MATH 467 FACTORIZATION AND PRIMALITY TESTING, FALL 2023, PROBLEMS 7

Return by Monday 16th October

1. Find a complete set of quadratic residues r modulo 13 in the range $1 \leq r \leq 12$.
2. Evaluate the following Legendre symbols.
(i) $\left(\frac{2}{127}\right)_{L}$,
(ii) $\left(\frac{-1}{127}\right)_{L}$,
(iii) $\left(\frac{5}{127}\right)_{L}$,
(iv) $\left(\frac{11}{127}\right)_{L}$.
3. (i) Prove that 3 is a QR modulo p when $p \equiv \pm 1(\bmod 12)$ and is a QNR when $p \equiv \pm 5(\bmod 12)$.
(ii) Prove that -3 is a QR modulo p for primes p with $p \equiv 1(\bmod 6)$ and is a QNR for primes $p \equiv-1(\bmod 6)$.
(iii) By considering $4 x^{2}+3$ show that there are infinitely many primes in the residue class $1(\bmod 6)$.
4. (i) Prove that if p is an odd prime $a, b \in \mathbb{Z}$ and $(a, p)=1$, then

$$
\sum_{n=1}^{p}\left(\frac{a n+b}{p}\right)_{L}=0
$$

(ii) Prove that if p is an odd prime, then $\sum_{r=1}^{p-1}\left(\frac{r(r+1)}{p}\right)_{L}=\sum_{s=1}^{p-1}\left(\frac{1+s}{p}\right)_{L}=-1$. Hint: Observe that for every reduced residue class r modulo p there is a unique reduced residue class s_{r} modulo p such that $r s_{r} \equiv 1(\bmod p)$, and that for every reduced residue class s modulo p one has $s_{r} \equiv s(\bmod p)$ for some r.
(iii) Prove that if p is an odd prime, then the number of residues r modulo p for which both r and $r+1$ are quadratic residues is $\frac{p-(-1)^{\frac{p-1}{2}}}{4}-1$. Note that with our definitions 0 is neither a quadratic residue nor a quadratic non-residue.
5. Write computer programs to implement $\mathbf{L J}$ and $\mathbf{Q C}$, and use them to evaluate the Legendre symbols

$$
\left(\frac{a}{p}\right)_{L}
$$

when $a=40000000003$ or $a=400000000031$, and $p=100000000019$ or $a p=$ 100000000057 , and when it is 1 to solve $x^{2} \equiv a(\bmod p)$.

