MATH 467, THE QUADRATIC SIEVE (QS)

Algorithm QS. We are given an odd number n which we know to be composite and not a perfect power.
The objective is to find a non—trivial factor of n by first finding  and y so that 22> = y? (mod n) and then
checking GCD(z + y,n).

A number m € N is called B—factorable when it has no prime factor exceeding B.

1. Initialization.

1.1. Pick a number B for the size of the factor base. Theory says take B = [L(n)'/?] where L(n) =
exp(v/lognloglogn), but in practice a B somewhat smaller works well. Also, adding extra primes suggested
by the sieving process can be useful and if one uses the wrinkle in 5.3 the prime p is adjoined to the factor
base.

1.2. Set po = —1, p1 = 2 and find the odd primes p; < p3 < ... < pg < B such that (p%)L = 1. Here
K + 1 is the cardinality of the factor base. Algorithm LJ is useful here (described elsewhere).

1.3. For k =2,..., K find the solutions +t; to 22 =n (mod p;) by using algorithms QC357/8 and QC1/8

(described elsewhere).

2. Sieving.

2.1. Let N = [/n]. For each z = N +j, j = 0,£... the 22 — n will be sieved until one has obtained
a list of at least K + 2 B-factorable 22 — n and their factorizations. This could be done by using a matrix,
with B? columns (B? is somewhat arbitrary and can be increased if necessary) so that each column is a K + 3
dimensional vector in which the first entry is z, the second is z? — n, and the k + 3-rd entry will be the
exponent of p; in 2 — n.

2.2. For each prime p;, in the factor base divide out all the prime factors pj in each entry 2% — n with
x = £t (mod pg), recording the exponent in the k 4+ 3-rd entry in the associated j-th vector.

2.3. If the second entry in the j-th vector has reduced to 1, then 22 — n is B-factorable. Relatively few
will be completely factored. Discard those  which don’t completely factorise in the factor base. Theory tells
us that we will need at least K + 1, and generally somewhat more, say J, completely factored, which is the
reason for taking so many columns in the first place. In my model solutions I take J = K + 9 but this is
probably overkill.

3. Linear Algebra.

3.1. Form a (K + 1) x J matrix M with the columns being formed by the 3-rd through K + 3-rd entries
of the column vectors arising in 2.2 from the B-factorable 2 — n, but with the entries reduced modulo 2. It
is convenient to label columns as j = 1 through J and the corresponding x as x; through x;.

3.2. Use linear algebra (e.g. Gaussian elimination) to solve Me = 0 (mod 2) where e = (e1,ea,... ,e5) is
a J dimensional vector of Os and 1s (not all 0!). It is likely that one will need more than one solution before
finding a factorization of n. Gaussian elimination or standard linear algebra packages should give a basis for
the space of all solutions.

4. Factorization.
4.1. Compute z = z{'25* ... x5 modulo n and

Y= \/(ac% —n)e (23 —n)e>... (2% —n)*’ (mod n)

modulo n. The value of z can be computed by using the first entries in the column vectors in the original
matrix and the square root in the definition of y should be computed using the factorizations in the body of
that matrix. Note that all multiplications should be performed modulo n so nothing bigger than n? will occur.
4.2. Compute | =GCD(z — y,n), m =GCD(z + y,n).
4.3. Return [, m.

5. Aftermath.

The method described above should work for the examples in the final project. In more difficult cases the
following has been tried.

5.1. If none of the [, m are proper factors of n try one or more of the following.

5.2. Extend the sieving in 2.1 to obtain more z; and so more pairs.



5.3. Use another polynomial in place of 2 — n, or rather, be a bit more cunning about the choice of the z
in 2.1. Choose a large prime p for which > —n = 0 (mod p) is soluble, and compute b. Then (pz +b)? —n =0
(mod p) and x can be chosen so that f(z) = ((pz + b)? — n)/p is comparatively small since p is large, so the
sieving proceeds relatively speedily, there is a better chance of a complete factorization of f(z), and we only
have to augment the factor base with the prime p.



