MATH 467 FACTORIZATION AND PRIMALITY TESTING, FALL TERM 2023, PROBLEMS 4

Return by Monday 25th September

Congruences

1. Solve where possible.
(i) $91 x \equiv 84(\bmod 143)$
(ii) $91 x \equiv 84(\bmod 147)$
2. Prove that $7 n^{3}-1$ can never be a perfect square.
3. Suppose that $m_{1}, m_{2} \in \mathbb{N},\left(m_{1}, m_{2}\right)=1, a, b \in \mathbb{Z}$. Prove that $a \equiv b\left(\bmod m_{1}\right)$ and $a \equiv b\left(\bmod m_{2}\right)$ if and only if $a \equiv b\left(\bmod m_{1} m_{2}\right)$.
4. Write a program to compute $2^{n}(\bmod n)$ and apply it to 12341137 and 12341141 to determine which one is certainly composite. Include a copy of your program.
5. Solve the simultaneous congruences

$$
\begin{aligned}
& x \equiv 3(\bmod 6) \\
& x \equiv 5(\bmod 35) \\
& x \equiv 7(\bmod 143) \\
& x \equiv 11(\bmod 323)
\end{aligned}
$$

