MATH 467 FACTORIZATION AND PRIMALITY TESTING, FALL 2023, PROBLEMS 9

Return by Monday 30th October

Submit any code you write to answer these questions.

1. The Martian year is approximately 668 Martian days. Compute the probability $\rho(s)$ for a class of s Martian students when $21 \leq s \leq 50$. For which size class of Martians is one more likely than not to have two Martians with the same birthday?

For a Mercurian the solar day appears to be longer than the solar year, so sadly on Mercury the human concept of birthday does not make sense.
2. Write a programme to implement Pollard's " ρ " and use it to factorise
(i) 3215031751 ,
(ii) 9912409831 ,
(iii) 341550071728321 ,
(iv) 3825123056546413051 ,
(v) 1296001987165015643369032371289.
3. Write a programme to implement Pollard's " $p-1$ " and use it to factorise
(i) 1231331,
(ii) 950161333249 .

