```
Factorization
and Primality
    Testing
    Chapter 3
Congruences
and Residue
    Classes
Robert C.
Vaughan
```


Factorization and Primality Testing Chapter 3 Congruences and Residue Classes

Robert C. Vaughan

September 8, 2023

Residue Classes

- We next topic was first developed by Gauss.

Definition 1

Let $m \in \mathbb{N}$ and define the residue class \bar{r} modulo m by

$$
\bar{r}=\{x \in \mathbb{Z}: m \mid(x-r)\} .
$$

By the division algorithm every integer is in one

$$
\overline{0}, \overline{1}, \ldots, \overline{m-1}
$$

This is often called a complete system of residues modulo m.

Residue Classes

- We next topic was first developed by Gauss.

Definition 1

Let $m \in \mathbb{N}$ and define the residue class \bar{r} modulo m by

$$
\bar{r}=\{x \in \mathbb{Z}: m \mid(x-r)\} .
$$

By the division algorithm every integer is in one

$$
\overline{0}, \overline{1}, \ldots, \overline{m-1}
$$

This is often called a complete system of residues modulo m.

- The remarkable thing is that we can perform arithmetic on the residue classes just as if they were numbers.

Residue Classes

- We next topic was first developed by Gauss.

Definition 1

Let $m \in \mathbb{N}$ and define the residue class \bar{r} modulo m by

$$
\bar{r}=\{x \in \mathbb{Z}: m \mid(x-r)\} .
$$

By the division algorithm every integer is in one

$$
\overline{0}, \overline{1}, \ldots, \overline{m-1}
$$

This is often called a complete system of residues modulo m.

- The remarkable thing is that we can perform arithmetic on the residue classes just as if they were numbers.
- The residue class $\overline{0}$ behaves like the number 0 ,

Residue Classes

- We next topic was first developed by Gauss.

Definition 1

Let $m \in \mathbb{N}$ and define the residue class \bar{r} modulo m by

$$
\bar{r}=\{x \in \mathbb{Z}: m \mid(x-r)\} .
$$

By the division algorithm every integer is in one

$$
\overline{0}, \overline{1}, \ldots, \overline{m-1}
$$

This is often called a complete system of residues modulo m.

- The remarkable thing is that we can perform arithmetic on the residue classes just as if they were numbers.
- The residue class $\overline{0}$ behaves like the number 0 ,
- because $\overline{0}$ is the set of multiples of m and adding any one of them to an element of \bar{r} does not change the remainder.

Factorization and Primality Testing Chapter 3 Congruences and Residue

Classes
Robert C. Vaughan

Residue

 Classes
Linear

congruences
General

- Thus for any r

$$
\overline{0}+\bar{r}=\bar{r}=\bar{r}+\overline{0} .
$$

- Thus for any r

$$
\overline{0}+\bar{r}=\bar{r}=\bar{r}+\overline{0} .
$$

- Suppose that we are given any two residue classes \bar{r} and \bar{s} modulo m. Let t be the remainder of $r+s$ on division by m. Then the elements of \bar{r} and \bar{s} are of the form $r+m x$ and $s+m x$ and we know that $r+s=t+m z$ for some z.
- Thus for any r

$$
\overline{0}+\bar{r}=\bar{r}=\bar{r}+\overline{0}
$$

- Suppose that we are given any two residue classes \bar{r} and \bar{s} modulo m. Let t be the remainder of $r+s$ on division by m. Then the elements of \bar{r} and \bar{s} are of the form $r+m x$ and $s+m x$ and we know that $r+s=t+m z$ for some z.
- Thus $r+m x+s+m y=t+m(z+x+y)$ is in \bar{t}, and it is readily seen that the converse is true.
- Thus for any r

$$
\overline{0}+\bar{r}=\bar{r}=\bar{r}+\overline{0}
$$

- Suppose that we are given any two residue classes \bar{r} and \bar{s} modulo m. Let t be the remainder of $r+s$ on division by m. Then the elements of \bar{r} and \bar{s} are of the form $r+m x$ and $s+m x$ and we know that $r+s=t+m z$ for some z.
- Thus $r+m x+s+m y=t+m(z+x+y)$ is in \bar{t}, and it is readily seen that the converse is true.
- Thus it makes sense to write $\bar{r}+\bar{s}=\bar{t}$, and then we have $\bar{r}+\bar{s}=\bar{s}+\bar{r}$.
- Thus for any r

$$
\overline{0}+\bar{r}=\bar{r}=\bar{r}+\overline{0}
$$

- Suppose that we are given any two residue classes \bar{r} and \bar{s} modulo m. Let t be the remainder of $r+s$ on division by m. Then the elements of \bar{r} and \bar{s} are of the form $r+m x$ and $s+m x$ and we know that $r+s=t+m z$ for some z.
- Thus $r+m x+s+m y=t+m(z+x+y)$ is in \bar{t}, and it is readily seen that the converse is true.
- Thus it makes sense to write $\bar{r}+\bar{s}=\bar{t}$, and then we have $\bar{r}+\bar{s}=\bar{s}+\bar{r}$.
- One can also check that

$$
\bar{r}+\overline{-r}=\overline{0}
$$

- In connection with this Gauss introduced a notation.

Definition 2

Let $m \in \mathbb{N}$. If two integers x and y satisfy $m \mid x-y$, then we write

$$
x \equiv y(\bmod m)
$$

and we say that x is congruent to y modulo m.

- In connection with this Gauss introduced a notation.

Definition 2

Let $m \in \mathbb{N}$. If two integers x and y satisfy $m \mid x-y$, then we write

$$
x \equiv y(\bmod m)
$$

and we say that x is congruent to y modulo m.

- Here are some of the properties of congruences.

$$
\begin{gathered}
x \equiv x(\bmod m) \\
x \equiv y(\bmod m) \text { iff } y \equiv x(\bmod m) \\
x \equiv y(\bmod m), y \equiv z(\bmod m) \text { implies } x \equiv z(\bmod m)
\end{gathered}
$$

- In connection with this Gauss introduced a notation.

Definition 2

Let $m \in \mathbb{N}$. If two integers x and y satisfy $m \mid x-y$, then we write

$$
x \equiv y(\bmod m)
$$

and we say that x is congruent to y modulo m.

- Here are some of the properties of congruences.

$$
\begin{gathered}
x \equiv x(\bmod m) \\
x \equiv y(\bmod m) \operatorname{iff} y \equiv x(\bmod m) \\
x \equiv y(\bmod m), y \equiv z(\bmod m) \operatorname{implies} x \equiv z(\bmod m)
\end{gathered}
$$

- These say that the relationship \equiv is reflexive, symmetric and transitive.
- In connection with this Gauss introduced a notation.

Definition 2

Let $m \in \mathbb{N}$. If two integers x and y satisfy $m \mid x-y$, then we write

$$
x \equiv y(\bmod m)
$$

and we say that x is congruent to y modulo m.

- Here are some of the properties of congruences.

$$
\begin{gathered}
x \equiv x(\bmod m) \\
x \equiv y(\bmod m) \operatorname{iff} y \equiv x(\bmod m) \\
x \equiv y(\bmod m), y \equiv z(\bmod m) \operatorname{implies} x \equiv z(\bmod m)
\end{gathered}
$$

- These say that the relationship \equiv is reflexive, symmetric and transitive.
- I leave their proofs as an exercise.
- In connection with this Gauss introduced a notation.

Definition 2

Let $m \in \mathbb{N}$. If two integers x and y satisfy $m \mid x-y$, then we write

$$
x \equiv y(\bmod m)
$$

and we say that x is congruent to y modulo m.

- Here are some of the properties of congruences.

$$
\begin{gathered}
x \equiv x(\bmod m) \\
x \equiv y(\bmod m) \text { iff } y \equiv x(\bmod m) \\
x \equiv y(\bmod m), y \equiv z(\bmod m) \operatorname{implies} x \equiv z(\bmod m)
\end{gathered}
$$

- These say that the relationship \equiv is reflexive, symmetric and transitive.
- I leave their proofs as an exercise.
- It follows that congruences modulo m partition the integers into equivalence classes.

```
Factorization
and Primality
    Testing
    Chapter }
    Congruences
    and Residue
    Classes
    Robert C.
    Vaughan
Classes
Linear
congruences
General
polynomial
congruences
```

- One can also check the following
- One can also check the following
- If $x \equiv y(\bmod m)$ and $z \equiv t(\bmod m)$, then $x+z \equiv y+t(\bmod m)$ and $x z \equiv y t(\bmod m)$.
- One can also check the following
- If $x \equiv y(\bmod m)$ and $z \equiv t(\bmod m)$, then $x+z \equiv y+t(\bmod m)$ and $x z \equiv y t(\bmod m)$.
- If $x \equiv y(\bmod m)$, then for any $n \in \mathbb{N}, x^{n} \equiv y^{n}(\bmod m)$ (use induction on n).
- One can also check the following
- If $x \equiv y(\bmod m)$ and $z \equiv t(\bmod m)$, then $x+z \equiv y+t(\bmod m)$ and $x z \equiv y t(\bmod m)$.
- If $x \equiv y(\bmod m)$, then for any $n \in \mathbb{N}, x^{n} \equiv y^{n}(\bmod m)$ (use induction on n).
- If f is a polynomial with integer coefficients, and $x \equiv y$ $(\bmod m)$, then $f(x) \equiv f(y)(\bmod m)$.
- One can also check the following
- If $x \equiv y(\bmod m)$ and $z \equiv t(\bmod m)$, then $x+z \equiv y+t(\bmod m)$ and $x z \equiv y t(\bmod m)$.
- If $x \equiv y(\bmod m)$, then for any $n \in \mathbb{N}, x^{n} \equiv y^{n}(\bmod m)$ (use induction on n).
- If f is a polynomial with integer coefficients, and $x \equiv y$ $(\bmod m)$, then $f(x) \equiv f(y)(\bmod m)$.
- Wait a minute, this means that one can use congruences just like doing arithmetic on the integers!
- The following tells us something about this structure.

Theorem 3
Suppose that $m \in \mathbb{N}, k \in \mathbb{Z},(k, m)=1$ and

$$
\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{m}
$$

forms a complete set of residues modulo m. Then so does

$$
\overline{k a_{1}}, \overline{k a_{2}}, \ldots, \overline{k a_{m}} .
$$

- The following tells us something about this structure.

Theorem 3
Suppose that $m \in \mathbb{N}, k \in \mathbb{Z},(k, m)=1$ and

$$
\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{m}
$$

forms a complete set of residues modulo m. Then so does

$$
\overline{k a_{1}}, \overline{k a_{2}}, \ldots, \overline{k a_{m}} .
$$

- Proof. Since we have m residue classes, we need only check that they are disjoint.
- The following tells us something about this structure.

Theorem 3

Suppose that $m \in \mathbb{N}, k \in \mathbb{Z},(k, m)=1$ and

$$
\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{m}
$$

forms a complete set of residues modulo m. Then so does

$$
\overline{k a_{1}}, \overline{k a_{2}}, \ldots, \overline{k a_{m}} .
$$

- Proof. Since we have m residue classes, we need only check that they are disjoint.
- Consider any two of them, $\overline{k a_{i}}$ and $\overline{k a_{j}}$.
- The following tells us something about this structure.

Theorem 3

Suppose that $m \in \mathbb{N}, k \in \mathbb{Z},(k, m)=1$ and

$$
\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{m}
$$

forms a complete set of residues modulo m. Then so does

$$
\overline{k a_{1}}, \overline{k a_{2}}, \ldots, \overline{k a_{m}} .
$$

- Proof. Since we have m residue classes, we need only check that they are disjoint.
- Consider any two of them, $\overline{k a_{i}}$ and $\overline{k a_{j}}$.
- Let $k a_{i}+m x$ and $k a_{j}+m y$ be typical members of each.
- The following tells us something about this structure.

Theorem 3

Suppose that $m \in \mathbb{N}, k \in \mathbb{Z},(k, m)=1$ and

$$
\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{m}
$$

forms a complete set of residues modulo m. Then so does

$$
\overline{k a_{1}}, \overline{k a_{2}}, \ldots, \overline{k a_{m}} .
$$

- Proof. Since we have m residue classes, we need only check that they are disjoint.
- Consider any two of them, $\overline{k a_{i}}$ and $\overline{k a_{j}}$.
- Let $k a_{i}+m x$ and $k a_{j}+m y$ be typical members of each.
- If they were the same integer, than $k a_{i}+m x=k a_{j}+m y$, so that $k\left(a_{i}-a_{j}\right)=m(y-x)$.
- The following tells us something about this structure.

Theorem 3

Suppose that $m \in \mathbb{N}, k \in \mathbb{Z},(k, m)=1$ and

$$
\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{m}
$$

forms a complete set of residues modulo m. Then so does

$$
\overline{k a_{1}}, \overline{k a_{2}}, \ldots, \overline{k a_{m}} .
$$

- Proof. Since we have m residue classes, we need only check that they are disjoint.
- Consider any two of them, $\overline{k a_{i}}$ and $\overline{k a_{j}}$.
- Let $k a_{j}+m x$ and $k a_{j}+m y$ be typical members of each.
- If they were the same integer, than $k a_{i}+m x=k a_{j}+m y$, so that $k\left(a_{i}-a_{j}\right)=m(y-x)$.
- But then $m \mid k\left(a_{i}-a_{j}\right)$ and since $(k, m)=1$ we would have $m \mid a_{i}-a_{j}$ so \bar{a}_{i} and \bar{a}_{j} would be identical residue classes, so $i=j$.

```
Factorization
and Primality
    Testing
    Chapter 3
Congruences
and Residue
    Classes
    Robert C.
    Vaughan
Residue
Classes
Linear
congruences
General
polynomial
congruences
```

- An important rôle is played by the residue classes r modulo m with $(r, m)=1$.
- An important rôle is played by the residue classes r modulo m with $(r, m)=1$.
- In connection with this we introduce Euler's function.

Definition 4

A function defined on \mathbb{N} is called an arithmetical function.

Definition 5

Euler's function $\phi(n)$ is the number of $x \in \mathbb{N}$ with $1 \leq x \leq n$ and $(x, n)=1$.

Definition 6
A set of $\phi(m)$ distinct residue classes \bar{r} modulo m with $(r, m)=1$ is called a set of reduced residues modulo m.

- An important rôle is played by the residue classes r modulo m with $(r, m)=1$.
- In connection with this we introduce Euler's function.

Definition 4

A function defined on \mathbb{N} is called an arithmetical function.

Definition 5

Euler's function $\phi(n)$ is the number of $x \in \mathbb{N}$ with $1 \leq x \leq n$ and $(x, n)=1$.

Definition 6
A set of $\phi(m)$ distinct residue classes \bar{r} modulo m with $(r, m)=1$ is called a set of reduced residues modulo m.

- Since $(1,1)=1$ we have $\phi(1)=1$.
- An important rôle is played by the residue classes r modulo m with $(r, m)=1$.
- In connection with this we introduce Euler's function.

Definition 4

A function defined on \mathbb{N} is called an arithmetical function.

Definition 5

Euler's function $\phi(n)$ is the number of $x \in \mathbb{N}$ with $1 \leq x \leq n$ and $(x, n)=1$.

Definition 6
A set of $\phi(m)$ distinct residue classes \bar{r} modulo m with $(r, m)=1$ is called a set of reduced residues modulo m.

- Since $(1,1)=1$ we have $\phi(1)=1$.
- If p is prime, then the x with $1 \leq x \leq p-1$ satisfy $(x, p)=1$, but $(p, p)=p \neq 1$. Hence $\phi(p)=p-1$.

Euler's function $\phi(n)$ is the number of $x \in \mathbb{N}$ with $1 \leq x \leq n$ and $(x, n)=1$.

Definition 6

A set of $\phi(m)$ distinct residue classes \bar{r} modulo m with $(r, m)=1$ is called a set of reduced residues modulo m.

- Since $(1,1)=1$ we have $\phi(1)=1$.
- If p is prime, then the x with $1 \leq x \leq p-1$ satisfy $(x, p)=1$, but $(p, p)=p \neq 1$. Hence $\phi(p)=p-1$.
- The numbers x with $1 \leq x \leq 30$ and $(x, 30)=1$ are $1,7,11,13,17,19,23,29$, so $\phi(30)=8$.
- One way of thinking about reduced sets of residues is to start from a complete set of fractions with denominator m in the interval $(0,1]$

$$
\frac{1}{m}, \frac{2}{m}, \ldots, \frac{m}{m}
$$

- One way of thinking about reduced sets of residues is to start from a complete set of fractions with denominator m in the interval $(0,1]$

$$
\frac{1}{m}, \frac{2}{m}, \ldots, \frac{m}{m}
$$

- Now remove just the ones whose numerator has a common factor $d>1$ with m.
- One way of thinking about reduced sets of residues is to start from a complete set of fractions with denominator m in the interval $(0,1]$

$$
\frac{1}{m}, \frac{2}{m}, \ldots, \frac{m}{m}
$$

- Now remove just the ones whose numerator has a common factor $d>1$ with m.
- What is left are the $\phi(m)$ reduced fractions with denominator m.
- One way of thinking about reduced sets of residues is to start from a complete set of fractions with denominator m in the interval $(0,1]$

$$
\frac{1}{m}, \frac{2}{m}, \ldots, \frac{m}{m}
$$

- Now remove just the ones whose numerator has a common factor $d>1$ with m.
- What is left are the $\phi(m)$ reduced fractions with denominator m.
- Suppose instead of removing the non-reduced ones we just write them in their lowest form.
- One way of thinking about reduced sets of residues is to start from a complete set of fractions with denominator m in the interval $(0,1]$

$$
\frac{1}{m}, \frac{2}{m}, \ldots, \frac{m}{m}
$$

- Now remove just the ones whose numerator has a common factor $d>1$ with m.
- What is left are the $\phi(m)$ reduced fractions with denominator m.
- Suppose instead of removing the non-reduced ones we just write them in their lowest form.
- Then for each divisor k of m we obtain all the reduced fractions with denominator k.

Factorization and Primality Testing Chapter 3 Congruences and Residue

Classes
Robert C.
Vaughan

Residue

 ClassesLinear congruences

- In fact we just proved the following.

Theorem 7

For each $m \in \mathbb{N}$ we have

$$
\sum_{k \mid m} \phi(k)=m
$$

Factorization and Primality Testing Chapter 3 Congruences and Residue Classes

Robert C. Vaughan

- In fact we just proved the following.

Theorem 7

For each $m \in \mathbb{N}$ we have

$$
\sum_{k \mid m} \phi(k)=m
$$

- We just saw that $\phi(1)=1, \phi(p)=p-1, \phi(30)=8$

Example 8

The divisors of 30 are $1,2,3,5,6,10,15,30$ and

$$
\phi(6)=2, \phi(10)=4, \phi(15)=8
$$

SO

$$
\sum_{k \mid 30} \phi(k)=1+1+2+4+2+4+8+8=30 .
$$

- Now we can prove a companion theorem to Theorem 3 for reduced residue classes.

Theorem 9

Suppose that $(k, m)=1$ and that

$$
a_{1}, a_{2}, \ldots, a_{\phi(m)}
$$

forms a set of reduced residue classes modulo m. Then

$$
k a_{1}, k a_{2}, \ldots, k a_{\phi(m)}
$$

also forms a set of reduced residues modulo m.

- Now we can prove a companion theorem to Theorem 3 for reduced residue classes.

Theorem 9

Suppose that $(k, m)=1$ and that

$$
a_{1}, a_{2}, \ldots, a_{\phi(m)}
$$

forms a set of reduced residue classes modulo m. Then

$$
k a_{1}, k a_{2}, \ldots, k a_{\phi(m)}
$$

also forms a set of reduced residues modulo m.

- Proof. In view of the earlier theorem the residue classes $k a_{j}$ are distinct, and since $\left(a_{j}, m\right)=1$ we have $\left(k a_{j}, m\right)=1$ so they give $\phi(m)$ distinct reduced residue classes, so they are all of them in some order.
- We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and $(m, n)=1$, and consider the $x n+y m$ with $1 \leq x \leq m$ and $1 \leq y \leq n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy $(x, m)=1$ and $(y, n)=1$, then they form a reduced set.

- We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and $(m, n)=1$, and consider the $x n+y m$ with $1 \leq x \leq m$ and $1 \leq y \leq n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy $(x, m)=1$ and $(y, n)=1$, then they form a reduced set.

- Proof. If $x n+y m \equiv x^{\prime} n+y^{\prime} m(\bmod m n)$, then $x n \equiv x^{\prime} n$ $(\bmod m)$, so $x \equiv x^{\prime}(\bmod m), x=x^{\prime}$. Likewise $y=y^{\prime}$.
- We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and $(m, n)=1$, and consider the $x n+y m$ with $1 \leq x \leq m$ and $1 \leq y \leq n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy $(x, m)=1$ and $(y, n)=1$, then they form a reduced set.

- Proof. If $x n+y m \equiv x^{\prime} n+y^{\prime} m(\bmod m n)$, then $x n \equiv x^{\prime} n$ $(\bmod m)$, so $x \equiv x^{\prime}(\bmod m), x=x^{\prime}$. Likewise $y=y^{\prime}$.
- Hence in either case the $x n+y m$ are distinct modulo $m n$.
- We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and $(m, n)=1$, and consider the $x n+y m$ with $1 \leq x \leq m$ and $1 \leq y \leq n$. Then they form a complete set of residues modulo $m n$. If in addition x and y satisfy $(x, m)=1$ and $(y, n)=1$, then they form a reduced set.

- Proof. If $x n+y m \equiv x^{\prime} n+y^{\prime} m(\bmod m n)$, then $x n \equiv x^{\prime} n$ $(\bmod m)$, so $x \equiv x^{\prime}(\bmod m), x=x^{\prime}$. Likewise $y=y^{\prime}$.
- Hence in either case the $x n+y m$ are distinct modulo $m n$.
- In the unrestricted case we have $m n$ objects, so they form a complete set.
- We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and $(m, n)=1$, and consider the $x n+y m$ with $1 \leq x \leq m$ and $1 \leq y \leq n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy $(x, m)=1$ and $(y, n)=1$, then they form a reduced set.

- Proof. If $x n+y m \equiv x^{\prime} n+y^{\prime} m(\bmod m n)$, then $x n \equiv x^{\prime} n$ $(\bmod m)$, so $x \equiv x^{\prime}(\bmod m), x=x^{\prime}$. Likewise $y=y^{\prime}$.
- Hence in either case the $x n+y m$ are distinct modulo $m n$.
- In the unrestricted case we have $m n$ objects, so they form a complete set.
- In the restricted case $(x n+y m, m)=(x n, m)=(x, m)=1$ and likewise $(x n+y m, n)=1$, so $(x n+y m, m n)=1$ and the $x n+y m$ all belong to reduced residue classes.
- We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and $(m, n)=1$, and consider the $x n+y m$ with $1 \leq x \leq m$ and $1 \leq y \leq n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy $(x, m)=1$ and $(y, n)=1$, then they form a reduced set.

- Proof. If $x n+y m \equiv x^{\prime} n+y^{\prime} m(\bmod m n)$, then $x n \equiv x^{\prime} n$ $(\bmod m)$, so $x \equiv x^{\prime}(\bmod m), x=x^{\prime}$. Likewise $y=y^{\prime}$.
- Hence in either case the $x n+y m$ are distinct modulo $m n$.
- In the unrestricted case we have $m n$ objects, so they form a complete set.
- In the restricted case $(x n+y m, m)=(x n, m)=(x, m)=1$ and likewise $(x n+y m, n)=1$, so $(x n+y m, m n)=1$ and the $x n+y m$ all belong to reduced residue classes.
- Now let $(z, m n)=1$. Choose $x^{\prime}, y^{\prime}, x, y$ so that $x^{\prime} n+y^{\prime} m=1, x \equiv x^{\prime} z(\bmod m)$ and $y \equiv y^{\prime} z(\bmod n)$.
- We now examine the structure of residue systems.

Theorem 10

Suppose $m, n \in \mathbb{N}$ and $(m, n)=1$, and consider the $x n+y m$ with $1 \leq x \leq m$ and $1 \leq y \leq n$. Then they form a complete set of residues modulo mn. If in addition x and y satisfy $(x, m)=1$ and $(y, n)=1$, then they form a reduced set.

- Proof. If $x n+y m \equiv x^{\prime} n+y^{\prime} m(\bmod m n)$, then $x n \equiv x^{\prime} n$ $(\bmod m)$, so $x \equiv x^{\prime}(\bmod m), x=x^{\prime}$. Likewise $y=y^{\prime}$.
- Hence in either case the $x n+y m$ are distinct modulo $m n$.
- In the unrestricted case we have $m n$ objects, so they form a complete set.
- In the restricted case $(x n+y m, m)=(x n, m)=(x, m)=1$ and likewise $(x n+y m, n)=1$, so $(x n+y m, m n)=1$ and the $x n+y m$ all belong to reduced residue classes.
- Now let $(z, m n)=1$. Choose $x^{\prime}, y^{\prime}, x, y$ so that $x^{\prime} n+y^{\prime} m=1, x \equiv x^{\prime} z(\bmod m)$ and $y \equiv y^{\prime} z(\bmod n)$.
- Then $x n+y m \equiv x^{\prime} z n+y^{\prime} z m=z(\bmod m n)$ and hence every reduced residue is included.
- Here is a table of $x n+y m(\bmod m n)$ when $m=5, n=6$.

Example 11

	x	1	2	3	4
y					
1		11	17	23	29
2		16	22	28	4
3		21	27	3	9
4		26	2	8	14
	20				
5		1	7	13	19

The 30 numbers 1 through 30 appear exactly once each. The 8 reduced residue classes occur precisely in the intersection of rows 1 and 5 and columns 1 through 4.

Factorization and Primality Testing Chapter 3 Congruences and Residue

Classes
Robert C.
Vaughan

Residue

 ClassesLinear congruences

- Immediate from Theorem 10 we have

Corollary 12

$$
\text { If }(m, n)=1, \text { then } \phi(m n)=\phi(m) \phi(n)
$$

- Immediate from Theorem 10 we have

Corollary 12

$$
\text { If }(m, n)=1, \text { then } \phi(m n)=\phi(m) \phi(n)
$$

- Thus ϕ is an example of a multiplicative function.

Definition 13

If an arithmetical function f which is not identically 0 satisfies

$$
f(m n)=f(m) f(n)
$$

whenever $(m, n)=1$ we say that f is multiplicative.

- Immediate from Theorem 10 we have

Corollary 12

$$
\text { If }(m, n)=1, \text { then } \phi(m n)=\phi(m) \phi(n)
$$

- Thus ϕ is an example of a multiplicative function.

Definition 13

If an arithmetical function f which is not identically 0 satisfies

$$
f(m n)=f(m) f(n)
$$

whenever $(m, n)=1$ we say that f is multiplicative.

- Thus we have another

Corollary 14

Euler's function is multiplicative.
This enables a full evaluation of $\phi(n)$.

Factorization
and Primality
Testing
Chapter 3
Congruences
and Residue
Classes
Robert C.
Vaughan
Residue
Classes
Linear
congruences
General
polynomial
congruences

- If $n=p^{k}$, then the number of reduced residue classes modulo p^{k} is the number of x with $1 \leq x \leq p^{k}$ and $p \nmid x$.
Factorization and Primality Testing Chapter 3 Congruences and Residue Classes
Robert C. Vaughan

Residue

 Classes- If $n=p^{k}$, then the number of reduced residue classes modulo p^{k} is the number of x with $1 \leq x \leq p^{k}$ and $p \nmid x$.
- This is $p^{k}-N$ where N is the number of x with $1 \leq x \leq p^{k}$ and $p \mid x$, and $N=p^{k-1}$.

Factorization

 and Primality Testing Chapter 3 Congruences and Residue ClassesRobert C. Vaughan

Residue

 Classes- If $n=p^{k}$, then the number of reduced residue classes modulo p^{k} is the number of x with $1 \leq x \leq p^{k}$ and $p \nmid x$.
- This is $p^{k}-N$ where N is the number of x with $1 \leq x \leq p^{k}$ and $p \mid x$, and $N=p^{k-1}$.
- Thus $\phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k}(1-1 / p)$.
- If $n=p^{k}$, then the number of reduced residue classes modulo p^{k} is the number of x with $1 \leq x \leq p^{k}$ and $p \nmid x$.
- This is $p^{k}-N$ where N is the number of x with $1 \leq x \leq p^{k}$ and $p \mid x$, and $N=p^{k-1}$.
- Thus $\phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k}(1-1 / p)$.
- Putting this all together gives

Theorem 15

Let $n \in \mathbb{N}$. Then $\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$ where when $n=1$ we interpret the product as an "empty" product 1.

- If $n=p^{k}$, then the number of reduced residue classes modulo p^{k} is the number of x with $1 \leq x \leq p^{k}$ and $p \nmid x$.
- This is $p^{k}-N$ where N is the number of x with $1 \leq x \leq p^{k}$ and $p \mid x$, and $N=p^{k-1}$.
- Thus $\phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k}(1-1 / p)$.
- Putting this all together gives

Theorem 15

Let $n \in \mathbb{N}$. Then $\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$ where when $n=1$ we interpret the product as an "empty" product 1.

- Some special cases.

Example 16

We have $\phi(9)=6, \phi(5)=4, \phi(45)=24$. Note that $\phi(3)=2$ and $\phi(9) \neq \phi(3)^{2}$.

Factorization and Primality Testing Chapter 3 Congruences and Residue

Classes
Robert C. Vaughan

Residue

 Classes- Here is a beautiful and useful theorem.

Theorem 17 (Euler)
Suppose that $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $(a, m)=1$. Then

$$
a^{\phi(m)} \equiv 1(\bmod m)
$$

- Here is a beautiful and useful theorem.

Theorem 17 (Euler)

Suppose that $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $(a, m)=1$. Then

$$
a^{\phi(m)} \equiv 1(\bmod m)
$$

- Proof. Let $a_{1}, a_{2}, \ldots, a_{\phi(m)}$ be a reduced set modulo m.
- Here is a beautiful and useful theorem.

Theorem 17 (Euler)

Suppose that $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $(a, m)=1$. Then

$$
a^{\phi(m)} \equiv 1(\bmod m) .
$$

- Proof. Let $a_{1}, a_{2}, \ldots, a_{\phi(m)}$ be a reduced set modulo m.
- Then $a a_{1}, a a_{2}, \ldots, a a_{\phi(m)}$ is another. Hence

$$
\begin{aligned}
a_{1} a_{2} \ldots a_{\phi(m)} & \equiv a a_{1} a a_{2} \ldots a a_{\phi(m)}(\bmod m) \\
& \equiv a_{1} a_{2} \ldots a_{\phi(m)} a^{\phi(m)}(\bmod m)
\end{aligned}
$$

- Here is a beautiful and useful theorem.

Theorem 17 (Euler)

Suppose that $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $(a, m)=1$. Then

$$
a^{\phi(m)} \equiv 1(\bmod m) .
$$

- Proof. Let $a_{1}, a_{2}, \ldots, a_{\phi(m)}$ be a reduced set modulo m.
- Then $a a_{1}, a a_{2}, \ldots, a a_{\phi(m)}$ is another. Hence

$$
\begin{aligned}
a_{1} a_{2} \ldots a_{\phi(m)} & \equiv a a_{1} a a_{2} \ldots a a_{\phi(m)}(\bmod m) \\
& \equiv a_{1} a_{2} \ldots a_{\phi(m)} a^{\phi(m)}(\bmod m)
\end{aligned}
$$

- As $\left(a_{1} a_{2} \ldots a_{\phi(m)}, m\right)=1$ we may cancel $a_{1} a_{2} \ldots a_{\phi(m)}$.
- Here is a beautiful and useful theorem.

Theorem 17 (Euler)

Suppose that $m \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $(a, m)=1$. Then

$$
a^{\phi(m)} \equiv 1(\bmod m) .
$$

- Proof. Let $a_{1}, a_{2}, \ldots, a_{\phi(m)}$ be a reduced set modulo m.
- Then $a a_{1}, a a_{2}, \ldots, a a_{\phi(m)}$ is another. Hence

$$
\begin{aligned}
a_{1} a_{2} \ldots a_{\phi(m)} & \equiv a a_{1} a a_{2} \ldots a a_{\phi(m)}(\bmod m) \\
& \equiv a_{1} a_{2} \ldots a_{\phi(m)} a^{\phi(m)}(\bmod m)
\end{aligned}
$$

- As $\left(a_{1} a_{2} \ldots a_{\phi(m)}, m\right)=1$ we may cancel $a_{1} a_{2} \ldots a_{\phi(m)}$.
- Thus

Corollary 18 (Fermat)

Let p be a prime and $a \in \mathbb{Z}$. Then $a^{p} \equiv a(\bmod p)$. If $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.

```
Factorization
and Primality
    Testing
    Chapter }
Congruences
and Residue
    Classes
    Robert C.
    Vaughan
Residue
Classes
Linear
congruences
General
polynomial
congruences
- Could Fermat's theorem give a primality test?
```

Factorization
and Primality
Testing
Chapter 3
Congruences
and Residue
Classes
Robert C.
Vaughan

```
- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that \(a^{n-1} \equiv 1(\bmod n)\) when \(n\) is not prime, although this is rare.
- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that \(a^{n-1} \equiv 1(\bmod n)\) when \(n\) is not prime, although this is rare.
- For example, when are \(n=341,561,645\)
\[
2^{n-1} \equiv 1(\bmod n)
\]
Factorization and Primality Testing Chapter 3 Congruences and Residue Classes
Robert \(C\). Vaughan Classes
- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that \(a^{n-1} \equiv 1(\bmod n)\) when \(n\) is not prime, although this is rare.
- For example, when are \(n=341,561,645\)
\[
2^{n-1} \equiv 1(\bmod n)
\]
- Such \(n\) are called pseudoprimes.
- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that \(a^{n-1} \equiv 1(\bmod n)\) when \(n\) is not prime, although this is rare.
- For example, when are \(n=341,561,645\)
\[
2^{n-1} \equiv 1(\bmod n)
\]
- Such \(n\) are called pseudoprimes.
- There are 245 less than \(10^{6}\), compared with 78498 primes.
- Such \(n\) are called pseudoprimes.
- There are 245 less than \(10^{6}\), compared with 78498 primes.
- Moreover
\[
3^{341-1} \equiv 56 \neq 1(\bmod 341)
\]
suggests a possible primality test.
- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that \(a^{n-1} \equiv 1(\bmod n)\) when \(n\) is not prime, although this is rare.
- For example, when are \(n=341,561,645\)
\[
2^{n-1} \equiv 1(\bmod n)
\]
- Such \(n\) are called pseudoprimes.
- There are 245 less than \(10^{6}\), compared with 78498 primes.
- Moreover
\[
3^{341-1} \equiv 56 \neq 1(\bmod 341)
\]
suggests a possible primality test.
- Given \(n\) try trial division a few times, say for \(d=2,3,5,7\) and then check successively for \(a=2,3,5,7\)
\[
a^{n-1} \equiv 1(\bmod n)
\]
- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that \(a^{n-1} \equiv 1(\bmod n)\) when \(n\) is not prime, although this is rare.
- For example, when are \(n=341,561,645\)
\[
2^{n-1} \equiv 1(\bmod n)
\]
- Such \(n\) are called pseudoprimes.
- There are 245 less than \(10^{6}\), compared with 78498 primes.
- Moreover
\[
3^{341-1} \equiv 56 \neq 1(\bmod 341)
\]
suggests a possible primality test.
- Given \(n\) try trial division a few times, say for \(d=2,3,5,7\) and then check successively for \(a=2,3,5,7\)
\[
a^{n-1} \equiv 1(\bmod n)
\]
- Unfortunately one can still have false positives.
- Could Fermat's theorem give a primality test?
- Unfortunately it is possible that \(a^{n-1} \equiv 1(\bmod n)\) when \(n\) is not prime, although this is rare.
- For example, when are \(n=341,561,645\)
\[
2^{n-1} \equiv 1(\bmod n)
\]
- Such \(n\) are called pseudoprimes.
- There are 245 less than \(10^{6}\), compared with 78498 primes.
- Moreover
\[
3^{341-1} \equiv 56 \neq 1(\bmod 341)
\]
suggests a possible primality test.
- Given \(n\) try trial division a few times, say for \(d=2,3,5,7\) and then check successively for \(a=2,3,5,7\)
\[
a^{n-1} \equiv 1(\bmod n)
\]
- Unfortunately one can still have false positives.
- Thus \(561=3.11 .17\) satisfies
\[
a^{560} \equiv 1(\bmod 561)
\]
for all \(a\) with \((a, 561)=1\). Testing Chapter 3 Congruences and Residue Classes

Robert C. Vaughan
- Such numbers are interesting

\section*{Definition 19}

A composite \(n\) which satisfies \(a^{n-1} \equiv 1(\bmod n)\) for all \(a\) with \((a, n)=1\) is called a Carmichael number.
- Such numbers are interesting

\section*{Definition 19}

A composite \(n\) which satisfies \(a^{n-1} \equiv 1(\bmod n)\) for all \(a\) with \((a, n)=1\) is called a Carmichael number.
- There are infinitely Carmichael number. The smallest is 561 and there are 2163 of them below \(25 \times 10^{9}\).
- Such numbers are interesting

\section*{Definition 19}

A composite \(n\) which satisfies \(a^{n-1} \equiv 1(\bmod n)\) for all \(a\) with \((a, n)=1\) is called a Carmichael number.
- There are infinitely Carmichael number. The smallest is 561 and there are 2163 of them below \(25 \times 10^{9}\).
- Also of interest.

\section*{Definition 20}

Define \(M(n)=2^{n}-1\). If it is prime it is a Mersenne prime.
- Such numbers are interesting

\section*{Definition 19}

A composite \(n\) which satisfies \(a^{n-1} \equiv 1(\bmod n)\) for all \(a\) with \((a, n)=1\) is called a Carmichael number.
- There are infinitely Carmichael number. The smallest is 561 and there are 2163 of them below \(25 \times 10^{9}\).
- Also of interest.

\section*{Definition 20}

Define \(M(n)=2^{n}-1\). If it is prime it is a Mersenne prime.
- If \(n=a b\), then \(M(a b)=\left(2^{a}-1\right)\left(2^{a(b-1)}+\cdots+2^{a}+1\right)\).
- Such numbers are interesting

\section*{Definition 19}

A composite \(n\) which satisfies \(a^{n-1} \equiv 1(\bmod n)\) for all \(a\) with \((a, n)=1\) is called a Carmichael number.
- There are infinitely Carmichael number. The smallest is 561 and there are 2163 of them below \(25 \times 10^{9}\).
- Also of interest.

\section*{Definition 20}

Define \(M(n)=2^{n}-1\). If it is prime it is a Mersenne prime.
- If \(n=a b\), then \(M(a b)=\left(2^{a}-1\right)\left(2^{a(b-1)}+\cdots+2^{a}+1\right)\).
- Thus for \(M(n)\) to be prime it is necessary that \(n\) be prime.

\section*{Example 21}

We have \(3=2^{2}-1,7=2^{3}-1,31=2^{5}-1127=2^{7}-1\). However that is not sufficient. \(2^{11}-1=2047=23 \times 89\).
Factorization and Primality

Testing
Chapter 3
Congruence
and Residue
Classes
Robert C.
Vaughan
Testing
Chapter 3
Congruences
and Residue
Classes
Robert C.
Vaughan
Testing
Chapter 3
Congruences
and Residue
Classes
Robert C.
Vaughan
Testing
Chapter 3
Congruences
and Residue
Classes
Robert C.
Vaughan
Testing
Chapter 3
Congruence
and Residue
Classes
Robert C.
Vaughan
Testing
Chapter 3
Congruence
and Residue
Classes
Robert C.
Vaughan
Testing
Chapter 3
Congruence
and Residue
Classes
Robert C.
Vaughan
Residue Classes

\section*{Linear} congruences

\section*{General}
- As with linear equations, linear congruences are easiest.
- As with linear equations, linear congruences are easiest.
- We have already solved \(a x \equiv b(\bmod m)\) in principle since it is equivalent to \(a x+m y=b\).

\section*{Theorem 22}

The congruence \(a x \equiv b(\bmod m)\) is soluble iff \((a, m) \mid b\), and the general solution is given by a residue class \(x_{0}\) modulo \(m /(a, m) . x_{0}\) can be found by applying Euclid's algorithm.
- As with linear equations, linear congruences are easiest.
- We have already solved \(a x \equiv b(\bmod m)\) in principle since it is equivalent to \(a x+m y=b\).

\section*{Theorem 22}

The congruence \(a x \equiv b(\bmod m)\) is soluble iff \((a, m) \mid b\), and the general solution is given by a residue class \(x_{0}\) modulo \(m /(a, m) . x_{0}\) can be found by applying Euclid's algorithm.
- Proof. The congruence is equivalent to the equation \(a x+m y=b\) and there can be no solution if \((a, m) \nmid b\).
- As with linear equations, linear congruences are easiest.
- We have already solved \(a x \equiv b(\bmod m)\) in principle since it is equivalent to \(a x+m y=b\).

\section*{Theorem 22}

The congruence \(a x \equiv b(\bmod m)\) is soluble iff \((a, m) \mid b\), and the general solution is given by a residue class \(x_{0}\) modulo \(m /(a, m) . x_{0}\) can be found by applying Euclid's algorithm.
- Proof. The congruence is equivalent to the equation \(a x+m y=b\) and there can be no solution if \((a, m) \nmid b\).
- If \((a, m) \mid b\), then Euclid's algorithm solves
\[
\frac{a}{(a, m)} x+\frac{m}{(a, m)} y=\frac{b}{(a, m)}
\]
- As with linear equations, linear congruences are easiest.
- We have already solved \(a x \equiv b(\bmod m)\) in principle since it is equivalent to \(a x+m y=b\).

\section*{Theorem 22}

The congruence \(a x \equiv b(\bmod m)\) is soluble iff \((a, m) \mid b\), and the general solution is given by a residue class \(x_{0}\) modulo \(m /(a, m) . x_{0}\) can be found by applying Euclid's algorithm.
- Proof. The congruence is equivalent to the equation \(a x+m y=b\) and there can be no solution if \((a, m) \nmid b\).
- If \((a, m) \mid b\), then Euclid's algorithm solves
\[
\frac{a}{(a, m)} x+\frac{m}{(a, m)} y=\frac{b}{(a, m)}
\]
- Let \(x_{0}, y_{0}\) be such a solution and let \(x, y\) be any solution. Then \(a /(a, m)\left(x-x_{0}\right) \equiv 0(\bmod m /(a, m))\) and since \((a /(a, m), m /(a, m))=1\) it follows that \(x\) is in the residue class \(x_{0}(\bmod m /(a, m))\).
Factorization
and Primality
Testing
Chapter 3
Congruences
and Residue
Classes
Robert C.
Vaughan

Residue
Classes
Linear
congruences
General
polynomial
congruences
- A curious result which uses somewhat similar ideas.

\section*{Theorem 23 (Wilson)}

Let \(p\) be a prime number, then \((p-1)!\equiv-1(\bmod p)\).
- A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)
Let \(p\) be a prime number, then \((p-1)!\equiv-1(\bmod p)\).
- Proof. The cases \(p=2\) and \(p=3\) are \((2-1)!=1 \equiv-1\) \((\bmod 2)\) and \((3-1)!=2 \equiv-1(\bmod 3)\).
- A curious result which uses somewhat similar ideas.

\section*{Theorem 23 (Wilson)}

Let \(p\) be a prime number, then \((p-1)!\equiv-1(\bmod p)\).
- Proof. The cases \(p=2\) and \(p=3\) are \((2-1)!=1 \equiv-1\) \((\bmod 2)\) and \((3-1)!=2 \equiv-1(\bmod 3)\).
- Thus we may suppose \(p \geq 5\). Observe now that \(x^{2} \equiv 1\) \((\bmod p)\) implies \(x \equiv \pm 1(\bmod p)\)
- A curious result which uses somewhat similar ideas.

\section*{Theorem 23 (Wilson)}

Let \(p\) be a prime number, then \((p-1)!\equiv-1(\bmod p)\).
- Proof. The cases \(p=2\) and \(p=3\) are \((2-1)!=1 \equiv-1\) \((\bmod 2)\) and \((3-1)!=2 \equiv-1(\bmod 3)\).
- Thus we may suppose \(p \geq 5\). Observe now that \(x^{2} \equiv 1\) \((\bmod p)\) implies \(x \equiv \pm 1(\bmod p)\)
- Thus the numbers \(2,3, \ldots, p-2\) can be paired off into \(\frac{p-3}{2}\) mutually exclusive pairs \(a, b\) such that \(a b \equiv 1\) \((\bmod p)\).
- A curious result which uses somewhat similar ideas.

\section*{Theorem 23 (Wilson)}

Let \(p\) be a prime number, then \((p-1)!\equiv-1(\bmod p)\).
- Proof. The cases \(p=2\) and \(p=3\) are \((2-1)!=1 \equiv-1\) \((\bmod 2)\) and \((3-1)!=2 \equiv-1(\bmod 3)\).
- Thus we may suppose \(p \geq 5\). Observe now that \(x^{2} \equiv 1\) \((\bmod p)\) implies \(x \equiv \pm 1(\bmod p)\)
- Thus the numbers \(2,3, \ldots, p-2\) can be paired off into \(\frac{p-3}{2}\) mutually exclusive pairs \(a, b\) such that \(a b \equiv 1\) \((\bmod p)\).
- Thus \((p-1)!\equiv p-1 \equiv-1(\bmod p)\).
- A curious result which uses somewhat similar ideas.

\section*{Theorem 23 (Wilson)}

Let \(p\) be a prime number, then \((p-1)!\equiv-1(\bmod p)\).
- Proof. The cases \(p=2\) and \(p=3\) are \((2-1)!=1 \equiv-1\) \((\bmod 2)\) and \((3-1)!=2 \equiv-1(\bmod 3)\).
- Thus we may suppose \(p \geq 5\). Observe now that \(x^{2} \equiv 1\) \((\bmod p)\) implies \(x \equiv \pm 1(\bmod p)\)
- Thus the numbers \(2,3, \ldots, p-2\) can be paired off into \(\frac{p-3}{2}\) mutually exclusive pairs \(a, b\) such that \(a b \equiv 1\) \((\bmod p)\).
- Thus \((p-1)!\equiv p-1 \equiv-1(\bmod p)\).
- This theorem actually gives a necessary and sufficient condition for \(p\) to be a prime, since if \(p\) were to be composite, then we would have \(((p-1)!, p)>1\).
- A curious result which uses somewhat similar ideas.

\section*{Theorem 23 (Wilson)}

Let \(p\) be a prime number, then \((p-1)!\equiv-1(\bmod p)\).
- Proof. The cases \(p=2\) and \(p=3\) are \((2-1)!=1 \equiv-1\) \((\bmod 2)\) and \((3-1)!=2 \equiv-1(\bmod 3)\).
- Thus we may suppose \(p \geq 5\). Observe now that \(x^{2} \equiv 1\) \((\bmod p)\) implies \(x \equiv \pm 1(\bmod p)\)
- Thus the numbers \(2,3, \ldots, p-2\) can be paired off into \(\frac{p-3}{2}\) mutually exclusive pairs \(a, b\) such that \(a b \equiv 1\) \((\bmod p)\).
- Thus \((p-1)!\equiv p-1 \equiv-1(\bmod p)\).
- This theorem actually gives a necessary and sufficient condition for \(p\) to be a prime, since if \(p\) were to be composite, then we would have \(((p-1)!, p)>1\).
- However this is useless since \((p-1)\) ! grows very rapidly.

Factorization and Primality Testing Chapter 3 Congruences and Residue Classes

Robert C. Vaughan

\section*{Residue} Classes

\section*{Linear} congruences
- What about simultaneous linear congruences?
\[
\begin{cases}a_{1} x & \equiv b_{1}\left(\bmod q_{1}\right)  \tag{2.1}\\ \cdots & \cdots \\ a_{r} x & \equiv b_{r}\left(\bmod q_{r}\right)\end{cases}
\]
- What about simultaneous linear congruences?
\[
\begin{cases}a_{1} x & \equiv b_{1}\left(\bmod q_{1}\right)  \tag{2.1}\\ \cdots & \cdots \\ a_{r} x & \equiv b_{r}\left(\bmod q_{r}\right)\end{cases}
\]
- There can only be a solution when each individual equation is soluble, so we require \(\left(a_{j}, q_{j}\right) \mid b_{j}\) for every \(j\).
- What about simultaneous linear congruences?
\[
\begin{cases}a_{1} x & \equiv b_{1}\left(\bmod q_{1}\right)  \tag{2.1}\\ \cdots & \cdots \\ a_{r} x & \equiv b_{r}\left(\bmod q_{r}\right)\end{cases}
\]
- There can only be a solution when each individual equation is soluble, so we require \(\left(a_{j}, q_{j}\right) \mid b_{j}\) for every \(j\).
- Then we know that each individual equation is soluble by some residue class modulo \(q_{j} /\left(a_{j}, q_{j}\right)\). Thus for some values of \(c_{j}\) and \(m_{j}\) this reduces to
\[
\begin{cases}x & \equiv c_{1}\left(\bmod m_{1}\right)  \tag{2.2}\\ \cdots & \cdots \\ x & \equiv c_{r}\left(\bmod m_{r}\right)\end{cases}
\]
- What about simultaneous linear congruences?
\[
\begin{cases}a_{1} x & \equiv b_{1}\left(\bmod q_{1}\right)  \tag{2.1}\\ \cdots & \cdots \\ a_{r} x & \equiv b_{r}\left(\bmod q_{r}\right)\end{cases}
\]
- There can only be a solution when each individual equation is soluble, so we require \(\left(a_{j}, q_{j}\right) \mid b_{j}\) for every \(j\).
- Then we know that each individual equation is soluble by some residue class modulo \(q_{j} /\left(a_{j}, q_{j}\right)\). Thus for some values of \(c_{j}\) and \(m_{j}\) this reduces to
\[
\begin{cases}x & \equiv c_{1}\left(\bmod m_{1}\right)  \tag{2.2}\\ \cdots & \cdots \\ x & \equiv c_{r}\left(\bmod m_{r}\right)\end{cases}
\]
- Suppose for some \(i\) and \(j \neq i\) we have \(\left(m_{i}, m_{j}\right)=d>1\).
- What about simultaneous linear congruences?
\[
\begin{cases}a_{1} x & \equiv b_{1}\left(\bmod q_{1}\right)  \tag{2.1}\\ \cdots & \cdots \\ a_{r} x & \equiv b_{r}\left(\bmod q_{r}\right)\end{cases}
\]
- There can only be a solution when each individual equation is soluble, so we require \(\left(a_{j}, q_{j}\right) \mid b_{j}\) for every \(j\).
- Then we know that each individual equation is soluble by some residue class modulo \(q_{j} /\left(a_{j}, q_{j}\right)\). Thus for some values of \(c_{j}\) and \(m_{j}\) this reduces to
\[
\begin{cases}x & \equiv c_{1}\left(\bmod m_{1}\right)  \tag{2.2}\\ \cdots & \cdots \\ x & \equiv c_{r}\left(\bmod m_{r}\right)\end{cases}
\]
- Suppose for some \(i\) and \(j \neq i\) we have \(\left(m_{i}, m_{j}\right)=d>1\).
- Then \(x\) has to satisfy \(c_{i} \equiv x \equiv c_{j}(\bmod d)\).
- What about simultaneous linear congruences?
\[
\begin{cases}a_{1} x & \equiv b_{1}\left(\bmod q_{1}\right)  \tag{2.1}\\ \cdots & \cdots \\ a_{r} x & \equiv b_{r}\left(\bmod q_{r}\right)\end{cases}
\]
- There can only be a solution when each individual equation is soluble, so we require \(\left(a_{j}, q_{j}\right) \mid b_{j}\) for every \(j\).
- Then we know that each individual equation is soluble by some residue class modulo \(q_{j} /\left(a_{j}, q_{j}\right)\). Thus for some values of \(c_{j}\) and \(m_{j}\) this reduces to
\[
\begin{cases}x & \equiv c_{1}\left(\bmod m_{1}\right)  \tag{2.2}\\ \cdots & \cdots \\ x & \equiv c_{r}\left(\bmod m_{r}\right)\end{cases}
\]
- Suppose for some \(i\) and \(j \neq i\) we have \(\left(m_{i}, m_{j}\right)=d>1\).
- Then \(x\) has to satisfy \(c_{i} \equiv x \equiv c_{j}(\bmod d)\).
- This imposes conditions on \(c_{j}\) which can get complicated.
- What about simultaneous linear congruences?
\[
\begin{cases}a_{1} x & \equiv b_{1}\left(\bmod q_{1}\right)  \tag{2.1}\\ \cdots & \cdots \\ a_{r} x & \equiv b_{r}\left(\bmod q_{r}\right)\end{cases}
\]
- There can only be a solution when each individual equation is soluble, so we require \(\left(a_{j}, q_{j}\right) \mid b_{j}\) for every \(j\).
- Then we know that each individual equation is soluble by some residue class modulo \(q_{j} /\left(a_{j}, q_{j}\right)\). Thus for some values of \(c_{j}\) and \(m_{j}\) this reduces to
\[
\begin{cases}x & \equiv c_{1}\left(\bmod m_{1}\right)  \tag{2.2}\\ \cdots & \cdots \\ x & \equiv c_{r}\left(\bmod m_{r}\right)\end{cases}
\]
- Suppose for some \(i\) and \(j \neq i\) we have \(\left(m_{i}, m_{j}\right)=d>1\).
- Then \(x\) has to satisfy \(c_{i} \equiv x \equiv c_{j}(\bmod d)\).
- This imposes conditions on \(c_{j}\) which can get complicated.
- Thus it is convenient to assume \(\left(m_{i}, m_{j}\right)^{2}=1\) when \(i \not \equiv j\).
- The following is known as the Chinese Remainder Theorem

\section*{Theorem 24}

Suppose that \(\left(m_{i}, m_{j}\right)=1\) for every \(i \neq j\). Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo \(m_{1} m_{2} \ldots m_{r}\).
- The following is known as the Chinese Remainder Theorem

\section*{Theorem 24}

Suppose that \(\left(m_{i}, m_{j}\right)=1\) for every \(i \neq j\). Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo \(m_{1} m_{2} \ldots m_{r}\).
- Proof. We first show that there is a solution.
- The following is known as the Chinese Remainder Theorem

\section*{Theorem 24}

Suppose that \(\left(m_{i}, m_{j}\right)=1\) for every \(i \neq j\). Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo \(m_{1} m_{2} \ldots m_{r}\).
- Proof. We first show that there is a solution.
- Let \(M=m_{1} m_{2} \ldots m_{r}\) and \(M_{j}=M / m_{j}\), so that \(\left(M_{j}, m_{j}\right)=1\).
- The following is known as the Chinese Remainder Theorem

\section*{Theorem 24}

Suppose that \(\left(m_{i}, m_{j}\right)=1\) for every \(i \neq j\). Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo \(m_{1} m_{2} \ldots m_{r}\).
- Proof. We first show that there is a solution.
- Let \(M=m_{1} m_{2} \ldots m_{r}\) and \(M_{j}=M / m_{j}\), so that \(\left(M_{j}, m_{j}\right)=1\).
- We know that there is an \(N_{j}\) so that \(M_{j} N_{j} \equiv c_{j}\left(\bmod m_{j}\right)\) (solve \(y M_{j} \equiv c_{j}\left(\bmod m_{j}\right)\) in \(y\) ).
- The following is known as the Chinese Remainder Theorem

\section*{Theorem 24}

Suppose that \(\left(m_{i}, m_{j}\right)=1\) for every \(i \neq j\). Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo \(m_{1} m_{2} \ldots m_{r}\).
- Proof. We first show that there is a solution.
- Let \(M=m_{1} m_{2} \ldots m_{r}\) and \(M_{j}=M / m_{j}\), so that \(\left(M_{j}, m_{j}\right)=1\).
- We know that there is an \(N_{j}\) so that \(M_{j} N_{j} \equiv c_{j}\left(\bmod m_{j}\right)\) (solve \(y M_{j} \equiv c_{j}\left(\bmod m_{j}\right)\) in \(y\) ).
- Let \(x\) be any member of the residue class
\[
N_{1} M_{1}+\cdots+N_{r} M_{r}(\bmod M)
\]
- The following is known as the Chinese Remainder Theorem

\section*{Theorem 24}

Suppose that \(\left(m_{i}, m_{j}\right)=1\) for every \(i \neq j\). Then the system (2.2) has as its complete solution precisely the members of a unique residue class modulo \(m_{1} m_{2} \ldots m_{r}\).
- Proof. We first show that there is a solution.
- Let \(M=m_{1} m_{2} \ldots m_{r}\) and \(M_{j}=M / m_{j}\), so that \(\left(M_{j}, m_{j}\right)=1\).
- We know that there is an \(N_{j}\) so that \(M_{j} N_{j} \equiv c_{j}\left(\bmod m_{j}\right)\) (solve \(y M_{j} \equiv c_{j}\left(\bmod m_{j}\right)\) in \(y\) ).
- Let \(x\) be any member of the residue class
\[
N_{1} M_{1}+\cdots+N_{r} M_{r}(\bmod M)
\]
- Then for every \(j\), since \(m_{j} \mid M_{i}\) when \(i \neq j\) we have
\[
\begin{aligned}
x & \equiv N_{j} M_{j}\left(\bmod m_{j}\right) \\
& \equiv c_{j}\left(\bmod m_{j}\right)
\end{aligned}
\]
so the residue class \(x(\bmod M)\) gives a solution.
```

Factorization
and Primality
Testing
Chapter 3
Congruences
and Residue
Classes
Robert C.
Vaughan

$$
\begin{cases}x & \equiv c_{1}\left(\bmod m_{1}\right), \\ \ldots & \cdots \\ x & \equiv c_{r}\left(\bmod m_{r}\right)\end{cases}
$$

```

\section*{Residue} Classes

\section*{Linear} congruences

\section*{General}
\begin{tabular}{l} 
Factorization \\
and Primality \\
Testing \\
Chapter 3 \\
Congruences \\
and Residue \\
Classes \\
Robert C. \\
Vaughan \\
Residue \\
Classes \\
Linear \\
congruences \\
General \\
polynomial \\
congruences \\
\hline
\end{tabular}
\begin{tabular}{l} 
Factorization \\
and Primality \\
Testing \\
Chapter 3 \\
Congruences \\
and Residue \\
Classes \\
Robert C. \\
Vaughan \\
Residue \\
Classes \\
Linear \\
congruences \\
General \\
polynomial \\
congruences \\
\hline
\end{tabular}
\[
\begin{aligned}
& \begin{cases}x & \equiv c_{1}\left(\bmod m_{1}\right), \\
\cdots & \cdots \\
x & \equiv c_{r}\left(\bmod m_{r}\right)\end{cases} \\
& \text { - Now we have to show that the solution modulo } M \text { is } \\
& \text { unique. } \\
& \text { - Suppose } y \text { is also a solution of the system. } \\
& \text { - Then for every } j \text { we have } \\
& y \equiv c_{j}\left(\bmod m_{j}\right) \\
& \equiv x\left(\bmod m_{j}\right) \\
& \text { and so } m_{j} \mid y-x \text {. }
\end{aligned}
\]
\[
\begin{cases}x & \equiv c_{1}\left(\bmod m_{1}\right) \\ \cdots & \cdots \\ x & \equiv c_{r}\left(\bmod m_{r}\right)\end{cases}
\]
- Now we have to show that the solution modulo \(M\) is unique.
- Suppose \(y\) is also a solution of the system.
- Then for every \(j\) we have
\[
\begin{aligned}
y & \equiv c_{j}\left(\bmod m_{j}\right) \\
& \equiv x\left(\bmod m_{j}\right)
\end{aligned}
\]
and so \(m_{j} \mid y-x\).
- Since the \(m_{j}\) are pairwise co-prime we have \(M \mid y-x\), so \(y\) is in the residue class \(x\) modulo \(M\).
- Consider

\section*{Example 25}
\[
\begin{aligned}
& x \equiv 3(\bmod 4) \\
& x \equiv 5(\bmod 21) \\
& x \equiv 7(\bmod 25)
\end{aligned}
\]
- Consider

\section*{Example 25}
\[
\begin{aligned}
& x \equiv 3(\bmod 4) \\
& x \equiv 5(\bmod 21) \\
& x \equiv 7(\bmod 25)
\end{aligned}
\]
- \(m_{1}=4, m_{2}=21, m_{3}=25, M=2100, M_{1}=525\), \(M_{2}=100, M_{3}=84\). Thus first we have to solve
\[
\begin{aligned}
525 N_{1} & \equiv 3(\bmod 4), \\
100 N_{2} & \equiv 5(\bmod 21), \\
84 N_{3} & \equiv 7(\bmod 25)
\end{aligned}
\]
```

Factorization
and Primality
Testing
Chapter }
Congruences
and Residue
Classes
Robert C.
Vaughan

$$
\begin{aligned}
525 N_{1} & \equiv 3(\bmod 4) \\
100 N_{2} & \equiv 5(\bmod 21), \\
84 N_{3} & \equiv 7(\bmod 25)
\end{aligned}
$$

```
```

Factorization
and Primality
Testing
Chapter 3
Congruences
and Residue
Classes
Robert C.
Vaughan

$$
\begin{aligned}
525 N_{1} & \equiv 3(\bmod 4), \\
100 N_{2} & \equiv 5(\bmod 21), \\
84 N_{3} & \equiv 7(\bmod 25)
\end{aligned}
$$

```
- Reducing the constants gives
\[
\begin{aligned}
N_{1} & \equiv 3(\bmod 4), \\
(-5) N_{2} & \equiv 5(\bmod 21), \\
9 N_{3} & \equiv 7(\bmod 25) .
\end{aligned}
\]
\[
\begin{aligned}
525 N_{1} & \equiv 3(\bmod 4) \\
100 N_{2} & \equiv 5(\bmod 21) \\
84 N_{3} & \equiv 7(\bmod 25)
\end{aligned}
\]
- Reducing the constants gives
\[
\begin{aligned}
N_{1} & \equiv 3(\bmod 4), \\
(-5) N_{2} & \equiv 5(\bmod 21), \\
9 N_{3} & \equiv 7(\bmod 25) .
\end{aligned}
\]
- Thus we can take \(N_{1}=3, N_{2}=20,7 \equiv-18(\bmod 25)\) so \(N_{3} \equiv-2 \equiv 23(\bmod 25)\). Then the complete solution is
\[
\begin{aligned}
x & \equiv N_{1} M_{1}+N_{2} M_{2}+N_{3} M_{3} \\
& =3 \times 525+20 \times 100+23 \times 84 \\
& =5507 \\
& \equiv 1307(\bmod 2100) .
\end{aligned}
\]
- The solution of a general polynomial congruence can be quite tricky, even for a polynomial with a single variable
\[
f(x):=a_{0}+a_{1} x+\cdots+a_{j} x^{j}+\cdots a_{J} x^{J} \equiv 0(\bmod m)
\]
where the \(a_{j}\) are integers.
- The solution of a general polynomial congruence can be quite tricky, even for a polynomial with a single variable
\[
f(x):=a_{0}+a_{1} x+\cdots+a_{j} x^{j}+\cdots a_{J} x^{J} \equiv 0(\bmod m)
\]
where the \(a_{j}\) are integers.
- The largest \(k\) such that \(a_{k} \not \equiv 0(\bmod m)\) is the degree of \(f\) modulo \(m\).
- The solution of a general polynomial congruence can be quite tricky, even for a polynomial with a single variable
\[
\begin{equation*}
f(x):=a_{0}+a_{1} x+\cdots+a_{j} x^{j}+\cdots a_{J} x^{J} \equiv 0(\bmod m) \tag{3.3}
\end{equation*}
\]
where the \(a_{j}\) are integers.
- The largest \(k\) such that \(a_{k} \not \equiv 0(\bmod m)\) is the degree of \(f\) modulo \(m\).
- If \(a_{j} \equiv 0(\bmod m)\) for every \(j\), then the degree of \(f\) modulo \(m\) is not defined.
- The solution of a general polynomial congruence can be quite tricky, even for a polynomial with a single variable
\[
\begin{equation*}
f(x):=a_{0}+a_{1} x+\cdots+a_{j} x^{j}+\cdots a_{J} x^{J} \equiv 0(\bmod m) \tag{3.3}
\end{equation*}
\]
where the \(a_{j}\) are integers.
- The largest \(k\) such that \(a_{k} \not \equiv 0(\bmod m)\) is the degree of \(f\) modulo \(m\).
- If \(a_{j} \equiv 0(\bmod m)\) for every \(j\), then the degree of \(f\) modulo \(m\) is not defined.
- We have already seen that
\[
x^{2} \equiv 1(\bmod 8)
\]
is solved by any odd \(x\), so that it has four solutions modulo \(8, x \equiv 1,3,5,7(\bmod 8)\).
- The solution of a general polynomial congruence can be quite tricky, even for a polynomial with a single variable
\[
\begin{equation*}
f(x):=a_{0}+a_{1} x+\cdots+a_{j} x^{j}+\cdots a_{J} x^{J} \equiv 0(\bmod m) \tag{3.3}
\end{equation*}
\]
where the \(a_{j}\) are integers.
- The largest \(k\) such that \(a_{k} \not \equiv 0(\bmod m)\) is the degree of \(f\) modulo \(m\).
- If \(a_{j} \equiv 0(\bmod m)\) for every \(j\), then the degree of \(f\) modulo \(m\) is not defined.
- We have already seen that
\[
x^{2} \equiv 1(\bmod 8)
\]
is solved by any odd \(x\), so that it has four solutions modulo \(8, x \equiv 1,3,5,7(\bmod 8)\).
- That is, more than the degree 2. However, when the modulus is prime we have a more familiar conclusion.
- When we have a solution \(x\) to a polynomial congruence such as (3.3) we may sometimes refer to such values as a root of the polynomial modulo \(m\).

\section*{Theorem 26 (Lagrange)}

Suppose that \(p\) is prime, and \(f(x)=a_{0}+a_{1} x+\cdots+a_{j} x^{j}+\cdots\) is a polynomial with integer coefficients \(a_{j}\) and it has degree \(k\) modulo \(p\). Then the number of incongruent solutions of
\[
f(x) \equiv 0(\bmod p)
\]
is at most \(k\).
- When we have a solution \(x\) to a polynomial congruence such as (3.3) we may sometimes refer to such values as a root of the polynomial modulo \(m\).

\section*{Theorem 26 (Lagrange)}

Suppose that \(p\) is prime, and \(f(x)=a_{0}+a_{1} x+\cdots+a_{j} x^{j}+\cdots\) is a polynomial with integer coefficients \(a_{j}\) and it has degree \(k\) modulo \(p\). Then the number of incongruent solutions of
\[
f(x) \equiv 0(\bmod p)
\]
is at most \(k\).
- Proof. Degree 0 is obvious so we suppose \(k \geq 1\).
- When we have a solution \(x\) to a polynomial congruence such as (3.3) we may sometimes refer to such values as a root of the polynomial modulo \(m\).

\section*{Theorem 26 (Lagrange)}

Suppose that \(p\) is prime, and \(f(x)=a_{0}+a_{1} x+\cdots+a_{j} x^{j}+\cdots\) is a polynomial with integer coefficients \(a_{j}\) and it has degree \(k\) modulo \(p\). Then the number of incongruent solutions of
\[
f(x) \equiv 0(\bmod p)
\]
is at most \(k\).
- Proof. Degree 0 is obvious so we suppose \(k \geq 1\).
- We use induction on the degree \(k\).
- When we have a solution \(x\) to a polynomial congruence such as (3.3) we may sometimes refer to such values as a root of the polynomial modulo \(m\).

\section*{Theorem 26 (Lagrange)}

Suppose that \(p\) is prime, and \(f(x)=a_{0}+a_{1} x+\cdots+a_{j} x^{j}+\cdots\) is a polynomial with integer coefficients \(a_{j}\) and it has degree \(k\) modulo \(p\). Then the number of incongruent solutions of
\[
f(x) \equiv 0(\bmod p)
\]
is at most \(k\).
- Proof. Degree 0 is obvious so we suppose \(k \geq 1\).
- We use induction on the degree \(k\).
- If a polynomial \(f\) has degree 1 modulo \(p\), so that \(f(x)=a_{0}+a_{1} x\) with \(p \nmid a_{1}\), then the congruence becomes \(a_{1} x \equiv-a_{0}(\bmod p)\) and since \(a_{1} \not \equiv 0(\bmod p)\) (because \(f\) has degree 1) we know that this is soluble by precisely the members of a unique residue class modulo \(p\).
```

Factorization

- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that f has degree $k+1$.
- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that f has degree $k+1$.
- If $f(x) \equiv 0(\bmod p)$ has no solutions, then we are done.
- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that f has degree $k+1$.
- If $f(x) \equiv 0(\bmod p)$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_{0}(\bmod p)$.
- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that f has degree $k+1$.
- If $f(x) \equiv 0(\bmod p)$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_{0}(\bmod p)$.
- By the division algorithm for polynomials we have

$$
f(x)=\left(x-x_{0}\right) q(x)+f\left(x_{0}\right)
$$

where $q(x)$ is a polynomial of degree k.

- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that f has degree $k+1$.
- If $f(x) \equiv 0(\bmod p)$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_{0}(\bmod p)$.
- By the division algorithm for polynomials we have

$$
f(x)=\left(x-x_{0}\right) q(x)+f\left(x_{0}\right)
$$

where $q(x)$ is a polynomial of degree k.

- Moreover the leading coefficient of $q(x)$ is $a_{k} \not \equiv 0$ $(\bmod p)$.
- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that f has degree $k+1$.
- If $f(x) \equiv 0(\bmod p)$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_{0}(\bmod p)$.
- By the division algorithm for polynomials we have

$$
f(x)=\left(x-x_{0}\right) q(x)+f\left(x_{0}\right)
$$

where $q(x)$ is a polynomial of degree k.

- Moreover the leading coefficient of $q(x)$ is $a_{k} \not \equiv 0$ $(\bmod p)$.
- But $f\left(x_{0}\right) \equiv 0(\bmod p)$, so that $f(x) \equiv\left(x-x_{0}\right) q(x)$ $(\bmod p)$.
- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that f has degree $k+1$.
- If $f(x) \equiv 0(\bmod p)$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_{0}(\bmod p)$.
- By the division algorithm for polynomials we have

$$
f(x)=\left(x-x_{0}\right) q(x)+f\left(x_{0}\right)
$$

where $q(x)$ is a polynomial of degree k.

- Moreover the leading coefficient of $q(x)$ is $a_{k} \not \equiv 0$ $(\bmod p)$.
- But $f\left(x_{0}\right) \equiv 0(\bmod p)$, so that $f(x) \equiv\left(x-x_{0}\right) q(x)$ $(\bmod p)$.
- If $f\left(x_{1}\right) \equiv 0(\bmod p)$, with $x_{1} \not \equiv x_{0}(\bmod p)$, then $p \nmid x_{1}-x_{0}$ so that $p \mid q\left(x_{1}\right)$.
- Now suppose that the conclusion holds for all polynomials of a given degree k and suppose that f has degree $k+1$.
- If $f(x) \equiv 0(\bmod p)$ has no solutions, then we are done.
- Hence we may assume at least one, say $x \equiv x_{0}(\bmod p)$.
- By the division algorithm for polynomials we have

$$
f(x)=\left(x-x_{0}\right) q(x)+f\left(x_{0}\right)
$$

where $q(x)$ is a polynomial of degree k.

- Moreover the leading coefficient of $q(x)$ is $a_{k} \not \equiv 0$ $(\bmod p)$.
- But $f\left(x_{0}\right) \equiv 0(\bmod p)$, so that $f(x) \equiv\left(x-x_{0}\right) q(x)$ $(\bmod p)$.
- If $f\left(x_{1}\right) \equiv 0(\bmod p)$, with $x_{1} \not \equiv x_{0}(\bmod p)$, then $p \nmid x_{1}-x_{0}$ so that $p \mid q\left(x_{1}\right)$.
- By the inductive hypothesis there are at most k possibilities for x_{1}, so at most $k+1$ in all.

```
Factorization
and Primality
    Testing
    Chapter 3
Congruences
and Residue
    Classes
Robert C.
Vaughan
```

- Non-linear polynomials in one variable are complicated.
- Non-linear polynomials in one variable are complicated.
- The general modulus can be reduced to a prime power modulus, and that case can be reduced to the prime modulus. I will include the theory in the class text for those interested. In general the prime case leads to algebraic number theory.
- Non-linear polynomials in one variable are complicated.
- The general modulus can be reduced to a prime power modulus, and that case can be reduced to the prime modulus. I will include the theory in the class text for those interested. In general the prime case leads to algebraic number theory.
- The quadratic case we will need and will look at later.

