MATH 467 FACTORIZATION AND PRIMALITY TESTING, FALL 2023, PROBLEMS 11

Return by Monday 4th December

1. (i) Prove that there is an arithmetic function f such that for every natural number n we have $\mu(n)=\sum_{m \mid n} f(m)$.
(ii) Prove that f multiplicative, and give a formula for $f\left(p^{k}\right)$ when p is prime.
2. Give an example of a totally multiplicative function f for which $\sum_{m \mid n} f(m)$ is not totally multiplicative.
3. Show that

$$
\left(\sum_{m \mid n} d(m)\right)^{2}=\sum_{m \mid n} d(m)^{3} .
$$

4. We define $\sigma(n)$ for $n \in \mathbb{N}$ to be the sum of the divisors of n,

$$
\sigma(n)=\sum_{m \mid n} m
$$

(i) Prove that σ is a multiplicative function.
(ii) Evaluate $\sigma(1050)$.
(iii) Prove that

$$
\sum_{m \mid n} \phi(m) \sigma(n / m)=n d(n)
$$

(iv) Show that if $\sigma(n)$ is odd, then n is a square or twice a square.
(v) Prove that

$$
\sum_{m \mid n} \mu(m) \sigma(n / m)=n
$$

(vi) Prove that

$$
\sum_{m \mid n} \mu(n / m) \sum_{l \mid m} \mu(l) \sigma(m / l)=\phi(n) .
$$

5. (i) Show that every odd number n can be written as the difference of two squares, $n=x^{2}-y^{2}$. How many different choices for the integers x and y are there?
(ii) Prove that $\left(u^{2}-v^{2}\right)\left(x^{2}-y^{2}\right)=(u x+v y)^{2}-(u y+v x)^{2}$ Deduce that if m and n are both the difference of two squares, then so is $m n$.
