-1)^{\frac{p^{2}-1}{8}}$.

・ロト ・ 四ト ・ 回ト ・ 回ト

Ð.

990

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • Restricting to odd *a* gives a useful variant.

Theorem 16

Suppose
$$p > 2$$
 and $(a, 2p) = 1$. Then $\left(\frac{a}{p}\right)_{L} = (-1)^{n}$ where
 $n = \sum_{1 \le x < p/2} \left\lfloor \frac{ax}{p} \right\rfloor$. We also have $\left(\frac{2}{p}\right)_{L} = (-1)^{\frac{p^{2}-1}{8}}$.
• Proof. $\left(\frac{2}{p}\right)_{L} \left(\frac{a}{p}\right)_{L} = \left(\frac{2}{p}\right)_{L} \left(\frac{a+p}{p}\right)_{L} = \left(\frac{4}{p}\right)_{L} \left(\frac{(a+p)/2}{p}\right)_{L}$
 $= \left(\frac{(a+p)/2}{p}\right)_{L} = (-1)^{l}$

・ロト ・ 四ト ・ 回ト ・ 回ト

3

990

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Restricting to odd *a* gives a useful variant.

Theorem 16

Suppose
$$p > 2$$
 and $(a, 2p) = 1$. Then $\left(\frac{a}{p}\right)_L = (-1)^n$ where
 $n = \sum_{1 \le x < p/2} \left\lfloor \frac{ax}{p} \right\rfloor$. We also have $\left(\frac{2}{p}\right)_L = (-1)^{\frac{p^2 - 1}{8}}$.
• Proof. $\left(\frac{2}{p}\right)_L \left(\frac{a}{p}\right)_L = \left(\frac{2}{p}\right)_L \left(\frac{a+p}{p}\right)_L = \left(\frac{4}{p}\right)_L \left(\frac{(a+p)/2}{p}\right)_L$
 $= \left(\frac{(a+p)/2}{p}\right)_L = (-1)^l$
• where $l = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{(a+p)x}{p} \right\rfloor = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{ax}{p} + x \right\rfloor =$
 $\sum_{x=1}^{(p-1)/2} \left(\left\lfloor \frac{ax}{p} \right\rfloor + x \right) = n + \frac{p^2 - 1}{8}.$

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

3

990

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Restricting to odd *a* gives a useful variant.

Theorem 16

Suppose
$$p > 2$$
 and $(a, 2p) = 1$. Then $\left(\frac{a}{p}\right)_{L} = (-1)^{n}$ where
 $n = \sum_{1 \le x < p/2} \left\lfloor \frac{ax}{p} \right\rfloor$. We also have $\left(\frac{2}{p}\right)_{L} = (-1)^{\frac{p^{2}-1}{8}}$.
• Proof. $\left(\frac{2}{p}\right)_{L} \left(\frac{a}{p}\right)_{L} = \left(\frac{2}{p}\right)_{L} \left(\frac{a+p}{p}\right)_{L} = \left(\frac{4}{p}\right)_{L} \left(\frac{(a+p)/2}{p}\right)_{L}$
 $= \left(\frac{(a+p)/2}{p}\right)_{L} = (-1)^{l}$
• where $l = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{(a+p)x}{p} \right\rfloor = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{ax}{p} + x \right\rfloor =$
 $\sum_{x=1}^{(p-1)/2} \left(\left\lfloor \frac{ax}{p} \right\rfloor + x \right) = n + \frac{p^{2}-1}{8}$.

• If we take a = 1, then we have the formula for $\left(\frac{2}{p}\right)_{I}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences • Restricting to odd *a* gives a useful variant.

Theorem 16

Suppose
$$p > 2$$
 and $(a, 2p) = 1$. Then $\left(\frac{a}{p}\right)_{L} = (-1)^{n}$ where
 $n = \sum_{1 \le x < p/2} \left\lfloor \frac{ax}{p} \right\rfloor$. We also have $\left(\frac{2}{p}\right)_{L} = (-1)^{\frac{p^{2}-1}{8}}$.
• Proof. $\left(\frac{2}{p}\right)_{L} \left(\frac{a}{p}\right)_{L} = \left(\frac{2}{p}\right)_{L} \left(\frac{a+p}{p}\right)_{L} = \left(\frac{4}{p}\right)_{L} \left(\frac{(a+p)/2}{p}\right)_{L}$
 $= \left(\frac{(a+p)/2}{p}\right)_{L} = (-1)^{l}$
• where $l = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{(a+p)x}{p} \right\rfloor = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{ax}{p} + x \right\rfloor =$
 $\sum_{x=1}^{(p-1)/2} \left(\left\lfloor \frac{ax}{p} \right\rfloor + x \right) = n + \frac{p^{2}-1}{8}$.
• If we take $a = 1$, then we have the formula for $\left(\frac{2}{p}\right)_{L}$.

• Then factoring this out gives the result for $\left(\frac{a}{p}\right)_{L_{\underline{a}}}$.

San

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Now we come to the big one. This is the Law of Quadratic Reciprocity. Gauss called it "Theorema Aureum", the Golden Theorem.

Theorem 17 (The Law of Quadratic Reciprocity)

Suppose that p and q are odd prime numbers. Then

$$\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}},$$

or equivalently

$$\left(\frac{q}{p}\right)_{L} = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q}\right)_{L},$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Now we come to the big one. This is the Law of Quadratic Reciprocity. Gauss called it "Theorema Aureum", the Golden Theorem.

Theorem 17 (The Law of Quadratic Reciprocity)

Suppose that p and q are odd prime numbers. Then

$$\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}},$$

or equivalently

$$\left(\frac{q}{p}\right)_{L} = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q}\right)_{L},$$

• We can use this to compute rapidly Legendre symbols.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruence • We can use this to compute rapidly Legendre symbols.

Example 18

Is $x^2 \equiv 951 \pmod{2017}$ soluble? 2017 is prime, but $951 = 3 \times 317$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruence • We can use this to compute rapidly Legendre symbols.

Example 18

Is $x^2 \equiv 951 \pmod{2017}$ soluble? 2017 is prime, but $951 = 3 \times 317$.

• Thus
$$\left(\frac{951}{2017}\right)_L = \left(\frac{3}{2017}\right)_L \left(\frac{317}{2017}\right)_L$$
.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruence • We can use this to compute rapidly Legendre symbols.

Example 18

Is $x^2 \equiv 951 \pmod{2017}$ soluble? 2017 is prime, but $951 = 3 \times 317$.

- Thus $\left(\frac{951}{2017}\right)_L = \left(\frac{3}{2017}\right)_L \left(\frac{317}{2017}\right)_L$.
- By the law, as $2017 \equiv 1 \pmod{4}$,

$$\begin{pmatrix} \frac{3}{2017} \end{pmatrix}_L = \begin{pmatrix} \frac{2017}{3} \end{pmatrix}_L = \begin{pmatrix} \frac{1}{3} \end{pmatrix}_L = 1$$
$$\begin{pmatrix} \frac{317}{2017} \end{pmatrix}_L = \begin{pmatrix} \frac{2017}{317} \end{pmatrix}_L = \begin{pmatrix} \frac{115}{317} \end{pmatrix}_L = \begin{pmatrix} \frac{5}{317} \end{pmatrix}_L \begin{pmatrix} \frac{23}{317} \end{pmatrix}_L .$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences • We can use this to compute rapidly Legendre symbols.

Example 18

Is $x^2 \equiv 951 \pmod{2017}$ soluble? 2017 is prime, but $951 = 3 \times 317$.

- Thus $\left(\frac{951}{2017}\right)_L = \left(\frac{3}{2017}\right)_L \left(\frac{317}{2017}\right)_L$.
- By the law, as $2017 \equiv 1 \pmod{4}$,

$$\left(\frac{3}{2017}\right)_L = \left(\frac{2017}{3}\right)_L = \left(\frac{1}{3}\right)_L = 1$$

$$\left(\frac{317}{2017}\right)_L = \left(\frac{2017}{317}\right)_L = \left(\frac{115}{317}\right)_L = \left(\frac{5}{317}\right)_L \left(\frac{23}{317}\right)_L.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Again applying the law, we have

$$\begin{pmatrix} \frac{5}{317} \end{pmatrix}_{L} = \begin{pmatrix} \frac{317}{5} \end{pmatrix}_{L} = \begin{pmatrix} \frac{2}{5} \end{pmatrix}_{L} = -1$$

and $\begin{pmatrix} \frac{23}{317} \end{pmatrix}_{L} = \begin{pmatrix} \frac{317}{23} \end{pmatrix}_{L} = \begin{pmatrix} \frac{18}{23} \end{pmatrix}_{L} = \begin{pmatrix} \frac{2}{23} \end{pmatrix}_{L} = 1$ so that $\begin{pmatrix} \frac{317}{2017} \end{pmatrix}_{L} = -1$ and thus $\begin{pmatrix} \frac{951}{2017} \end{pmatrix}_{L} = -1.$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences • We can use this to compute rapidly Legendre symbols.

Example 18

Is $x^2 \equiv 951 \pmod{2017}$ soluble? 2017 is prime, but $951 = 3 \times 317$.

- Thus $\left(\frac{951}{2017}\right)_L = \left(\frac{3}{2017}\right)_L \left(\frac{317}{2017}\right)_L$.
- By the law, as $2017 \equiv 1 \pmod{4}$,

$$\left(\frac{3}{2017}\right)_L = \left(\frac{2017}{3}\right)_L = \left(\frac{1}{3}\right)_L = 1$$

$$\left(\frac{317}{2017}\right)_L = \left(\frac{2017}{317}\right)_L = \left(\frac{115}{317}\right)_L = \left(\frac{5}{317}\right)_L \left(\frac{23}{317}\right)_L.$$

• Again applying the law, we have

$$\left(\frac{5}{317}\right)_L = \left(\frac{317}{5}\right)_L = \left(\frac{2}{5}\right)_L = -1$$

- and $\left(\frac{23}{317}\right)_L = \left(\frac{317}{23}\right)_L = \left(\frac{18}{23}\right)_L = \left(\frac{2}{23}\right)_L = 1$ so that $\left(\frac{317}{2017}\right)_L = -1$ and thus $\left(\frac{951}{2017}\right)_L = -1$.
- Thus the congruence is insoluble.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • We can also use the law to obtain general rules, like that for 2 (mod p).

Example 19

Let p > 3 be an odd prime. Then

$$\left(\frac{3}{p}\right)_L = (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)_L.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= √Q (~

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • We can also use the law to obtain general rules, like that for 2 (mod *p*).

Example 19

Let p > 3 be an odd prime. Then

$$\left(\frac{3}{p}\right)_L = (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)_L.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

= √Q (~

• Now p is a QR modulo 3 iff $p \equiv 1 \pmod{3}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can also use the law to obtain general rules, like that for 2 (mod *p*).

Example 19

Let p > 3 be an odd prime. Then

$$\left(\frac{3}{p}\right)_L = (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)_L.$$

Now p is a QR modulo 3 iff p ≡ 1 (mod 3).
Thus

$$\left(\frac{3}{p}\right)_{L} = \begin{cases} (-1)^{\frac{p-1}{2}} & (p \equiv 1 \pmod{3}) \\ -(-1)^{\frac{p-1}{2}} & (p \equiv 2 \pmod{3}) \end{cases}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

= √Q (~

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • We can also use the law to obtain general rules, like that for 2 (mod *p*).

Example 19

Let p > 3 be an odd prime. Then

$$\left(\frac{3}{p}\right)_L = (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)_L.$$

- Now p is a QR modulo 3 iff $p \equiv 1 \pmod{3}$.
- Thus

$$\left(\frac{3}{p}\right)_{L} = \begin{cases} (-1)^{\frac{p-1}{2}} & (p \equiv 1 \pmod{3}) \\ -(-1)^{\frac{p-1}{2}} & (p \equiv 2 \pmod{3}). \end{cases}$$

 We can also combine this with the formula in the case of -1 (mod p) which follows from the Euler Criterion. Thus

$$\left(\frac{-3}{p}\right)_{L} = \begin{cases} 1 & (p \equiv 1 \pmod{3}) \\ -1 & (p \equiv 2 \pmod{3}) \end{cases}.$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruence • **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences • **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.

• Then
$$\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= √Q (~

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.

• Then
$$\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

• Observe that $\left\lfloor \frac{qx}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le qx/p$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

- **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

- Observe that $\left\lfloor \frac{q_X}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le q_X/p$.
- Thus the first sum is the number of ordered pairs x, y with 1 ≤ x < p/2 and 1 ≤ y < qx/p.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

- Observe that $\left\lfloor \frac{qx}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le qx/p$.
- Thus the first sum is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < qx/p$.
- Likewise $\sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$ is the number of ordered pairs x, y with $1 \le y < q/2$ and $1 \le x < py/q$

・ロット (雪) (キョット (日)) ヨー

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_{L} \left(\frac{p}{q}\right)_{L} = (-1)^{u+v}$ where $u = \sum_{l=1}^{n} \left|\frac{qx}{q}\right|$ and $u = \sum_{l=1}^{n} \left|\frac{qx}{q}\right|$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

- Observe that $\left\lfloor \frac{qx}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le qx/p$.
- Thus the first sum is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < qx/p$.
- Likewise $\sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$ is the number of ordered pairs x, y with $1 \le y < q/2$ and $1 \le x < py/q$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• that is, with $1 \le x < p/2$ and xq/p < y < q/2.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

- Observe that $\left\lfloor \frac{qx}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le qx/p$.
- Thus the first sum is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < qx/p$.
- Likewise $\sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$ is the number of ordered pairs x, y with $1 \le y < q/2$ and $1 \le x < py/q$
- that is, with $1 \le x < p/2$ and xq/p < y < q/2.
- Hence u + v is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < q/2$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

- Observe that $\left\lfloor \frac{qx}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le qx/p$.
- Thus the first sum is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < qx/p$.
- Likewise $\sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$ is the number of ordered pairs x, y with $1 \le y < q/2$ and $1 \le x < py/q$
- that is, with $1 \le x < p/2$ and xq/p < y < q/2.
- Hence u + v is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < q/2$.
- This is

$$\frac{p-1}{2}\cdot\frac{q-1}{2}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

and completes the proof.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

- Observe that $\left\lfloor \frac{qx}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le qx/p$.
- Thus the first sum is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < qx/p$.
- Likewise $\sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$ is the number of ordered pairs x, y with $1 \le y < q/2$ and $1 \le x < py/q$
- that is, with $1 \le x < p/2$ and xq/p < y < q/2.
- Hence u + v is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < q/2$.
- This is

$$\frac{p-1}{2}\cdot\frac{q-1}{2}$$

and completes the proof.

This argument is due to Eisenstein.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences • In Example 18, there were several occasions when we needed to factorise the *a* in $\left(\frac{a}{p}\right)_{I}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

- In Example 18, there were several occasions when we needed to factorise the *a* in $\left(\frac{a}{p}\right)_{I}$.
- Jacobi introduced an extension of the Legendre symbol which avoids this.

Definition 20

Suppose that *m* is an odd positive integer and *a* is an integer. Let $m = p_1^{r_1} \dots p_s^{r_s}$ be the canonical decomposition of *m*. Then we define the Jacobi symbol by

$$\left(\frac{a}{m}\right)_{J} = \prod_{j=1}^{s} \left(\frac{a}{p_{j}}\right)_{L}^{r_{j}}$$

Note that interpreting 1 as being an "empty product of primes" means that

$$\left(\frac{a}{1}\right)_J = 1.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences • Remarkably the Jacobi symbol has exactly the same properties as the Legendre symbol, except for one.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

- Remarkably the Jacobi symbol has exactly the same properties as the Legendre symbol, except for one.
- That is, for a general odd modulus *m* it does not tell us about the solubility of x² ≡ a (mod m).

Example 21

We have

$$\left(\frac{2}{15}\right)_J = \left(\frac{2}{3}\right)_L \left(\frac{2}{5}\right)_L = (-1)^2 = 1,$$

but $x^2 \equiv 2 \pmod{15}$ is insoluble because any solution would also be a solution of $x^2 \equiv 2 \pmod{3}$ which we know is insoluble.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruence

Properties of the Jacobi symbol

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

Sac

• 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

Properties of the Jacobi symbol

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Sar

• 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.

• 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_I = \left(\frac{a}{m_1}\right)_I \left(\frac{a}{m_2}\right)_I$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

Properties of the Jacobi symbol

イロト 不得 トイヨト イヨト 二日

Sar

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_{I} = \left(\frac{a}{m_1}\right)_{I} \left(\frac{a}{m_2}\right)_{I}$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

Properties of the Jacobi symbol

イロト 不得 トイヨト イヨト 二日

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_{I} = \left(\frac{a}{m_1}\right)_{I} \left(\frac{a}{m_2}\right)_{I}$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

Properties of the Jacobi symbol

イロト 不得 トイヨト イヨト 二日

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_I = \left(\frac{a}{m_1}\right)_I \left(\frac{a}{m_2}\right)_I$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.
- 5. Suppose that *m* is odd. Then $\left(\frac{2}{m}\right)_J = (-1)^{\frac{m^2-1}{8}}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

Properties of the Jacobi symbol

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_{I} = \left(\frac{a}{m_1}\right)_{I} \left(\frac{a}{m_2}\right)_{I}$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.
- 5. Suppose that *m* is odd. Then $\left(\frac{2}{m}\right)_J = (-1)^{\frac{m^2-1}{8}}$.
- 6. Suppose that m and n are odd and (m, n) = 1. Then

$$\left(\frac{n}{m}\right)_J \left(\frac{m}{n}\right)_J = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}.$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

Properties of the Jacobi symbol

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_{I} = \left(\frac{a}{m_1}\right)_{I} \left(\frac{a}{m_2}\right)_{I}$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.
- 5. Suppose that *m* is odd. Then $\left(\frac{2}{m}\right)_J = (-1)^{\frac{m^2-1}{8}}$.
- 6. Suppose that m and n are odd and (m, n) = 1. Then

$$\left(\frac{n}{m}\right)_J \left(\frac{m}{n}\right)_J = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}$$

• The first three follow from the definition. The rest depend on algebraic identities and induction on the number of prime factors. For 4. $\frac{m_1-1}{2} + \frac{m_2-1}{2} \equiv \frac{m_1m_2-1}{2} \pmod{2}$,

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

Properties of the Jacobi symbol

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_{I} = \left(\frac{a}{m_1}\right)_{I} \left(\frac{a}{m_2}\right)_{I}$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.
- 5. Suppose that *m* is odd. Then $\left(\frac{2}{m}\right)_J = (-1)^{\frac{m^2-1}{8}}$.
- 6. Suppose that m and n are odd and (m, n) = 1. Then

$$\left(\frac{n}{m}\right)_J \left(\frac{m}{n}\right)_J = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}$$

- The first three follow from the definition. The rest depend on algebraic identities and induction on the number of prime factors. For 4. $\frac{m_1-1}{2} + \frac{m_2-1}{2} \equiv \frac{m_1m_2-1}{2} \pmod{2}$,
- 5. depends on $\frac{m_1^2 1}{8} + \frac{m_2^2 1}{8} \equiv \frac{m_1^2 m_2^2 1}{8} \pmod{2}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

Properties of the Jacobi symbol

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_{I} = \left(\frac{a}{m_1}\right)_{I} \left(\frac{a}{m_2}\right)_{I}$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.
- 5. Suppose that *m* is odd. Then $\left(\frac{2}{m}\right)_J = (-1)^{\frac{m^2-1}{8}}$.
- 6. Suppose that m and n are odd and (m, n) = 1. Then

$$\left(\frac{n}{m}\right)_J \left(\frac{m}{n}\right)_J = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}.$$

- The first three follow from the definition. The rest depend on algebraic identities and induction on the number of prime factors. For 4. $\frac{m_1-1}{2} + \frac{m_2-1}{2} \equiv \frac{m_1m_2-1}{2} \pmod{2}$,
- 5. depends on $\frac{m_1^2-1}{8} + \frac{m_2^2-1}{8} \equiv \frac{m_1^2m_2^2-1}{8} \pmod{2}$.
- 6. uses $\frac{l-1}{2} \cdot \frac{m-1}{2} + \frac{n-1}{2} \cdot \frac{m-1}{2} \equiv \frac{ln-1}{\sqrt{2}} \cdot \frac{m-1}{\sqrt{2}} (\mod 2).$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruence

Example 22

Now we don't have to factor 951. By the Jacobi version of the law

$$\begin{pmatrix} \frac{951}{2017} \end{pmatrix}_L = \begin{pmatrix} \frac{2017}{951} \end{pmatrix}_J = \begin{pmatrix} \frac{115}{951} \end{pmatrix}_J = -\begin{pmatrix} \frac{951}{115} \end{pmatrix}_J$$
$$= -\begin{pmatrix} \frac{31}{115} \end{pmatrix}_J = \begin{pmatrix} \frac{115}{31} \end{pmatrix}_J = \begin{pmatrix} \frac{22}{31} \end{pmatrix}_J$$
$$= -\begin{pmatrix} \frac{31}{11} \end{pmatrix}_J = -\begin{pmatrix} \frac{9}{11} \end{pmatrix}_J = -1.$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruence

Example 22

Now we don't have to factor 951. By the Jacobi version of the law

$$\left(\frac{951}{2017}\right)_L = \left(\frac{2017}{951}\right)_J = \left(\frac{115}{951}\right)_J = -\left(\frac{951}{115}\right)_J$$
$$= -\left(\frac{31}{115}\right)_J = \left(\frac{115}{31}\right)_J = \left(\frac{22}{31}\right)_J$$
$$= -\left(\frac{31}{11}\right)_J = -\left(\frac{9}{11}\right)_J = -1.$$

Note that we can process this like the Euclidean algorithm.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences • Suppose we are interested in $\left(\frac{n}{m}\right)_{L}$ where *n* and *m* are odd.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences

- Suppose we are interested in $\left(\frac{n}{m}\right)_L$ where *n* and *m* are odd.
- Follow the Euclidean algorithm and obtain

$$n = q_1 m + r_1,$$

 $m = q_2 r_1 + r_2,$
 $r_1 = q_3 r_2 + r_3,$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= 900

÷ ÷

> Robert C. Vaughan

The Jacobi symbol

- Suppose we are interested in $\left(\frac{n}{m}\right)_{I}$ where *n* and *m* are odd.
- Follow the Euclidean algorithm and obtain

÷

$$n = q_1 m + r_1,$$

 $m = q_2 r_1 + r_2,$
 $r_1 = q_3 r_2 + r_3,$

÷

• When m, n, r_1, r_2, \ldots are odd, for suitable t_1, t_2, \ldots ,

:

$$\frac{n}{m} \int_{J} = \left(\frac{r_1}{m}\right)_J = (-1)^{t_1} \left(\frac{m}{r_1}\right)_J$$
$$= (-1)^{t_1} \left(\frac{r_2}{r_1}\right)_J = (-1)^{t_2} \left(\frac{r_1}{r_2}\right)_J$$
$$= (-1)^{t_2} \left(\frac{r_3}{r_2}\right)_J = (-1)^{t_3} \left(\frac{r_2}{r_3}\right)_J$$
$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

÷

・ロット (雪) (キョット (日)) ヨー

Sac

> Robert C. Vaughan

The Jacobi symbol

- Suppose we are interested in $\left(\frac{n}{m}\right)_{I}$ where *n* and *m* are odd.
- Follow the Euclidean algorithm and obtain

$$n = q_1 m + r_1,$$

$$m = q_2 r_1 + r_2,$$

$$r_1 = q_3 r_2 + r_3,$$

٠

• When m, n, r_1, r_2, \ldots are odd, for suitable t_1, t_2, \ldots ,

2

$$\begin{pmatrix} \frac{n}{m} \end{pmatrix}_J = \left(\frac{r_1}{m} \right)_J = (-1)^{t_1} \left(\frac{m}{r_1} \right)_J$$

$$= (-1)^{t_1} \left(\frac{r_2}{r_1} \right)_J = (-1)^{t_2} \left(\frac{r_1}{r_2} \right)_J$$

$$= (-1)^{t_2} \left(\frac{r_3}{r_2} \right)_J = (-1)^{t_3} \left(\frac{r_2}{r_3} \right)_J$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad$$

• If any of the r_j are even we first take out the powers of 2.

.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • I am now going to describe three algorithms which will make great use of, and which you will need to implement in your favourite programming software.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Computing Solutions to Quadratic Congruences • I am now going to describe three algorithms which will make great use of, and which you will need to implement in your favourite programming software.

• The first algorithm computes the Jacobi symbol

$$\left(\frac{m}{n}\right)_J$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

for a given positive odd integer n and integer m.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • I am now going to describe three algorithms which will make great use of, and which you will need to implement in your favourite programming software.

• The first algorithm computes the Jacobi symbol

$$\left(\frac{m}{n}\right)_J$$

for a given positive odd integer n and integer m.

• It is just an immediate application of the law of quadratic reciprocity through the use of the division algorithm as organised in Euclid's algorithm, together with the removal of any powers of 2 at each stage and an evaluation of the corresponding

$$\left(\frac{2}{n}\right)_J$$
.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Algorithm LJ. Given an integer *m* and a positive integer *n*, compute $\left(\frac{m}{n}\right)_J$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Algorithm LJ. Given an integer *m* and a positive integer *n*, compute $\left(\frac{m}{n}\right)_J$.
- 1. Reduction loops.

1.1. Compute $m \equiv m \pmod{n}$, so that the new m satisfies $0 \leq m < n$. Put t = 1. 1.2. While $m \neq 0$ { 1.2.1. While m is even { put m = m/2 and, if $n \equiv 3$ or 5 (mod 8), then put t = -t} 1.2.2. Interchange m and n to give new m and n. 1.2.3. If $m \equiv n \equiv 3 \pmod{4}$, then put t = -t. 1.2.4. Compute $m \equiv m \pmod{n}$, so that the new m satisfies $0 \leq m <$ new n. }

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Algorithm LJ. Given an integer *m* and a positive integer *n*, compute $\left(\frac{m}{n}\right)_J$.
- 1. Reduction loops.

1.1. Compute $m \equiv m \pmod{n}$, so that the new m satisfies $0 \le m < n$. Put t = 1. 1.2. While $m \neq 0$ { 1.2.1. While m is even { put m = m/2 and, if $n \equiv 3$ or 5 (mod 8), then put t = -t} 1.2.2. Interchange m and n to give new m and n. 1.2.3. If $m \equiv n \equiv 3 \pmod{4}$, then put t = -t. 1.2.4. Compute $m \equiv m \pmod{n}$, so that the new m satisfies $0 \le m < \text{new } n$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 2. Output.
 - 2.1. If n = 1, then return t.
 - 2.2. Else return 0.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Algorithm QC357/8. Given a $p \equiv 3, 5, 7 \pmod{8}$ and a with $\left(\frac{a}{p}\right)_L = 1$, compute solution to $x^2 \equiv a \pmod{p}$.

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Algorithm QC357/8. Given a $p \equiv 3, 5, 7 \pmod{8}$ and a with $\left(\frac{a}{p}\right)_L = 1$, compute solution to $x^2 \equiv a \pmod{p}$.

・ロット (雪) (キョット (日)) ヨー

Sar

If *p* ≡ 3 or 7 (mod 8), then compute *x* ≡ *a*^{(*p*+1)/4} (mod *p*). Return *x*.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Algorithm QC357/8. Given a $p \equiv 3, 5, 7 \pmod{8}$ and a with $\left(\frac{a}{p}\right)_L = 1$, compute solution to $x^2 \equiv a \pmod{p}$.
- If *p* ≡ 3 or 7 (mod 8), then compute *x* ≡ *a*^{(*p*+1)/4} (mod *p*). Return *x*.
- If p ≡ 5, take x ≡ a^{(p+3)/8} (mod p). Compute x².
 2.1. If x² ≡ a (mod p), then return x.
 2.2. If x² ≢ a (mod p), compute x ≡ x2^{(p-1)/4} (mod p). Return x.

イロト 不得 トイヨト イヨト ニヨー

Sar

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Algorithm QC357/8. Given a $p \equiv 3, 5, 7 \pmod{8}$ and a with $\left(\frac{a}{p}\right)_L = 1$, compute solution to $x^2 \equiv a \pmod{p}$.
- If *p* ≡ 3 or 7 (mod 8), then compute *x* ≡ *a*^{(*p*+1)/4} (mod *p*). Return *x*.
- If p ≡ 5, take x ≡ a^{(p+3)/8} (mod p). Compute x².
 2.1. If x² ≡ a (mod p), then return x.
 2.2. If x² ≢ a (mod p), compute x ≡ x2^{(p-1)/4} (mod p). Return x.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• **Proof.** When $p \equiv 3 \pmod{4}$ we have $\frac{p+1}{4} \in \mathbb{N}$, so $a^{(p+1)/4}$ makes sense and by Euler's criterion. $x^2 \equiv a^{(p+1)/2} = a^{1+\frac{p-1}{2}} \equiv a \left(\frac{a}{p}\right)_L = a \pmod{p}.$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Algorithm QC357/8. Given a $p \equiv 3, 5, 7 \pmod{8}$ and a with $\left(\frac{a}{p}\right)_L = 1$, compute solution to $x^2 \equiv a \pmod{p}$.
- If *p* ≡ 3 or 7 (mod 8), then compute *x* ≡ *a*^{(*p*+1)/4} (mod *p*). Return *x*.
- If p ≡ 5, take x ≡ a^{(p+3)/8} (mod p). Compute x².
 2.1. If x² ≡ a (mod p), then return x.
 2.2. If x² ≢ a (mod p), compute x ≡ x2^{(p-1)/4} (mod p). Return x.
- **Proof.** When $p \equiv 3 \pmod{4}$ we have $\frac{p+1}{4} \in \mathbb{N}$, so $a^{(p+1)/4}$ makes sense and by Euler's criterion. $x^2 \equiv a^{(p+1)/2} = a^{1+\frac{p-1}{2}} \equiv a \left(\frac{a}{p}\right)_I = a \pmod{p}.$
- When $p \equiv 5 \pmod{8}$, the issue is when $a^{(p+3)/4} \not\equiv a \pmod{p}$, i.e. $a^{(p-1)/4} \not\equiv 1 \pmod{p}$. By Euler's criterion $a^{(p-1)/2} \equiv 1 \pmod{p}$, so $a^{(p-1)/4} \equiv \pm 1 \pmod{p}$, and so $a^{(p-1)/4} \equiv -1 \pmod{p}$. Thus the new x gives $x^2 \equiv a^{(p+3)/4}2^{(p-1)/2} \equiv (-a)\left(\frac{2}{p}\right) = (-a)(-1) = a \pmod{p}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences Algorithm QC1/8. Given a prime p ≡ 1 (mod 8) and an a with (^a/_p)_L = 1, compute a solution to x² ≡ a (mod p).

・ロット (雪) (キョット (日)) ヨー

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Algorithm QC1/8. Given a prime p ≡ 1 (mod 8) and an a with (^a/_p)_L = 1, compute a solution to x² ≡ a (mod p).
- 1. Compute a random integer *b* with $\left(\frac{b}{p}\right)_{L} = -1$. In practice checking successively the primes $b = 2, 3, 5, \ldots$, or even crudely just the integers $b = 2, 3, 4, \ldots$, will find such a *b* quickly.
- 2. Factor out each 2 in p − 1, so that p − 1 = 2^su with u odd. Compute d ≡ a^u (mod p) and f ≡ b^u (mod p).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Algorithm QC1/8. Given a prime p ≡ 1 (mod 8) and an a with (^a/_p)_L = 1, compute a solution to x² ≡ a (mod p).
- 1. Compute a random integer *b* with $\left(\frac{b}{p}\right)_{L} = -1$. In practice checking successively the primes $b = 2, 3, 5, \ldots$, or even crudely just the integers $b = 2, 3, 4, \ldots$, will find such a *b* quickly.
- 2. Factor out each 2 in p − 1, so that p − 1 = 2^su with u odd. Compute d ≡ a^u (mod p) and f ≡ b^u (mod p).
- 3. Compute an *m* so that $df^m \equiv 1 \pmod{p}$ as follows. 3.1. Initialise $m_0 = 0$. 3.2. For each $i = 0, 1, \ldots, s - 1$ compute $g \equiv (df^{m_i})^{2^{s-1-i}} \pmod{p}$. If $g \equiv -1 \pmod{p}$, then put $m_{i+1} = m_i + 2^i$.

Otherwise take $m_{i+1} = m_i$

3.3. Return m_s . This will satisfy $df^{m_s} \equiv 1 \pmod{p}$ and m_s will be even.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- Algorithm QC1/8. Given a prime p ≡ 1 (mod 8) and an a with (^a/_p)_L = 1, compute a solution to x² ≡ a (mod p).
- 1. Compute a random integer *b* with $\left(\frac{b}{p}\right)_{L} = -1$. In practice checking successively the primes b = 2, 3, 5, ..., or even crudely just the integers b = 2, 3, 4, ..., will find such a *b* quickly.
- 2. Factor out each 2 in p − 1, so that p − 1 = 2^su with u odd. Compute d ≡ a^u (mod p) and f ≡ b^u (mod p).
- 3. Compute an m so that df^m ≡ 1 (mod p) as follows.
 3.1. Initialise m₀ = 0.
 3.2. For each i = 0, 1, ..., s 1 compute g ≡ (df^{m_i})^{2^{s-1-i}}
 - (mod p). If $g \equiv -1 \pmod{p}$, then put $m_{i+1} = m_i + 2^i$. Otherwise take $m_{i+1} = m_i$

3.3. Return m_s . This will satisfy $df^{m_s} \equiv 1 \pmod{p}$ and m_s will be even.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• 4. Compute $x \equiv a^{(u+1)/2} f^{m_s/2} \pmod{p}$. Return x.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • **Proof.** Initially we find b with $\left(\frac{b}{p}\right)_L = -1$, and s and u with $p - 1 = 2^s u$ and u odd, $d \equiv a^u \pmod{p}$ and $f \equiv b^u \pmod{p}$.

・ロット (雪) (キョット (日)) ヨー

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

- **Proof.** Initially we find b with $\left(\frac{b}{p}\right)_L = -1$, and s and u with $p 1 = 2^s u$ and u odd, $d \equiv a^u \pmod{p}$ and $f \equiv b^u \pmod{p}$.
- We will show below that there is an m so that $df^m \equiv 1 \pmod{p}$ and m is even. Then $x \equiv a^{(u+1)/2} f^{m/2} \pmod{p}$ satisfies

$$x^2 \equiv \left(a^{\frac{u+1}{2}}f^{\frac{m}{2}}\right)^2 = a^{u+1}f^m = adf^m \equiv a \pmod{p}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Thus it all depends on the computation of m.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences

Recall b with
$$\left(\frac{b}{p}\right)_{L} = -1$$
, s, u with $p - 1 = 2^{s}u$ and u
odd, $d \equiv a^{u} \pmod{p}$, $f \equiv b^{u} \pmod{p}$. To compute m
so $df^{m} \equiv 1 \pmod{p}$ and $2|m$ as follows. Let $m_{0} = 0$. For
 $i = 0, 1, \dots, s - 1$ compute $g \equiv (df^{m_{i}})^{2^{s-1-i}} \pmod{p}$. If
 $g \equiv -1 \pmod{p}$, then put $m_{i+1} = m_{i} + 2^{i}$. Else take
 $m_{i+1} = m_{i}$. Claim $df^{m_{s}} \equiv 1 \pmod{p}$, $2|m_{s}$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Recall b with $\left(\frac{b}{p}\right)_{L} = -1$, s, u with $p - 1 = 2^{s}u$ and u odd, $d \equiv a^{u} \pmod{p}$, $f \equiv b^{u} \pmod{p}$. To compute m so $df^{m} \equiv 1 \pmod{p}$ and 2|m as follows. Let $m_{0} = 0$. For $i = 0, 1, \dots, s - 1$ compute $g \equiv (df^{m_{i}})^{2^{s-1-i}} \pmod{p}$. If $g \equiv -1 \pmod{p}$, then put $m_{i+1} = m_{i} + 2^{i}$. Else take $m_{i+1} = m_{i}$. Claim $df^{m_{s}} \equiv 1 \pmod{p}$, $2|m_{s}$.

• By Euler's criterion $d^{2^{s-1}} \equiv a^{2^{s-1}u} = a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. So $\operatorname{ord}_p(d)|2^{s-1}$ and $f^{2^{s-1}} \equiv b^{2^{s-1}u} = b^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. Also $f^{2s} \equiv b^{p-1} \equiv 1 \pmod{p}$, so $\operatorname{ord}_p(f) = 2^s$.

(日本)(四本)(日本)(日本)(日本)

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Recall b with $\left(\frac{b}{p}\right)_{L} = -1$, s, u with $p - 1 = 2^{s}u$ and u odd, $d \equiv a^{u} \pmod{p}$, $f \equiv b^{u} \pmod{p}$. To compute m so $df^{m} \equiv 1 \pmod{p}$ and 2|m as follows. Let $m_{0} = 0$. For $i = 0, 1, \dots, s - 1$ compute $g \equiv (df^{m_{i}})^{2^{s-1-i}} \pmod{p}$. If $g \equiv -1 \pmod{p}$, then put $m_{i+1} = m_{i} + 2^{i}$. Else take $m_{i+1} = m_{i}$. Claim $df^{m_{s}} \equiv 1 \pmod{p}$, $2|m_{s}$.

• By Euler's criterion $d^{2^{s-1}} \equiv a^{2^{s-1}u} = a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. So $\operatorname{ord}_p(d)|2^{s-1}$ and $f^{2^{s-1}} \equiv b^{2^{s-1}u} = b^{\frac{p-1}{2}} \equiv -1$ \pmod{p} . Also $f^{2s} \equiv b^{p-1} \equiv 1 \pmod{p}$, so $\operatorname{ord}_p(f) = 2^s$.

<ロト < 同ト < 回ト < 回ト = 三日 - 三日 -

• Prove by induction for $0 \le i \le s$ that $(df^{m_i})^{2^{s-i}} \equiv 1$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Recall b with $\left(\frac{b}{p}\right)_{L} = -1$, s, u with $p - 1 = 2^{s}u$ and u odd, $d \equiv a^{u} \pmod{p}$, $f \equiv b^{u} \pmod{p}$. To compute m so $df^{m} \equiv 1 \pmod{p}$ and 2|m as follows. Let $m_{0} = 0$. For $i = 0, 1, \dots, s - 1$ compute $g \equiv (df^{m_{i}})^{2^{s-1-i}} \pmod{p}$. If $g \equiv -1 \pmod{p}$, then put $m_{i+1} = m_{i} + 2^{i}$. Else take $m_{i+1} = m_{i}$. Claim $df^{m_{s}} \equiv 1 \pmod{p}$, $2|m_{s}$.

• By Euler's criterion $d^{2^{s-1}} \equiv a^{2^{s-1}u} = a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. So $\operatorname{ord}_p(d)|2^{s-1}$ and $f^{2^{s-1}} \equiv b^{2^{s-1}u} = b^{\frac{p-1}{2}} \equiv -1 \pmod{p}$. Also $f^{2s} \equiv b^{p-1} \equiv 1 \pmod{p}$, so $\operatorname{ord}_p(f) = 2^s$.

イロト 不得 トイヨト イヨト ニヨー

Sar

- Prove by induction for $0 \le i \le s$ that $(df^{m_i})^{2^{s-i}} \equiv 1$.
- For i = 0, $m_0 = 0$ so $(df^{m_0})^{2^s} = d^{2^s} \equiv 1 \pmod{p}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Computing Solutions to Quadratic Congruences • Recall b with $\left(\frac{b}{p}\right)_{L} = -1$, s, u with $p - 1 = 2^{s}u$ and u odd, $d \equiv a^{u} \pmod{p}$, $f \equiv b^{u} \pmod{p}$. To compute m so $df^{m} \equiv 1 \pmod{p}$ and 2|m as follows. Let $m_{0} = 0$. For $i = 0, 1, \dots, s - 1$ compute $g \equiv (df^{m_{i}})^{2^{s-1-i}} \pmod{p}$. If $g \equiv -1 \pmod{p}$, then put $m_{i+1} = m_{i} + 2^{i}$. Else take $m_{i+1} = m_{i}$. Claim $df^{m_{s}} \equiv 1 \pmod{p}$, $2|m_{s}$.

- By Euler's criterion $d^{2^{s-1}} \equiv a^{2^{s-1}u} = a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$. So $\operatorname{ord}_p(d)|2^{s-1}$ and $f^{2^{s-1}} \equiv b^{2^{s-1}u} = b^{\frac{p-1}{2}} \equiv -1$ \pmod{p} . Also $f^{2s} \equiv b^{p-1} \equiv 1 \pmod{p}$, so $\operatorname{ord}_p(f) = 2^s$.
- Prove by induction for $0 \le i \le s$ that $(df^{m_i})^{2^{s-i}} \equiv 1$.
- For i = 0, $m_0 = 0$ so $(df^{m_0})^{2^s} = d^{2^s} \equiv 1 \pmod{p}$.
- Inductive step assume for an *i* with $0 \le i \le s 1$ that $(df^{m_i})^{2^{s-i}} \equiv 1 \pmod{p}$. Then $(df^{m_i})^{2^{s-1-i}} \equiv \pm 1 \pmod{p}$. If $(df^{m_i})^{2^{s-1-i}} \equiv 1 \pmod{p}$, then $m_{i+1} = m_i$ and so $(df^{m_{i+1}})^{2^{s-1-i}} \equiv 1 \pmod{p}$ as required. If $(df^{m_i})^{2^{s-1-i}} \equiv -1 \pmod{p}$, then $m_{i+1} = m_i + 2^i$ and so $(df^{m_{i+1}})^{2^{s-1-i}} \equiv (df^{2^i+m_i})^{2^{s-1-i}} = (df^{m_i})^{2^{s-1-i}}f^{2^{s-1}} \equiv -b^{\frac{p-1}{2}} \equiv 1 \pmod{p}$ once more, by Euler's criterion.