MATH 467 FACTORIZATION AND PRIMALITY, FALL TERM 2023, PROBLEMS 1

DIVISIBILITY

Return by Monday 28th August

For elements of \mathbb{Z} we use the notation a|b to mean that there is a $c \in \mathbb{Z}$ such that b = ac.

- 1. Let $a, b, c \in \mathbb{Z}$. Prove each of the following.
 - (i) a|a.
 - (ii) If a|b and b|a, then $a = \pm b$.
 - (iii) If a|b and b|c, then a|c.
 - (iv) If ac|bc and $c \neq 0$, then a|b.
 - (v) If a|b, then ac|bc.
 - (vi) If a|b and a|c, then a|bx + cy for all $x, y \in \mathbb{Z}$.
- 2. The Fibonacci sequence is defined iteratively by $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ (n = 2, 3, ...). Show that if $m, n \in \mathbb{N}$ satisfy $m|F_n$ and $m|F_{n+1}$, then m = 1.
- 3. Prove that if n is odd, then $8|n^2-1$.
- 4. Find all solutions $x, y \in \mathbb{Z}$ to the equation $x^2 y^2 = 105$.
- 5. (i) Show that if m and n are integers of the form 4k + 1, then so is mn.
- (ii) Show that if $m, n \in \mathbb{N}$, and mn is of the form 4k-1, then so is one of m and n.
 - (iii) Show that every number of the form 4k-1 has a prime factor of this form.
 - (iv) Show that there are infinitely many primes of the form 4k-1.