MATH 467 FACTORIZATON AND PRIMALITY TESTING, FALL TERM 2023, PRACTICE EXAM 1 SOLUTIONS

Note: Exam 1 will be 9:05-9:55, Wednesday 27th September 2023 Room 158 Willard

1. (25 marks) Prove that if $m \in \mathbb{N}$ and $n \in \mathbb{N}$, then there are integers a, b such that $(a, b)=m$ and $a b=m n$ if and only if $m \mid n$.

If $(a, b)=m$ and $a b=m n$, then $m \mid a$ and $m \mid b$ so $m^{2} \mid m n$, whence $m \mid n$. On the other hand, if $m \mid n$, then take $a=m$ and $b=n$. Then $m|a, m| b$, so that $m \mid(a, b)$, and $(a, b) \mid a=m$. Thus $m=(a, b)$ and $a b=m n$.
2. (25 marks) Find all pairs of integers x and y such that $922 x+2163 y=7$.
$2163-2.922=319,922-2.319=284,319-284=35,284-8.35=4$, $35-8.4=3,4-1.3=1.1=4-1.3=4-(35-8.4)=9(284-8.35)-35=$ $9.284-73(319-284)=82(922-2.319)-73.319=82.922-237(2163-2.922)=$ $556.922-237.2163 .7=3892.922-1659.2163=1729.922-737.2163$. The general solution is $x=1729+2163 t, y=-737-2163 t$.
3. (25 marks) Prove that $1365 \mid n^{13}-n$.

We make repeated use of Fermat's Little Theorem. $1365=3.5 .7 .13 . n^{13}=$ $\left(n^{3}\right)^{4} n \equiv n^{5} \equiv n^{3} n^{2} \equiv n^{3} \equiv n(\bmod 3), n^{13}=\left(n^{5}\right)^{2} n^{3} \equiv n^{5} \equiv n(\bmod 5)$, $n^{13}=n^{7} n^{6} \equiv n^{7} \equiv n(\bmod 7), n^{13} \equiv n(\bmod 13)$ 。
4. (25 marks) Prove that $23 \mathrm{n}-1$ is never a perfect square.

The perfect squares x^{2} modulo 23 satisfy $x^{2} \equiv(23-x)^{2} \equiv x^{2}(\bmod 23)$, so the only non zero residue classes which contain perfect squares are given by x^{2} with $1 \leq x \leq 11$ and are

$$
\begin{aligned}
& 1^{2} \equiv 1,2^{2} \equiv 4,3^{2} \equiv 9,4^{2} \equiv 16,5^{2} \equiv 2,6^{2} \equiv 13 \\
& 7^{2}=49 \equiv 3,8^{2} \equiv 18,9^{2} \equiv 12,10^{2} \equiv 8,11^{2} \equiv 6
\end{aligned}
$$

$-1 \equiv 22(\bmod 23)$ is not in the list.

