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® The basic results on sums of squares depend on the theory
of quadratic residues, so this chapter is a natural
continuation of the previous one.
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® Let us start by considering the solubility of p = x> + y?
where p is an odd prime and x and y are integers.

e |If we had p|y, then we would have to have p|x, but then
the right hand side would be divisible by p?, which is
obvious nonsense.
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The basic results on sums of squares depend on the theory
of quadratic residues, so this chapter is a natural
continuation of the previous one.

Let us start by considering the solubility of p = x> + y?
where p is an odd prime and x and y are integers.

If we had p|y, then we would have to have p|x, but then
the right hand side would be divisible by p?, which is
obvious nonsense.

Thus we may assume that p 1 y.



® If we rewrite the equation as x> = p — y?, then we have
>=—y? (mod p).
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by Euler's criterion.
® Thus p=1 (mod 4), and we have proved one half of the
following theorem.
Theorem 1 (Fermat/Girard)

An odd prime p is the sum of two squares if and only if p =1

(mod 4).
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Theorem (Fermat/Girard). An odd prime p is the sum
of two squares if and only if p=1 (mod 4).

It remains to prove if p=1 (mod 4), then p is the sum of
two squares. We give a proof due to Thue.

—1isa QR. Choose Z so that Z> = —1 (mod p) and
consider the numbers xZ + y with 0 < x < ,/p and

0 <y < ,/p (since a prime is not a perfect square).

There are (1 + Lﬁj)z > (ﬁ)2 = p of them.
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It remains to prove if p=1 (mod 4), then p is the sum of
two squares. We give a proof due to Thue.

—1isa QR. Choose Z so that Z> = —1 (mod p) and

consider the numbers xZ + y with 0 < x < ,/p and
0 <y < ,/p (since a prime is not a perfect square).

There are (1 + Lﬁj)z > (\ﬁ)2 = p of them.

Since there are more than p of them, there must be a
residue class modulo p which contains at least two of
them (the Dirichlet Box Principle).
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Theorem (Fermat/Girard). An odd prime p is the sum
of two squares if and only if p=1 (mod 4).

It remains to prove if p=1 (mod 4), then p is the sum of
two squares. We give a proof due to Thue.

—1isa QR. Choose Z so that Z> = —1 (mod p) and
consider the numbers xZ + y with 0 < x < ,/p and

0 <y < ,/p (since a prime is not a perfect square).

There are (1 + Lﬁj)z > (\ﬁ)2 = p of them.

Since there are more than p of them, there must be a
residue class modulo p which contains at least two of
them (the Dirichlet Box Principle).

That is, we have x1Z + y1 = x2Z + y» (mod p), and since
the pairs x1, y1 and xo, y» are different we have xZ+y =0
(mod p) with |x| = [x1 = < /P, Iyl =Iy1 —y2| < /P
and x and y not both 0.
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Theorem (Fermat/Girard). An odd prime p is the sum
of two squares if and only if p=1 (mod 4).

It remains to prove if p=1 (mod 4), then p is the sum of
two squares. We give a proof due to Thue.

—1isa QR. Choose Z so that Z> = —1 (mod p) and
consider the numbers xZ + y with 0 < x < ,/p and

0 <y < ,/p (since a prime is not a perfect square).

There are (1 + Lﬁj)z > (\ﬁ)2 = p of them.

Since there are more than p of them, there must be a
residue class modulo p which contains at least two of
them (the Dirichlet Box Principle).

That is, we have x1Z + y1 = x2Z + y» (mod p), and since
the pairs x1, y1 and xo, y» are different we have xZ+y =0
(mod p) with |x| = |[x1 = | < /P |y| = y1 = y2| < /P
and x and y not both 0.

Now x? + y? = x?2 + (—xZ)?> = x*(Z2 +1) =0 (mod p).
Moreover 0 < x? 4+ y? < p+ p = 2p. Hence x> + y? = p.
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multiplicative property. Consider the following table.

12 412
0% + 22
12 4 22
22 4 22
0% + 32
12 432
22432
22 1 42
0% + 52

26
29
34
40
45
50
52
58
65

12 +52
22 4+ 52
32 452
22 4+ 6
32 4+ 62
52 + 52
42—|—62
32 4+7°
12 + 82

68
72
74
80
81
82
85
90
98

22 4 82
62 + 62
52 4 72
42 4 g2
0% + 92
12 + 92
22 492
32 +9?
7+ 7

100
104
106
116
117
122
125
128
130

62 + 82
22 4+ 10
52 4+ 92
42 110
62 + 92
12 411
52 4+ 10
82 + 82
32 4+ 11
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12 412
0% + 22
12 4 22
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0% + 32
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22 1 42
0% + 52
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® This looks as though, if a number n has a factorisation ab
with both a and b being sums of two squares, then n is
also the sum of two squares.
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e Example 6.4. Sums of two squares have a remarkable

multiplicative property. Consider the following table.

25

12 412
0% + 22
12 4 22
22 4 22
0% + 32
12 432
22432
22 1 42
0% + 52

26
29
34
40
45
50
52
58
65

12 +52
22 4+ 52
32 452
22 4+ 6
32 4+ 62
52 + 52
42—|—62
32 4+7°
12 + 82

68
72
74
80
81
82
85
90
98

22 4 82
62 + 62
52 4 72
42 4 g2
0% + 92
12 + 92
22 492
32 +9?
7+ 7

100
104
106
116
117
122
125
128
130

62 + 82
22 4+ 10
52 4+ 92
42 110
62 + 92
12 411
52 4+ 10
82 + 82
32 4+ 11

® This looks as though, if a number n has a factorisation ab
with both a and b being sums of two squares, then n is
also the sum of two squares.

® For example 130 = 2 x 4 x 13 and both 2, 5 and 13 are

sums of two squares.
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® The simplest proof is to multiply out both sides

xX°X% +x2Y?% + 2 X% + y2Y?,
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X2X% = 2xXyY + y2 Y2 4 x2Y? £ 2xYyX + y2 X2

and observe that the cross product terms on the right
cancel and then the two sides are equal.
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(X +y2) (X2 + Y2) = (XX = yY)? + (xY + yX)%.

® The simplest proof is to multiply out both sides
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X2+ X2V 4y X2 4 Y2y,

X2X% = 2xXyY + y2 Y2 4 x2Y? £ 2xYyX + y2 X2
and observe that the cross product terms on the right
cancel and then the two sides are equal.

® Another way of seeing this identity is to write it as
O+ y2) (X2 + Y2) =[x + iy P[X + Y[ =
|(x + iy)(X +iY)]? = [xX — yY +i(xY +yX)|? =
(xX — yY)? + (xY + yX)2.
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® Now we can prove Fermat's theorem

Theorem 2 (Fermat)

Let n have the canonical decomposition

m= 3" pf'qf1 ... qb where the q; are the primes in the
factorisation with qj =3 (mod 4) and the p; are the prime 2
(if n is even) and the primes pj =1 (mod 4). Then n is the
sum of two squares if and only if all the exponents b; are even.
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® Now we can prove Fermat's theorem

Theorem 2 (Fermat)

Let n have the canonical decomposition

m= 3" pf'qi71 ... qb where the q; are the primes in the
factorisation with qj =3 (mod 4) and the p; are the prime 2
(if n is even) and the primes pj =1 (mod 4). Then n is the
sum of two squares if and only if all the exponents b; are even.

® Proof. If n satisfies the necessary condition, then the
result follows by repeated use of the identity and the
special cases p =2, p=1 (mod 4) and ¢°.
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® Proof. If n satisfies the necessary condition, then the
result follows by repeated use of the identity and the
special cases p =2, p=1 (mod 4) and ¢°.
® To prove the converse observe that if g is a prime with
g=3 (mod 4)and n=x%>+y? =0 (mod q), then we
have g|x and qly, for if not, then we have nonsense;

(), (3,
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Squares
® Proof. If n satisfies the necessary condition, then the
result follows by repeated use of the identity and the
special cases p =2, p=1 (mod 4) and ¢°.
® To prove the converse observe that if g is a prime with
=3 (mod 4) and n = x?> 4+ y?> =0 (mod q), then we
have g|x and qly, for if not, then we have nonsense;

(), (),

® Thus n/q? is a sum of two squares and we can use an
inductive argument.



® |t is also possible to show a similar result for numbers of
the form x? + 2y? and likewise for x> + 3y?.
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® |t is also possible to show a similar result for numbers of
the form x? + 2y? and likewise for x? 4 3y2.

® The general rule here is that if —2 (or —3 in the second
case) is a QR modulo p, then p can be represented and

there is an identity
(x2 + Ay2) (X2 + AY2) = (xX — AyY)? + A(xY + yX)?

which works in both cases.
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® The general rule here is that if —2 (or —3 in the second
case) is a QR modulo p, then p can be represented and
there is an identity
(x2 + Ay2) (X2 + AY2) = (xX — AyY)? + A(xY + yX)?
which works in both cases.

® In the case of x> 4+ 2y? Thue's argument shows that if
p=1or 3 (mod 8), then there are x and y such that
x? 4+ 2y? = mp with m =1 or 2.
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case) is a QR modulo p, then p can be represented and
there is an identity
(x2 + Ay2) (X2 + AY2) = (xX — AyY)? + A(xY + yX)?
which works in both cases.

® In the case of x> 4+ 2y? Thue's argument shows that if
p=1or 3 (mod 8), then there are x and y such that
x? 4+ 2y? = mp with m =1 or 2.

e If m =2, then 2|x and the equation reduces to
2(x/2)? +y? = p.
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the form x? + 2y? and likewise for x? 4 3y2.

The general rule here is that if —2 (or —3 in the second
case) is a QR modulo p, then p can be represented and
there is an identity

(x2 + Ay2) (X2 + AY2) = (xX — AyY)? + A(xY + yX)?
which works in both cases.

In the case of x? + 2y Thue's argument shows that if
p=1or 3 (mod 8), then there are x and y such that
x? 4+ 2y? = mp with m =1 or 2.

If m =2, then 2|x and the equation reduces to

2(x/2)% +y2 = p.

For the form x2 + 3y?, when p =1 (mod 3), Thue
reduces to x> 4+ 3y? = mp with m = 1,2 or 3.
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It is also possible to show a similar result for numbers of
the form x? + 2y? and likewise for x? 4 3y2.

The general rule here is that if —2 (or —3 in the second
case) is a QR modulo p, then p can be represented and
there is an identity

(x2 + Ay2) (X2 + AY2) = (xX — AyY)? + A(xY + yX)?
which works in both cases.

In the case of x? + 2y Thue's argument shows that if
p=1or 3 (mod 8), then there are x and y such that
x? 4+ 2y? = mp with m =1 or 2.

If m =2, then 2|x and the equation reduces to

2(x/2)% +y2 = p.

For the form x2 + 3y?, when p =1 (mod 3), Thue
reduces to x> 4+ 3y? = mp with m = 1,2 or 3.

Then m = 3 can be dealt with as before.
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It is also possible to show a similar result for numbers of
the form x? + 2y? and likewise for x? 4 3y2.

The general rule here is that if —2 (or —3 in the second
case) is a QR modulo p, then p can be represented and
there is an identity

(x2 + Ay2) (X2 + AY2) = (xX — AyY)? + A(xY + yX)?
which works in both cases.

In the case of x? + 2y Thue's argument shows that if
p=1or 3 (mod 8), then there are x and y such that

x? 4+ 2y? = mp with m =1 or 2.

If m =2, then 2|x and the equation reduces to

2(x/2)% +y2 = p.

For the form x2 + 3y?, when p =1 (mod 3), Thue
reduces to x> 4+ 3y? = mp with m = 1,2 or 3.

Then m = 3 can be dealt with as before.

The possibility m = 2 cannot happen because when p > 2
one cannot have 2|xy, so the left hand sideis=1+3=4
(mod 8) and 4 does not divide 2p.
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because it is possible in most cases that D = b?> — 4ac is a
QR modulo p, but the form does not represent p.
® |t turns out there is a different form with the same value
of discriminant D which represents p.



Introduction
to Number
Theory
Chapter 6
Sums of
squares

Robert C.
Vaughan

Binary
Quadratic
Forms

® This phenomenon does not occur for more general binary

quadratic forms

ax? + bxy + cy?
because it is possible in most cases that D = b?> — 4ac is a
QR modulo p, but the form does not represent p.
It turns out there is a different form with the same value
of discriminant D which represents p.
Example 6.6. In the case when D = —20, there are
basically two forms, (everything else with that discriminant
can be reduced to them) x? 4 5y? and 2x? + 2xy + 3y2.
The discriminant —20 is a QR for p =7 and p = 29, but
only the second form represents 7 and only the first one
represents 29.
This is related to the “class number problem”, and the
fact that the quadratic number field Q(v/—5) fails to have
uniqueness of factorisation.
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® This phenomenon does not occur for more general binary

quadratic forms
ax? + bxy + cy?

because it is possible in most cases that D = b?> — 4ac is a
QR modulo p, but the form does not represent p.

It turns out there is a different form with the same value
of discriminant D which represents p.

Example 6.6. In the case when D = —20, there are
basically two forms, (everything else with that discriminant
can be reduced to them) x? 4 5y? and 2x? + 2xy + 3y2.
The discriminant —20 is a QR for p =7 and p = 29, but
only the second form represents 7 and only the first one
represents 29.

This is related to the “class number problem”, and the
fact that the quadratic number field Q(v/—5) fails to have
uniqueness of factorisation.

This phenomenon was extensively studied by Gauss in
Disquisitiones Arithmeticze in 1798 (he was 21). It is a
very elegant theory.



Introduction ® First, in modern notation, one can write
to Number
Theory
Ch 6 2 2 T
e axy + bxixo + cx3 = xAx

squares
where x denotes the vector (xi, x2), x' its transpose and

Robert C.

Voughan A is the matrix y
a b/2
A= <b/2 c > |

Binary
Quadratic
Forms



® First, in modern notation, one can write

Introduction
to Number
Theory 9 5 T
i axi + bxixo + cx = xAx
squares
Robert C. where x denotes the vector (xi, x2), x' its transpose and
Vaughan . .
A is the matrix
a2 b/2
b/2 ¢ )’
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o then it is invertible and the inverse has integer entries.
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o If the 2 x 2 matrix U has integer entries and det U = +1,
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Forms . .
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® Hence one can divide the forms ax? + bxixx + cx3, i.e.
matrices A, with a given discriminant D = —4det A, into
“equivalence classes” .
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First, in modern notation, one can write
ax? + bxixo + o3 = xAx”

where x denotes the vector (xi, x2), x' its transpose and

A is the matrix y
a b/2
A= <b/2 c > |

If the 2 x 2 matrix U has integer entries and det U = +1,
then it is invertible and the inverse has integer entries.

Thus xUAUTx" will represent the same integers as xAx " .

Hence one can divide the forms ax? + bxyxa + cx3, i.e.
matrices A, with a given discriminant D = —4det A, into
“equivalence classes” .

The number of different equivalence classes is called the
class number h(D).
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Binary
Quadratic
Forms

First, in modern notation, one can write
ax? + bxixo + o3 = xAx”

where x denotes the vector (xi, x2), x' its transpose and

A is the matrix y
a b/2
A= <b/2 c > |

If the 2 x 2 matrix U has integer entries and det U = +1,
then it is invertible and the inverse has integer entries.

Thus xUAUTx" will represent the same integers as xAx " .

Hence one can divide the forms ax? + bxyxa + cx3, i.e.
matrices A, with a given discriminant D = —4det A, into
“equivalence classes” .

The number of different equivalence classes is called the
class number h(D).

There is a canonical or “reduced” form - in which the
coefficients satisfy a certain minimality condition - which
is normally taken to be the representative of the class.
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e Example 6.7. When D = —20 the class number
h(—20) = 2 and the two reduced forms are x? + 5y3 and

2x12 + 2x1x0 + 3x22.
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Binary
Quadratic
Forms

e Example 6.7. When D = —20 the class number
h(—20) = 2 and the two reduced forms are x? + 5y3 and

2x12 + 2x1x0 + 3x22.
® In the modern era the subject of binary quadratic forms is
subsumed in the study of quadratic number fields Q(v/D).
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® The proof of Lagrange's four square theorem is a similar.
® As for two squares there is an identity, discovered by Euler.

Introduction
to Number
Theory
Chapter 6
Sums of
squares Theorem 3 (Euler's four squares identity)
Robert C.
Vaughan For any numbers a, b, c,d,w,x,y, z,
(8 + b+ P+ d)(C+y* + 22+ w?) =
(ax — by — cz — dW)2 + (ay + bx + cw — dz)2+
(az + ex + dy — bw)® + (aw + dx + bz — cy)*.
Sums of Four

Squares



® The proof of Lagrange's four square theorem is a similar.
® As for two squares there is an identity, discovered by Euler.

Introduction
to Number
Theory
Chapter 6
Sums of
e Theorem 3 (Euler's four squares identity)
Robert C.
Vaughan For any numbers a, b,c,d,w,x,y, z,
(B + 2+ +d) P +y2+ 22+ w?) =
(ax — by — cz — dw)? + (ay + bx + cw — dz)°+
(az + cx + dy — bw)? + (aw + dx + bz — cy)?
Sums of Four
Squares
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® The proof of Lagrange's four square theorem is a similar.
® As for two squares there is an identity, discovered by Euler.

Theorem 3 (Euler's four squares identity)

For any numbers a, b, c,d,w,x,y, z,

(@ + b+ 2+ dP) P+ y?+ 22 +w?) =
(ax — by — cz — dw)? + (ay + bx + cw — dz)°+
(az + cx + dy — bw)? + (aw + dx + bz — cy)?.

® One could just multiply it out. Here is an alternative.

® Think of it as a polynomial in the variable x. The
coefficient of x2 on both sides is a2 + b% + ¢2 + d2.

® The coefficient of x on the left is obviously 0, and a little
checking shows that the x-terms on the right cancel.
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suenn For any numbers a, b,c,d,w,x,y, z,

(@ + b+ 2+ dP) P+ y?+ 22 +w?) =
(ax — by — cz — dw)? + (ay + bx + cw — dz)°+
(az + cx + dy — bw)? + (aw + dx + bz — cy)?.

Sums of Four
Squares

® One could just multiply it out. Here is an alternative.

® Think of it as a polynomial in the variable x. The
coefficient of x? on both sides is a®> + b? + c? + d?.

® The coefficient of x on the left is obviously 0, and a little
checking shows that the x-terms on the right cancel.

® That leaves the “constant” term. To check that put x =0
and repeat the argument with y. And then z, and then w.



® Now we can prove Lagrange's theorem.

Every natural number is the sum of four squares.
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suffices to treat p =3 (mod 4).
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If n is even and is a sum of four squares, then so is g
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® Now we can prove Lagrange's theorem.

Theorem 4 (Lagrange)

Every natural number is the sum of four squares.

® Proof. By the identity and the 2-square theorem it
suffices to treat p =3 (mod 4).

® The following us useful
Lemma 5

If n is even and is a sum of four squares, then so is g

e Proof. When n = a2 + b? + ¢2 + d? is even, the number
of odd squares will be even,
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Lemma 5
If n is even and is a sum of four squares, then so is g
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e Proof. When n = a2 + b? + ¢2 + d? is even, the number

of odd squares will be even,
® and thus the a, b, ¢, d can be rearranged so that a, b have

the same parity and so do ¢, d.
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squares Theorem 4 (Lagrange)
Robert C. o
Vaughan Every natural number is the sum of four squares.
® Proof. By the identity and the 2-square theorem it
suffices to treat p =3 (mod 4).
® The following us useful
Lemma 5
g:z;sreosf Four If n is even and is a sum of four squares, then so is g

e Proof. When n = a2 + b? + ¢2 + d? is even, the number
of odd squares will be even,

® and thus the a, b, ¢, d can be rearranged so that a, b have
the same parity and so do ¢, d.

® Therefore 7 = (%”)2 + (a%bf + (c-gd>2 n (c;d)2.




® This is the core of the proof.

If p is an odd prime, then there are integers a, b, c,d and an m
2
sothat0 < a®+ b2+ c*+d>=mp< 2.
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Cobert If p is an odd prime, then there are integers a, b, c,d and an m
g . 2
Vawien sothat 0 < 2+ b+ c?+d>=mp< .
p+1 2 12 p—1
® Proof. The == numbers 0°,1°,..., 5 are
pairwise incongruent modulo p.
® Thus the ﬂl numbers u? with 0 < u < p;l will lie in
St o Fay separate reS|due classes modulo p and the p+1 numbers
Squ
e —v2 — 1 with 0 < v < 251 will lie in separate residue

classes modulo p.
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® This is the core of the proof.

Lemma 6
If p is an odd prime, then there are integers a, b, c,d and an m
2

sothat 0 < 2+ b+ c?+d>=mp< .

-1
® Proof. The pTH numbers 02,12, ..., (Pz) are

pairwise incongruent modulo p.

® Thus the ﬂl numbers u? with 0 < u < p;l will lie in
separate reS|due classes modulo p and the p+1 numbers
—v2 — 1 with 0 < v < 251 will lie in separate residue
classes modulo p.

® Since pTH + pTH = p+ 1 > p there will be at least one

residue class which contains one or more of each.
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® Proof. The pTH numbers 02,12, ..., (Pz) are

pairwise incongruent modulo p.

® Thus the p“ numbers u? with 0 < u < p;l will lie in

p+1

St o Fay separate reS|due classes modulo p and the numbers
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—v2 — 1 with 0 < v < 251 will lie in separate residue
classes modulo p.
® Since pTH + pTH = p+ 1 > p there will be at least one

residue class which contains one or more of each.

® Hence there are u, v such that u> = —v? — 1 (mod p),

2 2
and 0 < w2 +v2 4+ 1< E=208 < £
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® This is the core of the proof.

Lemma 6

If p is an odd prime, then there are integers a, b, c,d and an m
2
sothat 0 < 2+ b+ c?+d>=mp< .

_1\?2
® Proof. The pTH numbers 02,12, ..., (Pz) are

pairwise incongruent modulo p.

® Thus the p“ numbers u? with 0 < u < p;l will lie in

p+1 numbers

separate reS|due classes modulo p and the
—v2 — 1 with 0 < v < 251 will lie in separate residue
classes modulo p.

® Since pTH + pTH = p+ 1 > p there will be at least one
residue class which contains one or more of each.

® Hence there are u, v such that u> = —v? — 1 (mod p),
2 2
and 0 < w2 +v2 4+ 1< E=208 < £

® Now we only have to show that m = 1 is possible.
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® We just showed that there is an integer mwith 0 < m < p
so that for some a, b, ¢, d we have a® + b?> + ¢+ d? = mp.
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® We just showed that there is an integer mwith 0 < m < p
so that for some a, b, ¢, d we have a® + b?> + ¢+ d? = mp.

® We may suppose that m is chosen minimally and by
Lemma 5 that m is odd, and if m = 1, then we are done.
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We just showed that there is an integer mwith 0 < m < p
so that for some a, b, ¢, d we have a® + b?> + ¢+ d? = mp.
We may suppose that m is chosen minimally and by
Lemma 5 that m is odd, and if m = 1, then we are done.
Suppose m > 1. If m were to divide each of a, b, ¢, d, then
we would have m|p contradicting m < p.

Choose x,y,z,w so x = a (mod m), |x| < 7= y =-b
(mod m), |y| < ’"*1 = —c (mod m), |z| U=y
= —d (mod m) ]W\ < =2 Not all x,y,z, w are 0.
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We just showed that there is an integer mwith 0 < m < p
so that for some a, b, ¢, d we have a® + b?> + ¢+ d? = mp.
We may suppose that m is chosen minimally and by
Lemma 5 that m is odd, and if m = 1, then we are done.
Suppose m > 1. If m were to divide each of a, b, ¢, d, then
we would have m|p contradicting m < p.

Choose x,y,z,w so x =a (mod m), |x| < =2, y=—b
(mod m), |y| < ’"Tfl z=—c (mod m), |z| < U=y

w = —d (mod m), |w| < =L Not all x,y, z, W are 0.
Moreover x? + y2 + z2 + w? =0 (mod m) and so

—1)\2
0<x®+y* +22+w? =mn<4(771)" = (m-1)%
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We just showed that there is an integer mwith 0 < m < p
so that for some a, b, ¢, d we have a® + b?> + ¢+ d? = mp.
We may suppose that m is chosen minimally and by
Lemma 5 that m is odd, and if m = 1, then we are done.
Suppose m > 1. If m were to divide each of a, b, ¢, d, then
we would have m|p contradicting m < p.

Choose x,y,z,w so x = a (mod m), |x| < 221, y=—p
(mod m), |y| < ’"71, z= —c (mod m), |z| < 21,
w = —d (mod m) lw| < =L Not all x,y, z, WareO

Moreover x2 + y? + 22 +W2:0(mod m) and so
O<X2+y2+z2+w2:mn§4(’"771)2:(m—l)z.
Thus 0 < n < m. Now

ax —by —cz—dw=2a’+b>+c?>+d>=0 (mod m),
ay + bx+cw —dz=—ab+ ab— cd + dc =0 (mod m),
az+cx+dy — bw = —ac+ac—db+ db=0 (mod m),
aw + dx 4 bz — cy = —ad + ad — bc + bc =0 (mod m).
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We just showed that there is an integer mwith 0 < m < p
so that for some a, b, ¢, d we have a® + b?> + ¢+ d? = mp.
We may suppose that m is chosen minimally and by
Lemma 5 that m is odd, and if m = 1, then we are done.
Suppose m > 1. If m were to divide each of a, b, ¢, d, then
we would have m|p contradicting m < p.
Choose x, y, z, Wsoxza(mod m), |x| < 7= yE —b
(mod m), |y| < T —, z= —c (mod m), |z| U=y

= —d (mod m) ]W\< M=, Not all x,y, z, WareO
Moreover x? + y? + z2 + w? =0 (mod m) and so
O<X2+y2+z2+w2:mn§4(’"771)2:(m—l)z.
Thus 0 < n < m. Now
ax —by —cz—dw=2a’+b>+c?>+d>=0 (mod m),
ay + bx+cw —dz=—ab+ ab— cd + dc =0 (mod m),
az+cx+dy —bw = —ac+ac—db+ db=0 (mod m),
aw + dx 4 bz — cy = —ad + ad — bc + bc =0 (mod m).
By Euler's identity m?np is the sum of four squares and
each is divisible by m?. Hence np is the sum of four
squares. But n < m contradicting the minimality of m.
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® Many numbers are not the sum of two squares and every
number is the sum of four, so what about sums of three?
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® This is quite hard and was first solved by Legendre in 1798.
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Three
Squares?

® Many numbers are not the sum of two squares and every
number is the sum of four, so what about sums of three?

® This is quite hard and was first solved by Legendre in 1798.

® |n the case of two squares we saw that the p =3
(mod 4), when they occur to an odd power, were excluded

by a simple congruence argument.
e Example 6.8. We know that x> =0, 1 or 4 (mod 8).
Thus one can check that

x24+x3+x2=0,1,23,4,56, (mod 8)

but x2 + x3 + x2 7 (mod 8).
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Three
Squares?

Many numbers are not the sum of two squares and every
number is the sum of four, so what about sums of three?

This is quite hard and was first solved by Legendre in 1798.
In the case of two squares we saw that the p = 3

(mod 4), when they occur to an odd power, were excluded
by a simple congruence argument.

Example 6.8. We know that x> =0, 1 or 4 (mod 8).
Thus one can check that

x24+x3+x2=0,1,23,4,56, (mod 8)

but x2 + x3 + x2 7 (mod 8).

Thus if X} + x3 + x3 = n, then we have to have
n=0,1,2,3,4,5 6, (mod8). Moreover if

x? +x3 4+ x3 =0 (mod 4), then the variables x; have to
be all even and we can factor out a 4 on both sides and
reduce to (x1/2) + (x2/2)? + (x3/2)?> = n/4



® Then we have just proved

If n = 4"(8k + 7) for some non-negative integers h and k, then
n is not the sum of three squares.
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Theorem 7
If n = 4"(8k 4 7) for some non-negative integers h and k, then
n is not the sum of three squares.
® Legendre proved that all other n are the sum of three
squares. The proof is quite complicated and | do not plan
Ulies to give it here.

Squares?
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® Given a positive integer s, how many ways are there of
writing n as the sum of two squares of integers?

® We count (—x)? separately from x? when x # 0. Suppose
z € C and |z| < 1. Consider the series

o o

f(z) = Z 2" = 1—}—222”2.
n=-—o00 n=1

Then formally

f(z)° = Z . Zz"§+"'+”§ = i rs(n)z"
n ns n=0

where rg(n) is the number of ways of writing n as the sum
of s squares.
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® Given a positive integer s, how many ways are there of
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Chapter 6 writing n as the sum of two squares of integers?
Sums of
squares ® We count (—x)? separately from x? when x # 0. Suppose
e & z € C and |z| < 1. Consider the series
o0 o0
2 2
f(z) = Z zZm = 1+2Zz” .
n=-—o0 n=1
Then formally
o
2 2
flayp =22 27 =) r(n)"
n ns n=0
Other . .
Questions where rs(n) is the number of ways of writing n as the sum

of s squares.

® The function f(z) has lots of structure and this can be
used to find formulas for rs(n), and was exploited
extensively by Jacobi.
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positive integer is the sum of at most four squares, nine

cubes, nineteen biquadrates, and so on”.
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Questions

In 1770 Edward Waring stated without proof that “every
positive integer is the sum of at most four squares, nine
cubes, nineteen biquadrates, and so on”.

What we think he meant was that if we define g(k) to be
the smallest number s such that every positive integer is
the sum of at most s k-th powers, then g(2) = 4,

g(3) =9 g(4)=19.

Many mathematicians have worked on Waring’'s Problem;
Hilbert, Landau, Hardy, Littlewood, Davenport, ....

2

know this is true for all but a finite number of exceptions,
and there are none with k < 471,600, 000.

k
What we believe is that g(k) = 2 + \\<3> J —2 and we
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Other
Questions

In 1770 Edward Waring stated without proof that “every
positive integer is the sum of at most four squares, nine
cubes, nineteen biquadrates, and so on”.
What we think he meant was that if we define g(k) to be
the smallest number s such that every positive integer is
the sum of at most s k-th powers, then g(2) = 4,
g(3) =9 g(4)=19.
Many mathematicians have worked on Waring’'s Problem;
Hilbert, Landau, Hardy, Littlewood, Davenport, ....

k
What we believe is that g(k) = 2 + (;) J —2 and we
know this is true for all but a finite number of exceptions,
and there are none with k < 471,600, 000.
The value of g(k) depends on the peculiarities of a few
small numbers, and probably the extremal n is

|- (]
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powers.

This has only been solved in two cases,
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A harder problem which avoids the peculiarities of small
numbers, is to take G(k) to be the smallest s such that
every sufficiently large integer is the sum of at most s k-th
powers.

This has only been solved in two cases,

G(2) = 4 (Lagrange) and

G(4) = 16 (Davenport).
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A harder problem which avoids the peculiarities of small

[
numbers, is to take G(k) to be the smallest s such that
every sufficiently large integer is the sum of at most s k-th
powers.

® This has only been solved in two cases,

® G(2) =4 (Lagrange) and

® G(4) =16 (Davenport).

® For example we only know that 4 < G(3) < 7 (Linnik) and
® 6 < G(5) <17 (RCV and Wooley).
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