MATH 467 FACTORIZATION AND PRIMALITY TESTING, FALL 2023, PROBLEMS 6

Return by Monday 9th October

This week's questions require some computational aids, such as Pari or Mathematica. When you write a computer program to solve the problem your code must be submitted along with your solutions.

1. Given that n is a product of two primes p and q with $p \leq q$, prove that

$$
p=\frac{n+1-\phi(n)-\sqrt{(n+1-\phi(n))^{2}-4 n}}{2} .
$$

When $n=19749361535894833$ and $\phi(n)=19749361232517120$ use this to find p and q.
2. A "probable prime" p is a number such that $a^{p-1} \equiv 1(\bmod p)$ for $a=2,3,5,7$. For each of the odd numbers n with $100000000000 \leq n \leq 100000000025$ list the ones which are probable primes and for those which are not list the values of a for which the test fails.
3. Find all n such that $\phi(n)=12$.
4. Show that 3 is a primitive root modulo 17 and draw up a table of discrete logarithms to this base modulo 17. Hence, or otherwise, find all solutions to the following congruences.
(i) $x^{12} \equiv 16(\bmod 17)$,
(ii) $x^{48} \equiv 9(\bmod 17)$,
(iii) $x^{20} \equiv 13(\bmod 17)$,
(iv) $x^{11} \equiv 9(\bmod 17)$.
5. Suppose that p is an odd prime and g is a primitive root modulo p. Prove that g is a quadratic non-residue modulo p.

