MATH 467, Pollard rho and p-1

Algorithm Pollard rho.

1. Choose a polynomial f with integer coefficients which is irreducible over \mathbb{Q}, such as $f(x)=x^{2}+1$.
2. Pick an integer x_{0} at random and take $z_{0}=x_{0}$.
3. For $j=1,2,3, \ldots$, given x_{j-1}, z_{j-1} compute

$$
x_{j}=f\left(x_{j-1}\right) \quad(\bmod n), \quad z_{j}=f\left(f\left(z_{j-1}\right)\right) \quad(\bmod n), \quad G C D\left(z_{j}-x_{j}, n\right)
$$

4. If after a certain amount of time this does not produce a non-trivial factor of n start over with a different polynomial f.

Algorithm Pollard p-1.

1. Pick some large positive integer K.
2. Pick some a with $(a, n)=1$.
3. Let $x_{0}=a$ and for $k=1, \ldots, K$ successively compute

$$
x_{k}=x_{k-1}^{k} \quad(\bmod n) \text { and } G C D\left(x_{k}-1, n\right) .
$$

