MATH 467 FACTORIZATION AND
 PRIMALITY, FALL TERM 2023, PROBLEMS 1

Divisibility
Return by Monday 28th August

For elements of \mathbb{Z} we use the notation $a \mid b$ to mean that there is a $c \in \mathbb{Z}$ such that $b=a c$.

1. Let $a, b, c \in \mathbb{Z}$. Prove each of the following.
(i) $a \mid a$.
(ii) If $a \mid b$ and $b \mid a$, then $a= \pm b$.
(iii) If $a \mid b$ and $b \mid c$, then $a \mid c$.
(iv) If $a c \mid b c$ and $c \neq 0$, then $a \mid b$.
(v) If $a \mid b$, then $a c \mid b c$.
(vi) If $a \mid b$ and $a \mid c$, then $a \mid b x+c y$ for all $x, y \in \mathbb{Z}$.
2. The Fibonacci sequence is defined iteratively by $F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$ $(n=2,3, \ldots)$. Show that if $m, n \in \mathbb{N}$ satisfy $m \mid F_{n}$ and $m \mid F_{n+1}$, then $m=1$.
3. Prove that if n is odd, then $8 \mid n^{2}-1$.
4. Find all solutions $x, y \in \mathbb{Z}$ to the equation $x^{2}-y^{2}=105$.
5. (i) Show that if m and n are integers of the form $4 k+1$, then so is $m n$.
(ii) Show that if $m, n \in \mathbb{N}$, and $m n$ is of the form $4 k-1$, then so is one of m and n.
(iii) Show that every number of the form $4 k-1$ has a prime factor of this form.
(iv) Show that there are infinitely many primes of the form $4 k-1$.
