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1 02 + 12 02 + 02 + 02 + 12 13 22 + 32 02 + 02 + 22 + 32

2 12 + 12 02 + 02 + 12 + 12 17 12 + 42 02 + 02 + 12 + 42

3 02 + 12 + 12 + 12 19 12 + 12 + 12 + 42

4 02 + 22 02 + 02 + 02 + 22 23 12 + 22 + 32 + 32

5 12 + 22 02 + 02 + 12 + 22 29 22 + 52 02 + 02 + 22 + 52

6 02 + 12 + 12 + 22 31 12 + 12 + 22 + 52

7 12 + 12 + 12 + 22 37 12 + 62 12 + 12 + 12 + 22

8 22 + 22 02 + 02 + 22 + 22 41 42 + 52 02 + 02 + 42 + 52

9 02 + 32 02 + 12 + 22 + 22 43 12 + 12 + 42 + 52

10 12 + 32 02 + 02 + 12 + 32 47 12 + 12 + 32 + 62

11 02 + 12 + 12 + 32 53 22 + 72 02 + 02 + 22 + 72

12 12 + 12 + 12 + 32 59 02 + 12 + 32 + 72
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Sums of Two Squares

• The basic results on sums of squares depend on the theory
of quadratic residues, so this chapter is a natural
continuation of the previous one.

• Let us start by considering the solubility of p = x2 + y2

where p is an odd prime and x and y are integers.

• If we had p|y , then we would have to have p|x , but then
the right hand side would be divisible by p2, which is
obvious nonsense.

• Thus we may assume that p ∤ y .
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• If we rewrite the equation as x2 = p − y2, then we have
x2 ≡ −y2 (mod p).

• Thus −y2 has to be a QR modulo p. Hence

1 =

(
−y2

p

)
L

=

(
−1

p

)
L

= (−1)
p−1
2

by Euler’s criterion.

• Thus p ≡ 1 (mod 4), and we have proved one half of the
following theorem.

Theorem 1 (Fermat/Girard)

An odd prime p is the sum of two squares if and only if p ≡ 1
(mod 4).
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• Theorem (Fermat/Girard). An odd prime p is the sum
of two squares if and only if p ≡ 1 (mod 4).

• It remains to prove if p ≡ 1 (mod 4), then p is the sum of
two squares. We give a proof due to Thue.

• −1 is a QR. Choose Z so that Z 2 ≡ −1 (mod p) and
consider the numbers xZ + y with 0 ≤ x <

√
p and

0 ≤ y <
√
p (since a prime is not a perfect square).

• There are
(
1 +

⌊√
p
⌋)2

>
(√

p
)2

= p of them.

• Since there are more than p of them, there must be a
residue class modulo p which contains at least two of
them (the Dirichlet Box Principle).

• That is, we have x1Z + y1 ≡ x2Z + y2 (mod p), and since
the pairs x1, y1 and x2, y2 are different we have xZ + y ≡ 0
(mod p) with |x | = |x1 − x2| <

√
p, |y | = |y1 − y2| <

√
p

and x and y not both 0.

• Now x2 + y2 ≡ x2 + (−xZ )2 = x2(Z 2 + 1) ≡ 0 (mod p).
Moreover 0 < x2 + y2 < p + p = 2p. Hence x2 + y2 = p.
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• Example 6.4. Sums of two squares have a remarkable
multiplicative property. Consider the following table.

•

2 12 + 12 26 12 + 52 68 22 + 82 100 62 + 82

4 02 + 22 29 22 + 52 72 62 + 62 104 22 + 102

5 12 + 22 34 32 + 52 74 52 + 72 106 52 + 92

8 22 + 22 40 22 + 62 80 42 + 82 116 42 + 102

9 02 + 32 45 32 + 62 81 02 + 92 117 62 + 92

10 12 + 32 50 52 + 52 82 12 + 92 122 12 + 112

13 22 + 32 52 42 + 62 85 22 + 92 125 52 + 102

20 22 + 42 58 32 + 72 90 32 + 92 128 82 + 82

25 02 + 52 65 12 + 82 98 72 + 72 130 32 + 112

• This looks as though, if a number n has a factorisation ab
with both a and b being sums of two squares, then n is
also the sum of two squares.

• For example 130 = 2× 4× 13 and both 2, 5 and 13 are
sums of two squares.
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• Example 6.5. It turns out that there is a neat identity
which proves this.

• Given x, y , X and Y we have

(x2 + y2)(X 2 + Y 2) = (xX − yY )2 + (xY + yX )2.

• The simplest proof is to multiply out both sides

x2X 2 + x2Y 2 + y2X 2 + y2Y 2,

x2X 2 − 2xXyY + y2Y 2 + x2Y 2 + 2xYyX + y2X 2

and observe that the cross product terms on the right
cancel and then the two sides are equal.

• Another way of seeing this identity is to write it as
(x2 + y2)(X 2 + Y 2) = |x + iy |2|X + iY |2 =
|(x + iy)(X + iY )|2 = |xX − yY + i(xY + yX )|2 =
(xX − yY )2 + (xY + yX )2.
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• Now we can prove Fermat’s theorem

Theorem 2 (Fermat)

Let n have the canonical decomposition
n = pa11 . . . parr qb11 . . . qbss where the qj are the primes in the
factorisation with qj ≡ 3 (mod 4) and the pj are the prime 2
(if n is even) and the primes pj ≡ 1 (mod 4). Then n is the
sum of two squares if and only if all the exponents bj are even.

• Proof. If n satisfies the necessary condition, then the
result follows by repeated use of the identity and the
special cases p = 2, p ≡ 1 (mod 4) and q2.

• To prove the converse observe that if q is a prime with
q ≡ 3 (mod 4) and n = x2 + y2 ≡ 0 (mod q), then we
have q|x and q|y , for if not, then we have nonsense;

1 =

(
−y2

q

)
L

=

(
−1

q

)
L

= −1.

• Thus n/q2 is a sum of two squares and we can use an
inductive argument.
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• It is also possible to show a similar result for numbers of
the form x2 + 2y2 and likewise for x2 + 3y2.

• The general rule here is that if −2 (or −3 in the second
case) is a QR modulo p, then p can be represented and
there is an identity
(x2 + λy2)(X 2 + λY 2) = (xX − λyY )2 + λ(xY + yX )2

which works in both cases.

• In the case of x2 + 2y2 Thue’s argument shows that if
p ≡ 1 or 3 (mod 8), then there are x and y such that
x2 + 2y2 = mp with m = 1 or 2.

• If m = 2, then 2|x and the equation reduces to
2(x/2)2 + y2 = p.

• For the form x2 + 3y2, when p ≡ 1 (mod 3), Thue
reduces to x2 + 3y2 = mp with m = 1, 2 or 3.

• Then m = 3 can be dealt with as before.

• The possibility m = 2 cannot happen because when p > 2
one cannot have 2|xy , so the left hand side is ≡ 1 + 3 ≡ 4
(mod 8) and 4 does not divide 2p.
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• This phenomenon does not occur for more general binary
quadratic forms

ax2 + bxy + cy2

because it is possible in most cases that D = b2 − 4ac is a
QR modulo p, but the form does not represent p.

• It turns out there is a different form with the same value
of discriminant D which represents p.

• Example 6.6. In the case when D = −20, there are
basically two forms, (everything else with that discriminant
can be reduced to them) x2 + 5y2 and 2x2 + 2xy + 3y2.
The discriminant −20 is a QR for p = 7 and p = 29, but
only the second form represents 7 and only the first one
represents 29.
This is related to the “class number problem”, and the
fact that the quadratic number field Q(

√
−5) fails to have

uniqueness of factorisation.
• This phenomenon was extensively studied by Gauss in
Disquisitiones Arithmeticæ in 1798 (he was 21). It is a
very elegant theory.
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• First, in modern notation, one can write

ax21 + bx1x2 + cx22 = xAxT

where x denotes the vector (x1, x2), xT its transpose and
A is the matrix

A =

(
a b/2

b/2 c

)
.

• If the 2× 2 matrix U has integer entries and detU = ±1,
then it is invertible and the inverse has integer entries.

• Thus xUAUTxT will represent the same integers as xAxT .

• Hence one can divide the forms ax21 + bx1x2 + cx22 , i.e.
matrices A, with a given discriminant D = −4 detA, into
“equivalence classes”.

• The number of different equivalence classes is called the
class number h(D).

• There is a canonical or “reduced” form - in which the
coefficients satisfy a certain minimality condition - which
is normally taken to be the representative of the class.
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• Example 6.7. When D = −20 the class number
h(−20) = 2 and the two reduced forms are x21 + 5y22 and
2x21 + 2x1x2 + 3x22 .

• In the modern era the subject of binary quadratic forms is
subsumed in the study of quadratic number fields Q(

√
D).
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• The proof of Lagrange’s four square theorem is a similar.

• As for two squares there is an identity, discovered by Euler.

Theorem 3 (Euler’s four squares identity)

For any numbers a, b, c , d ,w , x , y , z,

(a2 + b2 + c2 + d2)(x2 + y2 + z2 + w2) =

(ax − by − cz − dw)2 + (ay + bx + cw − dz)2+

(az + cx + dy − bw)2 + (aw + dx + bz − cy)2.

• One could just multiply it out. Here is an alternative.

• Think of it as a polynomial in the variable x . The
coefficient of x2 on both sides is a2 + b2 + c2 + d2.

• The coefficient of x on the left is obviously 0, and a little
checking shows that the x-terms on the right cancel.

• That leaves the “constant” term. To check that put x = 0
and repeat the argument with y . And then z , and then w .
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• The coefficient of x on the left is obviously 0, and a little
checking shows that the x-terms on the right cancel.

• That leaves the “constant” term. To check that put x = 0
and repeat the argument with y . And then z , and then w .
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• Now we can prove Lagrange’s theorem.

Theorem 4 (Lagrange)

Every natural number is the sum of four squares.

• Proof. By the identity and the 2-square theorem it
suffices to treat p ≡ 3 (mod 4).

• The following us useful

Lemma 5

If n is even and is a sum of four squares, then so is n
2 .

• Proof. When n = a2 + b2 + c2 + d2 is even, the number
of odd squares will be even,

• and thus the a, b, c , d can be rearranged so that a, b have
the same parity and so do c , d .

• Therefore n
2 =

(
a+b
2

)2
+
(
a−b
2

)2
+
(
c+d
2

)2
+
(
c−d
2

)2
.
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• This is the core of the proof.

Lemma 6

If p is an odd prime, then there are integers a, b, c , d and an m

so that 0 < a2 + b2 + c2 + d2 = mp < p2

2 .

• Proof. The p+1
2 numbers 02, 12, . . . ,

(
p − 1

2

)2

are

pairwise incongruent modulo p.

• Thus the p+1
2 numbers u2 with 0 ≤ u ≤ p−1

2 will lie in

separate residue classes modulo p and the p+1
2 numbers

−v2 − 1 with 0 ≤ v ≤ p−1
2 will lie in separate residue

classes modulo p.

• Since p+1
2 + p+1

2 = p + 1 > p there will be at least one
residue class which contains one or more of each.

• Hence there are u, v such that u2 ≡ −v2 − 1 (mod p),

and 0 < u2 + v2 + 1 ≤ p2−2p+3
2 < p2

2 .

• Now we only have to show that m = 1 is possible.
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• We just showed that there is an integer m with 0 < m < p
so that for some a, b, c, d we have a2+b2+ c2+d2 = mp.

• We may suppose that m is chosen minimally and by
Lemma 5 that m is odd, and if m = 1, then we are done.

• Suppose m > 1. If m were to divide each of a, b, c , d , then
we would have m|p contradicting m < p.

• Choose x , y , z ,w so x ≡ a (mod m), |x | ≤ m−1
2 , y ≡ −b

(mod m), |y | ≤ m−1
2 , z ≡ −c (mod m), |z | ≤ m−1

2 ,
w ≡ −d (mod m), |w | ≤ m−1

2 . Not all x , y , z ,w are 0.
• Moreover x2 + y2 + z2 + w2 ≡ 0 (mod m) and so

0 < x2 + y2 + z2 + w2 = mn ≤ 4
(
m−1
2

)2
= (m − 1)2.

• Thus 0 < n < m. Now
ax − by − cz − dw ≡ a2 + b2 + c2 + d2 ≡ 0 (mod m),
ay + bx + cw − dz ≡ −ab + ab − cd + dc ≡ 0 (mod m),
az + cx + dy − bw ≡ −ac + ac − db + db ≡ 0 (mod m),
aw + dx + bz − cy ≡ −ad + ad − bc + bc ≡ 0 (mod m).

• By Euler’s identity m2np is the sum of four squares and
each is divisible by m2. Hence np is the sum of four
squares. But n < m contradicting the minimality of m.
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aw + dx + bz − cy ≡ −ad + ad − bc + bc ≡ 0 (mod m).

• By Euler’s identity m2np is the sum of four squares and
each is divisible by m2. Hence np is the sum of four
squares. But n < m contradicting the minimality of m.
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• Many numbers are not the sum of two squares and every
number is the sum of four, so what about sums of three?

• This is quite hard and was first solved by Legendre in 1798.

• In the case of two squares we saw that the p ≡ 3
(mod 4), when they occur to an odd power, were excluded
by a simple congruence argument.

• Example 6.8. We know that x2 ≡ 0, 1 or 4 (mod 8).
Thus one can check that

x21 + x22 + x23 ≡ 0, 1, 2, 3, 4, 5, 6, (mod 8)

but x21 + x22 + x23 ̸≡ 7 (mod 8).

• Thus if x21 + x22 + x23 = n, then we have to have
n ≡ 0, 1, 2, 3, 4, 5, 6, (mod 8). Moreover if
x21 + x22 + x23 ≡ 0 (mod 4), then the variables xj have to
be all even and we can factor out a 4 on both sides and
reduce to (x1/2)

2 + (x2/2)
2 + (x3/2)

2 = n/4
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• Then we have just proved

Theorem 7

If n = 4h(8k + 7) for some non-negative integers h and k, then
n is not the sum of three squares.

• Legendre proved that all other n are the sum of three
squares. The proof is quite complicated and I do not plan
to give it here.
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• Given a positive integer s, how many ways are there of
writing n as the sum of two squares of integers?

• We count (−x)2 separately from x2 when x ̸= 0. Suppose
z ∈ C and |z | < 1. Consider the series

f (z) =
∞∑

n=−∞
zn

2
= 1 + 2

∞∑
n=1

zn
2
.

Then formally

f (z)s =
∑
n1

. . .
∑
ns

zn
2
1+···+n2s =

∞∑
n=0

rs(n)z
n

where rs(n) is the number of ways of writing n as the sum
of s squares.

• The function f (z) has lots of structure and this can be
used to find formulas for rs(n), and was exploited
extensively by Jacobi.
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• In 1770 Edward Waring stated without proof that “every
positive integer is the sum of at most four squares, nine
cubes, nineteen biquadrates, and so on”.

• What we think he meant was that if we define g(k) to be
the smallest number s such that every positive integer is
the sum of at most s k-th powers, then g(2) = 4,
g(3) = 9, g(4) = 19.

• Many mathematicians have worked on Waring’s Problem;
Hilbert, Landau, Hardy, Littlewood, Davenport, ....

• What we believe is that g(k) = 2k +

⌊(
3

2

)k
⌋
− 2 and we

know this is true for all but a finite number of exceptions,
and there are none with k ≤ 471, 600, 000.

• The value of g(k) depends on the peculiarities of a few
small numbers, and probably the extremal n is

2k

⌊(
3

2

)k
⌋
− 1 =

(⌊(
3

2

)k
⌋
− 1

)
× 2k +

(
2k − 1

)
× 1k
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• A harder problem which avoids the peculiarities of small
numbers, is to take G (k) to be the smallest s such that
every sufficiently large integer is the sum of at most s k-th
powers.

• This has only been solved in two cases,

• G (2) = 4 (Lagrange) and

• G (4) = 16 (Davenport).

• For example we only know that 4 ≤ G (3) ≤ 7 (Linnik) and

• 6 ≤ G (5) ≤ 17 (RCV and Wooley).
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