MATH 467, The Miller-Rabin Test

Algorithm MR.

0. Check that n is odd and stop if it is not.
1. Check n for small factors, say not exceeding $\log n$ and stop if it has one.
2. Check whether n is a prime power, for example by comparing $\left\lfloor n^{1 / k}\right\rfloor$ with $n^{1 / k}$ for $2 \leq k \leq \frac{\log n}{\log 2}$, and stop if it is.
3. Take out the powers of 2 in $n-1$ so that

$$
n-1=2^{u} v
$$

with v odd.
4. For each a with $2 \leq a \leq \min \left\{2(\log n)^{2}, n-2\right\}$ check the statements

$$
a^{v} \equiv 1 \quad(\bmod n), a^{v} \equiv-1 \quad(\bmod n), \ldots, a^{2^{u-1} v} \equiv-1 \quad(\bmod n)
$$

5. If a is such that they are all false, stop and declare that n is composite and a is a witness.
6. If no witness a is found with $a \leq \min \left\{2(\log n)^{2}, n-2\right\}$, then declare that n is prime.

There are a couple of further wrinkles that can be tried in this process.
A. Before doing the congruence checks in 4 , check that $(a, n)=1$ because if $(a, n)>1$, then one has a proper divisor of n and not only is n composite but one has found a factor.
B. With regard to the construction of a in the proof of Theorem 6.2 , we see that a is a QNR with respect to one of the prime factors of n, and we observed in Section $\S 5.1$ that the least QNR modulo a prime is itself a prime. Thus it is no surprise that in the application of the Riemann Hypothesis described there the $a \leq 2(\log n)^{2}$ which are used are in fact prime. Hence we could restrict our attention to prime values of a. This is a mixed blessing since although the primes are relatively infrequent it is conceivable that the least witness a is composite,

