```
Factorization
and Primality
    Testing
    Chapter 4
    Primitive
    Roots and
    RSA
    Robert C.
    Vaughan
```


Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

August 19, 2023

Primitive Roots

```
Testing
Chapter 4
Primitive
Roots and
RSA
Robert C.
Vaughan
- We have seen that on the residue classes modulo \(m\) we can perform many of the standard operations of arithmetic.
```


Primitive Roots

- We have seen that on the residue classes modulo m we can perform many of the standard operations of arithmetic.
- Such an object is called a ring. In this case it is usually denoted by $\mathbb{Z} / m \mathbb{Z}$ or \mathbb{Z}_{m}.

Primitive Roots

- We have seen that on the residue classes modulo m we can perform many of the standard operations of arithmetic.
- Such an object is called a ring. In this case it is usually denoted by $\mathbb{Z} / m \mathbb{Z}$ or \mathbb{Z}_{m}.
- In this chapter we will look at its multiplicative structure.

Primitive Roots

- We have seen that on the residue classes modulo m we can perform many of the standard operations of arithmetic.
- Such an object is called a ring. In this case it is usually denoted by $\mathbb{Z} / m \mathbb{Z}$ or \mathbb{Z}_{m}.
- In this chapter we will look at its multiplicative structure.
- In particular we will consider the reduced residue classes modulo m.
- An obvious question is what happens if we take powers of a fixed residue a ?

Definition 1

Given $m \in \mathbb{N}, a \in \mathbb{Z},(a, m)=1$ we define the $\operatorname{order}^{\operatorname{ord}}(\mathrm{m}(a)$ of a modulo m to be the smallest positive integer t such that

$$
a^{t} \equiv 1(\bmod m)
$$

We may express this by saying that a belongs to the exponent t modulo m, or that t is the order of a modulo m.

- An obvious question is what happens if we take powers of a fixed residue a ?

Definition 1

Given $m \in \mathbb{N}, a \in \mathbb{Z},(a, m)=1$ we define the $\operatorname{order}^{\operatorname{ord}}(\mathrm{m}(a)$ of a modulo m to be the smallest positive integer t such that

$$
a^{t} \equiv 1(\bmod m)
$$

We may express this by saying that a belongs to the exponent t modulo m, or that t is the order of a modulo m.

- Note that by Euler's theorem, $a^{\phi(m)} \equiv 1(\bmod m)$, so that $\operatorname{ord}_{m}(a)$ exists.
- We can do better than that.

Theorem 2

Suppose that $m \in \mathbb{N},(a, m)=1$ and $n \in \mathbb{N}$ is such that $a^{n} \equiv 1$ $(\bmod m)$. Then $\operatorname{ord}_{m}(a) \mid n$. In particular $\operatorname{ord}_{m}(a) \mid \phi(m)$.

- We can do better than that.

Theorem 2

Suppose that $m \in \mathbb{N},(a, m)=1$ and $n \in \mathbb{N}$ is such that $a^{n} \equiv 1$ $(\bmod m)$. Then $\operatorname{ord}_{m}(a) \mid n$. In particular $\operatorname{ord}_{m}(a) \mid \phi(m)$.

- Proof. For concision let $t=\operatorname{ord}_{m}(a)$.
- We can do better than that.

Theorem 2

Suppose that $m \in \mathbb{N},(a, m)=1$ and $n \in \mathbb{N}$ is such that $a^{n} \equiv 1$ $(\bmod m)$. Then $\operatorname{ord}_{m}(a) \mid n$. In particular $\operatorname{ord}_{m}(a) \mid \phi(m)$.

- Proof. For concision let $t=\operatorname{ord}_{m}(a)$.
- Since t is minimal we have $t \leq n$.
- We can do better than that.

Theorem 2

Suppose that $m \in \mathbb{N},(a, m)=1$ and $n \in \mathbb{N}$ is such that $a^{n} \equiv 1$ $(\bmod m)$. Then $\operatorname{ord}_{m}(a) \mid n$. In particular $\operatorname{ord}_{m}(a) \mid \phi(m)$.

- Proof. For concision let $t=\operatorname{ord}_{m}(a)$.
- Since t is minimal we have $t \leq n$.
- Thus by the division algorithm there are q and r with $0 \leq r<t$ such that $n=t q+r$.
- We can do better than that.

Theorem 2

Suppose that $m \in \mathbb{N},(a, m)=1$ and $n \in \mathbb{N}$ is such that $a^{n} \equiv 1$ $(\bmod m)$. Then $\operatorname{ord}_{m}(a) \mid n$. In particular $\operatorname{ord}_{m}(a) \mid \phi(m)$.

- Proof. For concision let $t=\operatorname{ord}_{m}(a)$.
- Since t is minimal we have $t \leq n$.
- Thus by the division algorithm there are q and r with $0 \leq r<t$ such that $n=t q+r$.
- Hence

$$
a^{r} \equiv\left(a^{t}\right)^{q} a^{r}=a^{q t+r}=a^{n} \equiv 1(\bmod m)
$$

- We can do better than that.

Theorem 2

Suppose that $m \in \mathbb{N},(a, m)=1$ and $n \in \mathbb{N}$ is such that $a^{n} \equiv 1$ $(\bmod m)$. Then $\operatorname{ord}_{m}(a) \mid n$. In particular $\operatorname{ord}_{m}(a) \mid \phi(m)$.

- Proof. For concision let $t=\operatorname{ord}_{m}(a)$.
- Since t is minimal we have $t \leq n$.
- Thus by the division algorithm there are q and r with $0 \leq r<t$ such that $n=t q+r$.
- Hence

$$
a^{r} \equiv\left(a^{t}\right)^{q} a^{r}=a^{q t+r}=a^{n} \equiv 1(\bmod m)
$$

- But $0 \leq r<t$.
- We can do better than that.

Theorem 2

Suppose that $m \in \mathbb{N},(a, m)=1$ and $n \in \mathbb{N}$ is such that $a^{n} \equiv 1$ $(\bmod m)$. Then $\operatorname{ord}_{m}(a) \mid n$. In particular $\operatorname{ord}_{m}(a) \mid \phi(m)$.

- Proof. For concision let $t=\operatorname{ord}_{m}(a)$.
- Since t is minimal we have $t \leq n$.
- Thus by the division algorithm there are q and r with $0 \leq r<t$ such that $n=t q+r$.
- Hence

$$
a^{r} \equiv\left(a^{t}\right)^{q} a^{r}=a^{q t+r}=a^{n} \equiv 1(\bmod m)
$$

- But $0 \leq r<t$.
- If we would have $r>0$, then we would contradict the minimality of t.
- We can do better than that.

Theorem 2

Suppose that $m \in \mathbb{N},(a, m)=1$ and $n \in \mathbb{N}$ is such that $a^{n} \equiv 1$ $(\bmod m)$. Then $\operatorname{ord}_{m}(a) \mid n$. In particular $\operatorname{ord}_{m}(a) \mid \phi(m)$.

- Proof. For concision let $t=\operatorname{ord}_{m}(a)$.
- Since t is minimal we have $t \leq n$.
- Thus by the division algorithm there are q and r with $0 \leq r<t$ such that $n=t q+r$.
- Hence

$$
a^{r} \equiv\left(a^{t}\right)^{q} a^{r}=a^{q t+r}=a^{n} \equiv 1(\bmod m)
$$

- But $0 \leq r<t$.
- If we would have $r>0$, then we would contradict the minimality of t.
- Hence $r=0$.
- Here is an application we will make use of later.

Theorem 3

Suppose that $d \mid p-1$. Then the congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.

- Here is an application we will make use of later.

Theorem 3

Suppose that $d \mid p-1$. Then the congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.

- Proof. We have

$$
x^{p-1}-1=\left(x^{d}-1\right)\left(x^{p-1-d}+x^{d-p-2 d}+\cdots+x^{d}+1\right)
$$

- Here is an application we will make use of later.

Theorem 3

Suppose that $d \mid p-1$. Then the congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.

- Proof. We have

$$
x^{p-1}-1=\left(x^{d}-1\right)\left(x^{p-1-d}+x^{d-p-2 d}+\cdots+x^{d}+1\right) .
$$

- To see this just multiply out the right hand side and observe that the terms telescope.
- Here is an application we will make use of later.

Theorem 3

Suppose that $d \mid p-1$. Then the congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.

- Proof. We have

$$
x^{p-1}-1=\left(x^{d}-1\right)\left(x^{p-1-d}+x^{d-p-2 d}+\cdots+x^{d}+1\right) .
$$

- To see this just multiply out the right hand side and observe that the terms telescope.
- We know from Euler's theorem that there are exactly $p-1$ incongruent roots to the left hand side modulo p.
- Here is an application we will make use of later.

Theorem 3

Suppose that $d \mid p-1$. Then the congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.

- Proof. We have

$$
x^{p-1}-1=\left(x^{d}-1\right)\left(x^{p-1-d}+x^{d-p-2 d}+\cdots+x^{d}+1\right) .
$$

- To see this just multiply out the right hand side and observe that the terms telescope.
- We know from Euler's theorem that there are exactly $p-1$ incongruent roots to the left hand side modulo p.
- On the other hand, by Lagrange's theorem, the second factor has at most $p-1-d$ such roots, so the first factor must account for at least d of them.
- Here is an application we will make use of later.

Theorem 3

Suppose that $d \mid p-1$. Then the congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.

- Proof. We have

$$
x^{p-1}-1=\left(x^{d}-1\right)\left(x^{p-1-d}+x^{d-p-2 d}+\cdots+x^{d}+1\right) .
$$

- To see this just multiply out the right hand side and observe that the terms telescope.
- We know from Euler's theorem that there are exactly $p-1$ incongruent roots to the left hand side modulo p.
- On the other hand, by Lagrange's theorem, the second factor has at most $p-1-d$ such roots, so the first factor must account for at least d of them.
- On the other hand, again by Lagrange's theorem, it has at most d roots modulo p.

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

- We have already seen that, when $(a, m)=1$, a has order modulo m which divides $\phi(m)$.
- We have already seen that, when $(a, m)=1$, a has order modulo m which divides $\phi(m)$.
- One question one can ask is, given any $d \mid \phi(m)$, are there elements of order d ?
- We have already seen that, when $(a, m)=1$, a has order modulo m which divides $\phi(m)$.
- One question one can ask is, given any $d \mid \phi(m)$, are there elements of order d ?
- In the special case $d=\phi(m)$ this would mean that

$$
a, a^{2}, \ldots, a^{\phi(m)}
$$

are distinct modulo m,

- We have already seen that, when $(a, m)=1$, a has order modulo m which divides $\phi(m)$.
- One question one can ask is, given any $d \mid \phi(m)$, are there elements of order d ?
- In the special case $d=\phi(m)$ this would mean that

$$
a, a^{2}, \ldots, a^{\phi(m)}
$$

are distinct modulo m,

- because otherwise we would have

$$
a^{u} \equiv a^{v} \quad(\bmod m)
$$

with $1 \leq u<v \leq \phi(m)$,

- We have already seen that, when $(a, m)=1$, a has order modulo m which divides $\phi(m)$.
- One question one can ask is, given any $d \mid \phi(m)$, are there elements of order d ?
- In the special case $d=\phi(m)$ this would mean that

$$
a, a^{2}, \ldots, a^{\phi(m)}
$$

are distinct modulo m,

- because otherwise we would have

$$
a^{u} \equiv a^{v} \quad(\bmod m)
$$

with $1 \leq u<v \leq \phi(m)$,

- and then

$$
a^{v-u} \equiv 1(\bmod m)
$$

and $1 \leq v-u<\phi(m)$ contradicting the assumption that $\operatorname{ord}_{m}(a)=\phi(m)$.

```
Binomial
Congruences
and Discrete
Logarithms
RSA
```

Robert C.
Vaughan

Primitive

 Roots- Consider

Example 4

$$
m=7
$$

- Consider

Example 4

$$
m=7
$$

- $a=1, \operatorname{ord}_{7}(1)=1$.

```
Binomial
Congruences
and Discrete
Logarithms
RSA
```

Primitive Roots

Factorization
and Primality
Testing
Chapter 4 4
Primitive
Roots and
RSA
Robert C.
Vaughan
Primitive
Roots
Binomial
Congruences
and Discrete
Logarithms
RSA

- Consider

Example 4

$$
m=7
$$

- $a=1, \operatorname{ord}_{7}(1)=1$.
- $a=2,2^{2}=4,2^{3}=8 \equiv 1$. $\operatorname{ord}_{7}(2)=3$.

Robert C. Vaughan

- Consider

Example 4

$$
m=7
$$

- $a=1, \operatorname{ord}_{7}(1)=1$.
- $a=2,2^{2}=4,2^{3}=8 \equiv 1$. $\operatorname{ord}_{7}(2)=3$.
- $a=3,3^{2}=9 \equiv 2,3^{3}=27 \equiv 6,3^{4} \equiv 18 \equiv 4$, $3^{5} \equiv 12 \equiv 5,3^{6} \equiv 1, \operatorname{ord}_{7}(3)=6$.
- Consider

Example 4

$$
m=7
$$

- $a=1, \operatorname{ord}_{7}(1)=1$.
- $a=2,2^{2}=4,2^{3}=8 \equiv 1$. $\operatorname{ord}_{7}(2)=3$.
- $a=3,3^{2}=9 \equiv 2,3^{3}=27 \equiv 6,3^{4} \equiv 18 \equiv 4$, $3^{5} \equiv 12 \equiv 5,3^{6} \equiv 1, \operatorname{ord}_{7}(3)=6$.
- $a=4,4^{2} \equiv 2,4^{3} \equiv 2^{6} \equiv 1, \operatorname{ord}_{7}(4)=3$.
- Consider

Example 4

$$
m=7
$$

- $a=1, \operatorname{ord}_{7}(1)=1$.
- $a=2,2^{2}=4,2^{3}=8 \equiv 1 . \operatorname{ord}_{7}(2)=3$.
- $a=3,3^{2}=9 \equiv 2,3^{3}=27 \equiv 6,3^{4} \equiv 18 \equiv 4$, $3^{5} \equiv 12 \equiv 5,3^{6} \equiv 1, \operatorname{ord}_{7}(3)=6$.
- $a=4,4^{2} \equiv 2,4^{3} \equiv 2^{6} \equiv 1, \operatorname{ord}_{7}(4)=3$.
- $a=5,5^{2}=25 \equiv 4,5^{3} \equiv 20 \equiv 6,5^{4} \equiv 30 \equiv 2$, $5^{5} \equiv 10 \equiv 3,5^{6} \equiv 1, \operatorname{ord}_{7}(5)=6$.
- Consider

Example 4

$$
m=7
$$

- $a=1, \operatorname{ord}_{7}(1)=1$.
- $a=2,2^{2}=4,2^{3}=8 \equiv 1 . \operatorname{ord}_{7}(2)=3$.
- $a=3,3^{2}=9 \equiv 2,3^{3}=27 \equiv 6,3^{4} \equiv 18 \equiv 4$, $3^{5} \equiv 12 \equiv 5,3^{6} \equiv 1, \operatorname{ord}_{7}(3)=6$.
- $a=4,4^{2} \equiv 2,4^{3} \equiv 2^{6} \equiv 1, \operatorname{ord}_{7}(4)=3$.
- $a=5,5^{2}=25 \equiv 4,5^{3} \equiv 20 \equiv 6,5^{4} \equiv 30 \equiv 2$, $5^{5} \equiv 10 \equiv 3,5^{6} \equiv 1, \operatorname{ord}_{7}(5)=6$.
- $a=6,6^{2}=36 \equiv 1, \operatorname{ord}_{7}(6)=2$.
- Consider

Example 4

$$
m=7
$$

- $a=1, \operatorname{ord}_{7}(1)=1$.
- $a=2,2^{2}=4,2^{3}=8 \equiv 1 . \operatorname{ord}_{7}(2)=3$.
- $a=3,3^{2}=9 \equiv 2,3^{3}=27 \equiv 6,3^{4} \equiv 18 \equiv 4$, $3^{5} \equiv 12 \equiv 5,3^{6} \equiv 1, \operatorname{ord}_{7}(3)=6$.
- $a=4,4^{2} \equiv 2,4^{3} \equiv 2^{6} \equiv 1, \operatorname{ord}_{7}(4)=3$.
- $a=5,5^{2}=25 \equiv 4,5^{3} \equiv 20 \equiv 6,5^{4} \equiv 30 \equiv 2$, $5^{5} \equiv 10 \equiv 3,5^{6} \equiv 1, \operatorname{ord}_{7}(5)=6$.
- $a=6,6^{2}=36 \equiv 1, \operatorname{ord}_{7}(6)=2$.
- Thus there is one element of order 1 , one element of order 2 , two of order 3 and two of order 6 .
- Consider

Example 4

$$
m=7
$$

- $a=1, \operatorname{ord}_{7}(1)=1$.
- $a=2,2^{2}=4,2^{3}=8 \equiv 1$. $\operatorname{ord}_{7}(2)=3$.
- $a=3,3^{2}=9 \equiv 2,3^{3}=27 \equiv 6,3^{4} \equiv 18 \equiv 4$, $3^{5} \equiv 12 \equiv 5,3^{6} \equiv 1, \operatorname{ord}_{7}(3)=6$.
- $a=4,4^{2} \equiv 2,4^{3} \equiv 2^{6} \equiv 1, \operatorname{ord}_{7}(4)=3$.
- $a=5,5^{2}=25 \equiv 4,5^{3} \equiv 20 \equiv 6,5^{4} \equiv 30 \equiv 2$, $5^{5} \equiv 10 \equiv 3,5^{6} \equiv 1, \operatorname{ord}_{7}(5)=6$.
- $a=6,6^{2}=36 \equiv 1, \operatorname{ord}_{7}(6)=2$.
- Thus there is one element of order 1 , one element of order 2 , two of order 3 and two of order 6 .
- Is it a fluke that for each $d \mid 6=\phi(7)$ the number of elements of order d is $\phi(d)$?
- We now come to an important concept

Definition 5

Suppose that $m \in \mathbb{N}$ and $(a, m)=1$. If $\operatorname{ord}_{m}(a)=\phi(m)$ then we say that a is a primitive root modulo m.

- We now come to an important concept

Definition 5

Suppose that $m \in \mathbb{N}$ and $(a, m)=1$. If $\operatorname{ord}_{m}(a)=\phi(m)$ then we say that a is a primitive root modulo m.

- We know that we do not always have primitive roots.
- We now come to an important concept

Definition 5

Suppose that $m \in \mathbb{N}$ and $(a, m)=1$. If $\operatorname{ord}_{m}(a)=\phi(m)$ then we say that a is a primitive root modulo m.

- We know that we do not always have primitive roots.
- For example, any number a with $(a, 8)=1$ is odd and so $a^{2} \equiv 1 \bmod 8$, whereas $\phi(8)=4$.
- We now come to an important concept

Definition 5

Suppose that $m \in \mathbb{N}$ and $(a, m)=1$. If $\operatorname{ord}_{m}(a)=\phi(m)$ then we say that a is a primitive root modulo m.

- We know that we do not always have primitive roots.
- For example, any number a with $(a, 8)=1$ is odd and so $a^{2} \equiv 1 \bmod 8$, whereas $\phi(8)=4$.
- There are primitive roots to some moduli. For example, modulo 7 the powers of 3 are successively $3,2,6,4,5,1$.
- We now come to an important concept

Definition 5

Suppose that $m \in \mathbb{N}$ and $(a, m)=1$. If $\operatorname{ord}_{m}(a)=\phi(m)$ then we say that a is a primitive root modulo m.

- We know that we do not always have primitive roots.
- For example, any number a with $(a, 8)=1$ is odd and so $a^{2} \equiv 1 \bmod 8$, whereas $\phi(8)=4$.
- There are primitive roots to some moduli. For example, modulo 7 the powers of 3 are successively $3,2,6,4,5,1$.
- Gauss determined precisely which moduli possess primitive roots. The first step is the case of prime modulus.

Theorem 6 (Gauss)

Suppose that p is a prime number. Let $d \mid p-1$ then there are $\phi(d)$ residue classes a with $\operatorname{ord}_{p}(a)=d$. In particular there are $\phi(p-1)=\phi(\phi(p))$ primitive roots modulo p.

- Proof of Gauss' Theorem We have seen that the order of every reduced residue class modulo p divides $p-1$.
- Proof of Gauss' Theorem We have seen that the order of every reduced residue class modulo p divides $p-1$.
- For a given $d \mid p-1$ let $\psi(d)$ denote the number of reduced residues of order d modulo p.
- Proof of Gauss' Theorem We have seen that the order of every reduced residue class modulo p divides $p-1$.
- For a given $d \mid p-1$ let $\psi(d)$ denote the number of reduced residues of order d modulo p.
- The congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions. Roots
- Proof of Gauss' Theorem We have seen that the order of every reduced residue class modulo p divides $p-1$.
- For a given $d \mid p-1$ let $\psi(d)$ denote the number of reduced residues of order d modulo p.
- The congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.
- Thus every solution has order dividing d.
- Proof of Gauss' Theorem We have seen that the order of every reduced residue class modulo p divides $p-1$.
- For a given $d \mid p-1$ let $\psi(d)$ denote the number of reduced residues of order d modulo p.
- The congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.
- Thus every solution has order dividing d.
- Also each residue with order dividing d is a solution.
- Proof of Gauss' Theorem We have seen that the order of every reduced residue class modulo p divides $p-1$.
- For a given $d \mid p-1$ let $\psi(d)$ denote the number of reduced residues of order d modulo p.
- The congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.
- Thus every solution has order dividing d.
- Also each residue with order dividing d is a solution.
- Thus for each $d \mid p-1$ we have $\sum_{r \mid d} \psi(r)=d$.
- Proof of Gauss' Theorem We have seen that the order of every reduced residue class modulo p divides $p-1$.
- For a given $d \mid p-1$ let $\psi(d)$ denote the number of reduced residues of order d modulo p.
- The congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.
- Thus every solution has order dividing d.
- Also each residue with order dividing d is a solution.
- Thus for each $d \mid p-1$ we have $\sum_{r \mid d} \psi(r)=d$.
- This is reminiscent of an earlier formula $\sum_{r \mid d} \phi(r)=d$.
- Proof of Gauss' Theorem We have seen that the order of every reduced residue class modulo p divides $p-1$.
- For a given $d \mid p-1$ let $\psi(d)$ denote the number of reduced residues of order d modulo p.
- The congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.
- Thus every solution has order dividing d.
- Also each residue with order dividing d is a solution.
- Thus for each $d \mid p-1$ we have $\sum_{r \mid d} \psi(r)=d$.
- This is reminiscent of an earlier formula $\sum_{r \mid d} \phi(r)=d$.
- Let $1=d_{1}<d_{2}<\ldots<d_{k}=p-1$ be the divisors of $p-1$ in order.
- Proof of Gauss' Theorem We have seen that the order of every reduced residue class modulo p divides $p-1$.
- For a given $d \mid p-1$ let $\psi(d)$ denote the number of reduced residues of order d modulo p.
- The congruence $x^{d} \equiv 1(\bmod p)$ has exactly d solutions.
- Thus every solution has order dividing d.
- Also each residue with order dividing d is a solution.
- Thus for each $d \mid p-1$ we have $\sum_{r \mid d} \psi(r)=d$.
- This is reminiscent of an earlier formula $\sum_{r \mid d} \phi(r)=d$.
- Let $1=d_{1}<d_{2}<\ldots<d_{k}=p-1$ be the divisors of $p-1$ in order.
- We have a relationship $\sum_{r \mid d_{j}} \psi(r)=d_{j}$ for each $j=1,2, \ldots$ and, of course, the sum is over a subset of the divisors of $p-1$. I claim that this determines $\psi\left(d_{j}\right)$ uniquely.
- We have a relationship

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ where the sum is over the divisors of d_{j} and so is over a subset of the divisors of $p-1$.

- We have a relationship

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ where the sum is over the divisors of d_{j} and so is over a subset of the divisors of $p-1$.

- I claim that these relationships determines $\psi\left(d_{j}\right)$ uniquely.
- We have a relationship

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ where the sum is over the divisors of d_{j} and so is over a subset of the divisors of $p-1$.

- I claim that these relationships determines $\psi\left(d_{j}\right)$ uniquely.
- We can prove this by observing that if N is the number of positive divisors of $p-1$, then we have N linear equations in the N unknowns $\psi(r)$ and we can we can write this in matrix notation

$$
\psi \mathcal{U}=\mathbf{d}
$$

- We have a relationship

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ where the sum is over the divisors of d_{j} and so is over a subset of the divisors of $p-1$.

- I claim that these relationships determines $\psi\left(d_{j}\right)$ uniquely.
- We can prove this by observing that if N is the number of positive divisors of $p-1$, then we have N linear equations in the N unknowns $\psi(r)$ and we can we can write this in matrix notation

$$
\psi \mathcal{U}=\mathbf{d}
$$

- Moreover \mathcal{U} is an upper triangular matrix with non-zero entries on the diagonal and so is invertible.
- We have a relationship

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ where the sum is over the divisors of d_{j} and so is over a subset of the divisors of $p-1$.

- I claim that these relationships determines $\psi\left(d_{j}\right)$ uniquely.
- We can prove this by observing that if N is the number of positive divisors of $p-1$, then we have N linear equations in the N unknowns $\psi(r)$ and we can we can write this in matrix notation

$$
\psi \mathcal{U}=\mathbf{d}
$$

- Moreover \mathcal{U} is an upper triangular matrix with non-zero entries on the diagonal and so is invertible.
- Hence the $\psi\left(d_{j}\right)$ are uniquely determined.
- We have a relationship

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ where the sum is over the divisors of d_{j} and so is over a subset of the divisors of $p-1$.

- I claim that these relationships determines $\psi\left(d_{j}\right)$ uniquely.
- We can prove this by observing that if N is the number of positive divisors of $p-1$, then we have N linear equations in the N unknowns $\psi(r)$ and we can we can write this in matrix notation

$$
\psi \mathcal{U}=\mathbf{d}
$$

- Moreover \mathcal{U} is an upper triangular matrix with non-zero entries on the diagonal and so is invertible.
- Hence the $\psi\left(d_{j}\right)$ are uniquely determined.
- But we already know a solution, namely $\psi=\phi$.

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

Primitive

 Roots- If we wish to avoid the linear algebra, starting from

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ we can prove uniqueness by induction.

- If we wish to avoid the linear algebra, starting from

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ we can prove uniqueness by induction.

- For the base case we have $\psi(1)=1$.
- If we wish to avoid the linear algebra, starting from

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ we can prove uniqueness by induction.

- For the base case we have $\psi(1)=1$.
- Then suppose that $\psi\left(d_{1}\right), \ldots, \psi\left(d_{j}\right)$ are determined.
- If we wish to avoid the linear algebra, starting from

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ we can prove uniqueness by induction.

- For the base case we have $\psi(1)=1$.
- Then suppose that $\psi\left(d_{1}\right), \ldots, \psi\left(d_{j}\right)$ are determined.
- Then we have

$$
\sum_{r \mid d_{j+1}} \psi(r)=d_{j+1}
$$

- If we wish to avoid the linear algebra, starting from

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ we can prove uniqueness by induction.

- For the base case we have $\psi(1)=1$.
- Then suppose that $\psi\left(d_{1}\right), \ldots, \psi\left(d_{j}\right)$ are determined.
- Then we have

$$
\sum_{r \mid d_{j+1}} \psi(r)=d_{j+1}
$$

- Hence

$$
\psi\left(d_{j+1}\right)=d_{j+1}-\sum_{\substack{r \mid d_{j+1} \\ r<d_{j+1}}} \psi(r)
$$

and every term on the right hand side is already determined.

- If we wish to avoid the linear algebra, starting from

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ we can prove uniqueness by induction.

- For the base case we have $\psi(1)=1$.
- Then suppose that $\psi\left(d_{1}\right), \ldots, \psi\left(d_{j}\right)$ are determined.
- Then we have

$$
\sum_{r \mid d_{j+1}} \psi(r)=d_{j+1}
$$

- Hence

$$
\psi\left(d_{j+1}\right)=d_{j+1}-\sum_{\substack{r \mid d_{j+1} \\ r<d_{j+1}}} \psi(r)
$$

and every term on the right hand side is already determined.

- Thus we can conclude there is only one solution to our system of equations.
- If we wish to avoid the linear algebra, starting from

$$
\sum_{r \mid d_{j}} \psi(r)=d_{j}
$$

for each $j=1,2, \ldots$ we can prove uniqueness by induction.

- For the base case we have $\psi(1)=1$.
- Then suppose that $\psi\left(d_{1}\right), \ldots, \psi\left(d_{j}\right)$ are determined.
- Then we have

$$
\sum_{r \mid d_{j+1}} \psi(r)=d_{j+1}
$$

- Hence

$$
\psi\left(d_{j+1}\right)=d_{j+1}-\sum_{\substack{r \mid d_{j+1} \\ r<d_{j+1}}} \psi(r)
$$

and every term on the right hand side is already determined.

- Thus we can conclude there is only one solution to our system of equations.
- But we already know one solution, namely $\psi(r)=\phi\left(r_{\underline{\underline{D}}}\right)$.
- How about higher powers of odd primes?

Theorem 8 (Gauss)

We have primitive roots modulo m when $m=2, m=4$, $m=p^{k}$ and $m=2 p^{k}$ with p an odd prime and in no other cases.

- How about higher powers of odd primes?

Theorem 8 (Gauss)

We have primitive roots modulo m when $m=2, m=4$, $m=p^{k}$ and $m=2 p^{k}$ with p an odd prime and in no other cases.

- In applications one can usually reduce via the Chinese Remainder Theorem to powers of primes.
- How about higher powers of odd primes?

Theorem 8 (Gauss)

We have primitive roots modulo m when $m=2, m=4$, $m=p^{k}$ and $m=2 p^{k}$ with p an odd prime and in no other cases.

- In applications one can usually reduce via the Chinese Remainder Theorem to powers of primes.
- Thus the lack of primitive roots for higher powers of 2 us a nuisance.
- How about higher powers of odd primes?

Theorem 8 (Gauss)

We have primitive roots modulo m when $m=2, m=4$, $m=p^{k}$ and $m=2 p^{k}$ with p an odd prime and in no other cases.

- In applications one can usually reduce via the Chinese Remainder Theorem to powers of primes.
- Thus the lack of primitive roots for higher powers of 2 us a nuisance.
- Nevertheless Gauss did prove something.

Theorem 9 (Gauss)

Suppose that $k \geq 3$. Then the numbers $(-1)^{u} 5^{v}$ with $u=0,1$ and $0 \leq v<2^{k-2}$ form a set of reduced residues modulo 2^{k}

- How about higher powers of odd primes?

Theorem 8 (Gauss)

We have primitive roots modulo m when $m=2, m=4$, $m=p^{k}$ and $m=2 p^{k}$ with p an odd prime and in no other cases.

- In applications one can usually reduce via the Chinese Remainder Theorem to powers of primes.
- Thus the lack of primitive roots for higher powers of 2 us a nuisance.
- Nevertheless Gauss did prove something.

Theorem 9 (Gauss)

Suppose that $k \geq 3$. Then the numbers $(-1)^{u} 5^{v}$ with $u=0,1$ and $0 \leq v<2^{k-2}$ form a set of reduced residues modulo 2^{k}

- We will not need these results but I will include the proofs in the class text for anyone interested.

Binomial Congruences

- As an application of primitive roots we can say something when p is odd about the solution of congruences of the form

$$
x^{k} \equiv a(\bmod p)
$$

Binomial Congruences

Chapter 4 Primitive Roots and RSA

Robert C . Vaughan

- As an application of primitive roots we can say something when p is odd about the solution of congruences of the form

$$
x^{k} \equiv a(\bmod p)
$$

- The case $a=0$ is easy.

Binomial Congruences

Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

- As an application of primitive roots we can say something when p is odd about the solution of congruences of the form

$$
x^{k} \equiv a(\bmod p)
$$

- The case $a=0$ is easy.
- The only solution is $x \equiv 0(\bmod p)$.

Binomial Congruences

- As an application of primitive roots we can say something when p is odd about the solution of congruences of the form

$$
x^{k} \equiv a(\bmod p)
$$

- The case $a=0$ is easy.
- The only solution is $x \equiv 0(\bmod p)$.
- Suppose $a \not \equiv 0(\bmod p)$. Then pick a primitive root g modulo p, and a c so that $g^{c} \equiv a(\bmod p)$.

Binomial Congruences

- As an application of primitive roots we can say something when p is odd about the solution of congruences of the form

$$
x^{k} \equiv a(\bmod p)
$$

- The case $a=0$ is easy.
- The only solution is $x \equiv 0(\bmod p)$.
- Suppose $a \not \equiv 0(\bmod p)$. Then pick a primitive root g modulo p, and a c so that $g^{c} \equiv a(\bmod p)$.
- Also, since any solution x will have $p \nmid x$ we can define y so that $g^{y} \equiv x(\bmod p)$.

Binomial Congruences

- As an application of primitive roots we can say something when p is odd about the solution of congruences of the form

$$
x^{k} \equiv a(\bmod p)
$$

- The case $a=0$ is easy.
- The only solution is $x \equiv 0(\bmod p)$.
- Suppose $a \not \equiv 0(\bmod p)$. Then pick a primitive root g modulo p, and a c so that $g^{c} \equiv a(\bmod p)$.
- Also, since any solution x will have $p \nmid x$ we can define y so that $g^{y} \equiv x(\bmod p)$.
- Thus our congruence becomes

$$
g^{k y} \equiv g^{c}(\bmod p)
$$

Binomial Congruences

- As an application of primitive roots we can say something when p is odd about the solution of congruences of the form

$$
x^{k} \equiv a(\bmod p)
$$

- The case $a=0$ is easy.
- The only solution is $x \equiv 0(\bmod p)$.
- Suppose $a \not \equiv 0(\bmod p)$. Then pick a primitive root g modulo p, and a c so that $g^{c} \equiv a(\bmod p)$.
- Also, since any solution x will have $p \nmid x$ we can define y so that $g^{y} \equiv x(\bmod p)$.
- Thus our congruence becomes

$$
g^{k y} \equiv g^{c}(\bmod p)
$$

- Hence it follows that

$$
k y \equiv c(\bmod p-1)
$$

```
Factorization
and Primality Testing Chapter 4 Primitive Roots and RSA
Robert C. Vaughan
```


Primitive

``` Roots
Binomial Congruences and Discrete Logarithms
```

- We have turned a polynomial congruence into a linear one.
- We have turned a polynomial congruence into a linear one.
- This is a bit like using logarithms on real numbers.

$$
\begin{gathered}
x^{k} \equiv a(\bmod p), g^{k y} \equiv g^{c}(\bmod p) \\
k y \equiv c(\bmod p-1)
\end{gathered}
$$

- We have turned a polynomial congruence into a linear one.
- This is a bit like using logarithms on real numbers.

$$
\begin{gathered}
x^{k} \equiv a(\bmod p), g^{k y} \equiv g^{c}(\bmod p) \\
k y \equiv c(\bmod p-1)
\end{gathered}
$$

- Sometimes the exponents c and y are referred to as the discrete logarithms modulo p to the base g.
- We have turned a polynomial congruence into a linear one.
- This is a bit like using logarithms on real numbers.

$$
\begin{gathered}
x^{k} \equiv a(\bmod p), g^{k y} \equiv g^{c}(\bmod p) \\
k y \equiv c(\bmod p-1)
\end{gathered}
$$

- Sometimes the exponents c and y are referred to as the discrete logarithms modulo p to the base g.
- Computing them numerically is hard and there is a protocol (Diffie-Hellman) which uses them to exchange secure keys and passwords.
- We have turned a polynomial congruence into a linear one.
- This is a bit like using logarithms on real numbers.

$$
\begin{gathered}
x^{k} \equiv a(\bmod p), g^{k y} \equiv g^{c}(\bmod p), \\
k y \equiv c(\bmod p-1)
\end{gathered}
$$

- Sometimes the exponents c and y are referred to as the discrete logarithms modulo p to the base g.
- Computing them numerically is hard and there is a protocol (Diffie-Hellman) which uses them to exchange secure keys and passwords.
- Our new congruence is soluble if and only if $(k, p-1) \mid c$, and when this holds the y which satisfy it lie in a residue class modulo $\frac{p-1}{(k, p-1)}$, i.e. $(k, p-1)$ different residue classes modulo $p-1$.
- We have turned a polynomial congruence into a linear one.
- This is a bit like using logarithms on real numbers.

$$
\begin{gathered}
x^{k} \equiv a(\bmod p), g^{k y} \equiv g^{c}(\bmod p), \\
k y \equiv c(\bmod p-1)
\end{gathered}
$$

- Sometimes the exponents c and y are referred to as the discrete logarithms modulo p to the base g.
- Computing them numerically is hard and there is a protocol (Diffie-Hellman) which uses them to exchange secure keys and passwords.
- Our new congruence is soluble if and only if $(k, p-1) \mid c$, and when this holds the y which satisfy it lie in a residue class modulo $\frac{p-1}{(k, p-1)}$, i.e. $(k, p-1)$ different residue classes modulo $p-1$.
- Thus, when $a \not \equiv 0(\bmod p)$ the original congruence is either insoluble or has $(k, p-1)$ solutions.
- We have turned a polynomial congruence into a linear one.
- This is a bit like using logarithms on real numbers.

$$
\begin{gathered}
x^{k} \equiv a(\bmod p), g^{k y} \equiv g^{c}(\bmod p), \\
k y \equiv c(\bmod p-1)
\end{gathered}
$$

- Sometimes the exponents c and y are referred to as the discrete logarithms modulo p to the base g.
- Computing them numerically is hard and there is a protocol (Diffie-Hellman) which uses them to exchange secure keys and passwords.
- Our new congruence is soluble if and only if $(k, p-1) \mid c$, and when this holds the y which satisfy it lie in a residue class modulo $\frac{p-1}{(k, p-1)}$, i.e. $(k, p-1)$ different residue classes modulo $p-1$.
- Thus, when $a \not \equiv 0(\bmod p)$ the original congruence is either insoluble or has $(k, p-1)$ solutions.
- We have turned a polynomial congruence into a linear one.
- This is a bit like using logarithms on real numbers.

$$
\begin{gathered}
x^{k} \equiv a(\bmod p), g^{k y} \equiv g^{c}(\bmod p), \\
k y \equiv c(\bmod p-1)
\end{gathered}
$$

- Sometimes the exponents c and y are referred to as the discrete logarithms modulo p to the base g.
- Computing them numerically is hard and there is a protocol (Diffie-Hellman) which uses them to exchange secure keys and passwords.
- Our new congruence is soluble if and only if $(k, p-1) \mid c$, and when this holds the y which satisfy it lie in a residue class modulo $\frac{p-1}{(k, p-1)}$, i.e. $(k, p-1)$ different residue classes modulo $p-1$.
- Thus, when $a \not \equiv 0(\bmod p)$ the original congruence is either insoluble or has $(k, p-1)$ solutions.
- Thus we just proved a theorem.

Discrete Logarithms

Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

- Thus we just proved a theorem.

Theorem 10

Suppose p is an odd prime. When $p \nmid a$ the congruence $x^{k} \equiv a$ $(\bmod p)$ has 0 or $(k, p-1)$ solutions, and the number of reduced residues a modulo p for which it is soluble is $\frac{p-1}{(k, p-1)}$.

- Thus we just proved a theorem.

Theorem 10

Suppose p is an odd prime. When $p \nmid a$ the congruence $x^{k} \equiv a$ $(\bmod p)$ has 0 or $(k, p-1)$ solutions, and the number of reduced residues a modulo p for which it is soluble is $\frac{p-1}{(k, p-1)}$.

- The above theorem suggests the following.

Definition 11

Given a primitive root g and a reduced residue class a modulo m we define the discrete logarithm $\operatorname{dlog}_{g}(a)$, or index ind $g(a)$ to be that unique residue class / modulo $\phi(m)$ such that $g^{\prime} \equiv a$ $(\bmod m)$

- Thus we just proved a theorem.

Theorem 10

Suppose p is an odd prime. When $p \nmid a$ the congruence $x^{k} \equiv a$ $(\bmod p)$ has 0 or $(k, p-1)$ solutions, and the number of reduced residues a modulo p for which it is soluble is $\frac{p-1}{(k, p-1)}$.

- The above theorem suggests the following.

Definition 11

Given a primitive root g and a reduced residue class a modulo m we define the discrete $\log ^{2}$ rithm $\operatorname{dlog}_{g}(a)$, or index ind ${ }_{g}(a)$ to be that unique residue class / modulo $\phi(m)$ such that $g^{\prime} \equiv a$ $(\bmod m)$

- The notation $\operatorname{ind}_{g}(x)$ is more commonly used, but $\operatorname{dlog}_{g}(x)$ seems more natural.

Primitive

 Roots- It is useful to work through a detailed example.

Example 12

Find a primitive root modulo 11 and construct a table of discrete logarithms.

- It is useful to work through a detailed example.

Example 12

Find a primitive root modulo 11 and construct a table of discrete logarithms.

- First we try 2. The divisors of $11-1=10$ are $1,2,5,10$ and $2^{1}=2 \not \equiv 1(\bmod 11), 2^{2}=4 \not \equiv 1(\bmod 11)$, $2^{5}=32 \equiv 10 \not \equiv 1(\bmod 11)$, so 2 is a primitive root.
- It is useful to work through a detailed example.

Example 12

Find a primitive root modulo 11 and construct a table of discrete logarithms.

- First we try 2. The divisors of $11-1=10$ are $1,2,5,10$ and $2^{1}=2 \not \equiv 1(\bmod 11), 2^{2}=4 \not \equiv 1(\bmod 11)$, $2^{5}=32 \equiv 10 \not \equiv 1(\bmod 11)$, so 2 is a primitive root.
- Now we construct a table of powers of 2 modulo 11

y	1	2	3	4	5	6	7	8	9	10
$x \equiv 2^{y}$	2	4	8	5	10	9	7	3	6	1

- It is useful to work through a detailed example.

Example 12

Find a primitive root modulo 11 and construct a table of discrete logarithms.

- First we try 2. The divisors of $11-1=10$ are $1,2,5,10$ and $2^{1}=2 \not \equiv 1(\bmod 11), 2^{2}=4 \not \equiv 1(\bmod 11)$, $2^{5}=32 \equiv 10 \not \equiv 1(\bmod 11)$, so 2 is a primitive root.
- Now we construct a table of powers of 2 modulo 11

y	1	2	3	4	5	6	7	8	9	10
$x \equiv 2^{y}$	2	4	8	5	10	9	7	3	6	1

- Then we construct the "inverse" table

x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

- It is useful to work through a detailed example.

Example 12

Find a primitive root modulo 11 and construct a table of discrete logarithms.

- First we try 2. The divisors of $11-1=10$ are $1,2,5,10$ and $2^{1}=2 \not \equiv 1(\bmod 11), 2^{2}=4 \not \equiv 1(\bmod 11)$, $2^{5}=32 \equiv 10 \not \equiv 1(\bmod 11)$, so 2 is a primitive root.
- Now we construct a table of powers of 2 modulo 11

y	1	2	3	4	5	6	7	8	9	10
$x \equiv 2^{y}$	2	4	8	5	10	9	7	3	6	1

- Then we construct the "inverse" table

x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

- Note that while x is a residue modulo p (here $p=11$), the y are residues modulo $p-1$ (here 10).
- It is useful to work through a detailed example.

Example 12

Find a primitive root modulo 11 and construct a table of discrete logarithms.

- First we try 2. The divisors of $11-1=10$ are $1,2,5,10$ and $2^{1}=2 \not \equiv 1(\bmod 11), 2^{2}=4 \not \equiv 1(\bmod 11)$, $2^{5}=32 \equiv 10 \not \equiv 1(\bmod 11)$, so 2 is a primitive root.
- Now we construct a table of powers of 2 modulo 11

y	1	2	3	4	5	6	7	8	9	10
$x \equiv 2^{y}$	2	4	8	5	10	9	7	3	6	1

- Then we construct the "inverse" table

x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

- Note that while x is a residue modulo p (here $p=11$), the y are residues modulo $p-1$ (here 10).
- y is the order, or exponent, to which 2 has to be raised to give x modulo p. In other words $x \equiv g^{\text {dlog }_{g}(x)}(\bmod p)$.
- It is useful to work through a detailed example.

Example 12

Find a primitive root modulo 11 and construct a table of discrete logarithms.

- First we try 2. The divisors of $11-1=10$ are $1,2,5,10$ and $2^{1}=2 \not \equiv 1(\bmod 11), 2^{2}=4 \not \equiv 1(\bmod 11)$, $2^{5}=32 \equiv 10 \not \equiv 1(\bmod 11)$, so 2 is a primitive root.
- Now we construct a table of powers of 2 modulo 11

y	1	2	3	4	5	6	7	8	9	10
$x \equiv 2^{y}$	2	4	8	5	10	9	7	3	6	1

- Then we construct the "inverse" table

x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

- Note that while x is a residue modulo p (here $p=11$), the y are residues modulo $p-1$ (here 10).
- y is the order, or exponent, to which 2 has to be raised to give x modulo p. In other words $x \equiv g^{\text {dlog }_{g}(x)}(\bmod p)$.
- We can use this to solve congruences.

Factorization and Primality Testing Chapter 4 Primitive
Roots and RSA

Robert C. Vaughan

Primitive

Roots
Binomial
Congruences and Discrete Logarithms

y	1	2	3	4	5	6	7	8	9	10
$x \equiv 2^{y}$	2	4	8	5	10	9	7	3	6	1
x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

- We can use this to solve,

Example 13

if possible, the congruences,

$$
\begin{aligned}
x^{3} & \equiv 6(\bmod 11) \\
x^{5} & \equiv 9(\bmod 11) \\
x^{65} & \equiv 10(\bmod 11)
\end{aligned}
$$

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

- We can use this to solve,

Example 13

if possible, the congruences,

$$
\begin{aligned}
x^{3} & \equiv 6(\bmod 11) \\
x^{5} & \equiv 9(\bmod 11) \\
x^{65} & \equiv 10(\bmod 11)
\end{aligned}
$$

- In the first put $x \equiv 2^{y}(\bmod 11)$, so that $x^{3}=2^{3 y}$ and we see from the second table that $6 \equiv 2^{9}(\bmod 11)$.

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

- We can use this to solve,

Example 13

if possible, the congruences,

$$
\begin{aligned}
x^{3} & \equiv 6(\bmod 11) \\
x^{5} & \equiv 9(\bmod 11) \\
x^{65} & \equiv 10(\bmod 11)
\end{aligned}
$$

- In the first put $x \equiv 2^{y}(\bmod 11)$, so that $x^{3}=2^{3 y}$ and we see from the second table that $6 \equiv 2^{9}(\bmod 11)$.

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

Roots
Binomial
Congruences and Discrete Logarithms

x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

- We can use this to solve,

Example 13

if possible, the congruences,

$$
\begin{aligned}
x^{3} & \equiv 6(\bmod 11) \\
x^{5} & \equiv 9(\bmod 11) \\
x^{65} & \equiv 10(\bmod 11)
\end{aligned}
$$

- In the first put $x \equiv 2^{y}(\bmod 11)$, so that $x^{3}=2^{3 y}$ and we see from the second table that $6 \equiv 2^{9}(\bmod 11)$.
- We need $3 y \equiv 9(\bmod 10)$.

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

Roots
Binomial
Congruences and Discrete Logarithms

- | y | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x \equiv 2^{y}$ | 2 | 4 | 8 | 5 | 10 | 9 | 7 | 3 | 6 | 1 |

x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

- We can use this to solve,

Example 13

if possible, the congruences,

$$
\begin{aligned}
x^{3} & \equiv 6(\bmod 11) \\
x^{5} & \equiv 9(\bmod 11) \\
x^{65} & \equiv 10(\bmod 11)
\end{aligned}
$$

- In the first put $x \equiv 2^{y}(\bmod 11)$, so that $x^{3}=2^{3 y}$ and we see from the second table that $6 \equiv 2^{9}(\bmod 11)$.
- We need $3 y \equiv 9(\bmod 10)$.
- This has the unique solution $y \equiv 3(\bmod 10)$.

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

- | y | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x \equiv 2^{y}$ | 2 | 4 | 8 | 5 | 10 | 9 | 7 | 3 | 6 | 1 |

x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

- We can use this to solve,

Example 13

if possible, the congruences,

$$
\begin{aligned}
x^{3} & \equiv 6(\bmod 11) \\
x^{5} & \equiv 9(\bmod 11) \\
x^{65} & \equiv 10(\bmod 11)
\end{aligned}
$$

- In the first put $x \equiv 2^{y}(\bmod 11)$, so that $x^{3}=2^{3 y}$ and we see from the second table that $6 \equiv 2^{9}(\bmod 11)$.
- We need $3 y \equiv 9(\bmod 10)$.
- This has the unique solution $y \equiv 3(\bmod 10)$.
- Going to the first table we find that $x \equiv 8(\bmod 11)$.

Factorization and Primality	y	2	3	4	5	6	7			10	
	$x \equiv 2^{y} \quad 2$	4	8	5	10	9		3	6		
Chapter 4 Primitive	x	1	2	3	4	5	6		8	9	10
Roots and RSA	$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9		3	6	5
Robert C Vaughan				6	mod						
Primitive Roots				9							
Binomial Congruences			=	10	(mod						

y	1	2	3	4	5	6	7	8	9	10
$x \equiv 2^{y}$	2	4	8	5	10	9	7	3	6	1
x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5
$x^{3} \equiv 6(\bmod 11)$										
	$x^{5} \equiv 9(\bmod 11)$,									
	$x^{65} \equiv 10(\bmod 11)$									

- For the second congruence we find that $5 y \equiv 6(\bmod 10)$ and now we see that this has no solutions because $(5,10)=5 \nmid 6$.

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

y	1	2	3	4	5	6	7	8	9	10
$x \equiv 2^{y}$	2	4	8	5	10	9	7	3	6	1
x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dlog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

$$
\begin{aligned}
x^{3} & \equiv 6(\bmod 11) \\
x^{5} & \equiv 9(\bmod 11) \\
x^{65} & \equiv 10(\bmod 11)
\end{aligned}
$$

- For the second congruence we find that $5 y \equiv 6(\bmod 10)$ and now we see that this has no solutions because $(5,10)=5 \nmid 6$.
- In the third case we have $65 y \equiv 5(\bmod 10)$ and this is equivalent to $13 y \equiv 1(\bmod 2)$ and this has one solution modulo $y \equiv 1(\bmod 2)$, and so 5 solutions modulo 10 given by $y \equiv 1,3,5,7$ or 9 modulo 10 .

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

y	1	2	3	4	5	6	7	8	9	10
$x \equiv 2^{y}$	2	4	8	5	10	9	7	3	6	1
x	1	2	3	4	5	6	7	8	9	10
$y=\operatorname{dog}_{2}(x)$	10	1	8	2	4	9	7	3	6	5

$$
\begin{aligned}
x^{3} & \equiv 6(\bmod 11) \\
x^{5} & \equiv 9(\bmod 11) \\
x^{65} & \equiv 10(\bmod 11)
\end{aligned}
$$

- For the second congruence we find that $5 y \equiv 6(\bmod 10)$ and now we see that this has no solutions because $(5,10)=5 \nmid 6$.
- In the third case we have $65 y \equiv 5(\bmod 10)$ and this is equivalent to $13 y \equiv 1(\bmod 2)$ and this has one solution modulo $y \equiv 1(\bmod 2)$, and so 5 solutions modulo 10 given by $y \equiv 1,3,5,7$ or 9 modulo 10 .
- Hence the original congruence has five solutions given by

$$
x \equiv 2,8,10,7,6(\bmod 11)
$$

- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- This is sometimes described as a way of sharing information by public key encryption.
- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- This is sometimes described as a way of sharing information by public key encryption.
- The principle of the method is as follows.
- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- This is sometimes described as a way of sharing information by public key encryption.
- The principle of the method is as follows.
- Let $n, d, e \in \mathbb{N}$ be such that $d e \equiv 1(\bmod \phi(n))$.
- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- This is sometimes described as a way of sharing information by public key encryption.
- The principle of the method is as follows.
- Let $n, d, e \in \mathbb{N}$ be such that $d e \equiv 1(\bmod \phi(n))$.
- Given a message M encoded as a number with $M<n$,
- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- This is sometimes described as a way of sharing information by public key encryption.
- The principle of the method is as follows.
- Let $n, d, e \in \mathbb{N}$ be such that $d e \equiv 1(\bmod \phi(n))$.
- Given a message M encoded as a number with $M<n$,
- compute $E \equiv M^{e}(\bmod n)$ and transmit E.
- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- This is sometimes described as a way of sharing information by public key encryption.
- The principle of the method is as follows.
- Let $n, d, e \in \mathbb{N}$ be such that $d e \equiv 1(\bmod \phi(n))$.
- Given a message M encoded as a number with $M<n$,
- compute $E \equiv M^{e}(\bmod n)$ and transmit E.
- The recipient then computes $E^{d}(\bmod n)$.
- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- This is sometimes described as a way of sharing information by public key encryption.
- The principle of the method is as follows.
- Let $n, d, e \in \mathbb{N}$ be such that $d e \equiv 1(\bmod \phi(n))$.
- Given a message M encoded as a number with $M<n$,
- compute $E \equiv M^{e}(\bmod n)$ and transmit E.
- The recipient then computes $E^{d}(\bmod n)$.
- Then $E^{d} \equiv\left(M^{e}\right)^{d}=M^{d e} \equiv M(\bmod n)$, since $\phi(n) \mid d e-1$, and the recipient recovers the message.
- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- This is sometimes described as a way of sharing information by public key encryption.
- The principle of the method is as follows.
- Let $n, d, e \in \mathbb{N}$ be such that $d e \equiv 1(\bmod \phi(n))$.
- Given a message M encoded as a number with $M<n$,
- compute $E \equiv M^{e}(\bmod n)$ and transmit E.
- The recipient then computes $E^{d}(\bmod n)$.
- Then $E^{d} \equiv\left(M^{e}\right)^{d}=M^{d e} \equiv M(\bmod n)$, since $\phi(n) \mid d e-1$, and the recipient recovers the message.
- The sender has to know only n and e.
- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- This is sometimes described as a way of sharing information by public key encryption.
- The principle of the method is as follows.
- Let $n, d, e \in \mathbb{N}$ be such that $d e \equiv 1(\bmod \phi(n))$.
- Given a message M encoded as a number with $M<n$,
- compute $E \equiv M^{e}(\bmod n)$ and transmit E.
- The recipient then computes $E^{d}(\bmod n)$.
- Then $E^{d} \equiv\left(M^{e}\right)^{d}=M^{d e} \equiv M(\bmod n)$, since $\phi(n) \mid d e-1$, and the recipient recovers the message.
- The sender has to know only n and e.
- The recipient only has to know n and d.
- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- This is sometimes described as a way of sharing information by public key encryption.
- The principle of the method is as follows.
- Let $n, d, e \in \mathbb{N}$ be such that $d e \equiv 1(\bmod \phi(n))$.
- Given a message M encoded as a number with $M<n$,
- compute $E \equiv M^{e}(\bmod n)$ and transmit E.
- The recipient then computes $E^{d}(\bmod n)$.
- Then $E^{d} \equiv\left(M^{e}\right)^{d}=M^{d e} \equiv M(\bmod n)$, since $\phi(n) \mid d e-1$, and the recipient recovers the message.
- The sender has to know only n and e.
- The recipient only has to know n and d.
- The level of security depends only on the ease with which one can find d knowing n and e.
- Rivest, Shamir and Adleman in 1978 rediscovered an idea which had already been described internally at GCHQ by Cocks in 1973 and then shared with NSA.
- This is sometimes described as a way of sharing information by public key encryption.
- The principle of the method is as follows.
- Let $n, d, e \in \mathbb{N}$ be such that $d e \equiv 1(\bmod \phi(n))$.
- Given a message M encoded as a number with $M<n$,
- compute $E \equiv M^{e}(\bmod n)$ and transmit E.
- The recipient then computes $E^{d}(\bmod n)$.
- Then $E^{d} \equiv\left(M^{e}\right)^{d}=M^{d e} \equiv M(\bmod n)$, since $\phi(n) \mid d e-1$, and the recipient recovers the message.
- The sender has to know only n and e.
- The recipient only has to know n and d.
- The level of security depends only on the ease with which one can find d knowing n and e.
- The numbers n and e can be in the public domain.

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA
 Robert C. Vaughan

- The crucial question is, given n and d, the solubility of $d e \equiv 1(\bmod \phi(n))$
and this in turn requires the value of $\phi(n)$.

Factorization and Primality Testing Chapter 4 Primitive Roots and RSA

Robert C. Vaughan

- The crucial question is, given n and d, the solubility of

$$
d e \equiv 1(\bmod \phi(n))
$$

and this in turn requires the value of $\phi(n)$.

- Suppose that n is the product of two primes

$$
n=p q .
$$

- The crucial question is, given n and d, the solubility of

$$
d e \equiv 1(\bmod \phi(n))
$$

and this in turn requires the value of $\phi(n)$.

- Suppose that n is the product of two primes

$$
n=p q .
$$

- If n can be factored then we have $\phi(n)=(p-1)(q-1)$.
- The crucial question is, given n and d, the solubility of

$$
d e \equiv 1(\bmod \phi(n))
$$

and this in turn requires the value of $\phi(n)$.

- Suppose that n is the product of two primes

$$
n=p q .
$$

- If n can be factored then we have $\phi(n)=(p-1)(q-1)$.
- But this factorization is a known hard problem, especially when the primes are roughly of the same size.
- The crucial question is, given n and d, the solubility of

$$
d e \equiv 1(\bmod \phi(n))
$$

and this in turn requires the value of $\phi(n)$.

- Suppose that n is the product of two primes

$$
n=p q .
$$

- If n can be factored then we have $\phi(n)=(p-1)(q-1)$.
- But this factorization is a known hard problem, especially when the primes are roughly of the same size.
- Of course if the value of $\phi(n)$ can be discovered not only is the message easily broken,
- The crucial question is, given n and d, the solubility of

$$
d e \equiv 1(\bmod \phi(n))
$$

and this in turn requires the value of $\phi(n)$.

- Suppose that n is the product of two primes

$$
n=p q
$$

- If n can be factored then we have $\phi(n)=(p-1)(q-1)$.
- But this factorization is a known hard problem, especially when the primes are roughly of the same size.
- Of course if the value of $\phi(n)$ can be discovered not only is the message easily broken,
- but n is easily factored since one has

$$
\begin{gathered}
p+q=p q+1-\phi(n)=n+1-\phi(n), \\
p q=n
\end{gathered}
$$

and once can substitute for q and then solve the quadratic equation in p.

- The crucial question is, given n and d, the solubility of

$$
d e \equiv 1(\bmod \phi(n))
$$

and this in turn requires the value of $\phi(n)$.

- Suppose that n is the product of two primes

$$
n=p q
$$

- If n can be factored then we have $\phi(n)=(p-1)(q-1)$.
- But this factorization is a known hard problem, especially when the primes are roughly of the same size.
- Of course if the value of $\phi(n)$ can be discovered not only is the message easily broken,
- but n is easily factored since one has

$$
\begin{gathered}
p+q=p q+1-\phi(n)=n+1-\phi(n), \\
p q=n
\end{gathered}
$$

and once can substitute for q and then solve the quadratic equation in p.

- In other words, knowing $\phi(n)$ is equivalent to factoring n.

