Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

Introduction to Number Theory Chapter 5 Quadratic Residues

Robert C. Vaughan

February 20, 2025

Quadratic Congruences

・ロト ・ 同ト ・ ヨト ・ ヨト

= √Q (~

Introduction to Number Theory Chapter 5 Quadratic Residues

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• We can now apply the theory to study quadratic congruences,

$$x^2 \equiv c \pmod{m}$$
.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can now apply the theory to study quadratic congruences,

$$x^2 \equiv c \pmod{m}$$
.

• The structure here is very rich and was subject to much work in the eighteenth century, culminating in a famous theorem of Gauss.

Quadratic Congruences

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can now apply the theory to study quadratic congruences,

$$x^2 \equiv c \pmod{m}$$
.

- The structure here is very rich and was subject to much work in the eighteenth century, culminating in a famous theorem of Gauss.
- We know that the first, or base, case we need to understand is when m = p, and since the case p = 2 is rather easy we can suppose that p > 2.

Quadratic Congruences

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions We can now apply the theory to study quadratic congruences,

$$x^2 \equiv c \pmod{m}$$
.

- The structure here is very rich and was subject to much work in the eighteenth century, culminating in a famous theorem of Gauss.
- We know that the first, or base, case we need to understand is when m = p, and since the case p = 2 is rather easy we can suppose that p > 2.
- Then we are interested in $x^2 \equiv c \pmod{p}$ (5.1).

Quadratic Congruences

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions We can now apply the theory to study quadratic congruences,

$$x^2 \equiv c \pmod{m}$$
.

- The structure here is very rich and was subject to much work in the eighteenth century, culminating in a famous theorem of Gauss.
- We know that the first, or base, case we need to understand is when m = p, and since the case p = 2 is rather easy we can suppose that p > 2.
- Then we are interested in $x^2 \equiv c \pmod{p}$ (5.1).
- The apparently more general congruence ax² + bx + c ≡ 0 (mod p) (with p ∤ a) can be reduced by "completion of the square" to (2ax + b)² ≡ b² 4ac (mod p) and since 2ax + b ranges over a complete set of residues as x does this is equivalent to solving x² ≡ b² 4ac (mod p).

Quadratic Congruences

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions We can now apply the theory to study quadratic congruences,

$$x^2 \equiv c \pmod{m}$$
.

- The structure here is very rich and was subject to much work in the eighteenth century, culminating in a famous theorem of Gauss.
- We know that the first, or base, case we need to understand is when m = p, and since the case p = 2 is rather easy we can suppose that p > 2.
- Then we are interested in $x^2 \equiv c \pmod{p}$ (5.1).
- The apparently more general congruence ax² + bx + c ≡ 0 (mod p) (with p ∤ a) can be reduced by "completion of the square" to (2ax + b)² ≡ b² 4ac (mod p) and since 2ax + b ranges over a complete set of residues as x does this is equivalent to solving x² ≡ b² 4ac (mod p).
- Thus it suffices to know about the solubility of the congruence (5.1).

Quadratic Congruences

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

 We know x² ≡ (mod p) (5.1) has at most two solutions, and that sometimes it is soluble and sometimes not

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Example 1

 $x^2 \equiv 6 \mod 7$ has no solution (check $x \equiv 0, 1, 2, 3 \pmod{7}$), but $x^2 \equiv 5 \pmod{11}$ has the solutions $x \equiv 4, 7 \pmod{11}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions We know x² ≡ (mod p) (5.1) has at most two solutions, and that sometimes it is soluble and sometimes not

Example 1

 $x^2 \equiv 6 \mod 7$ has no solution (check $x \equiv 0, 1, 2, 3 \pmod{7}$), but $x^2 \equiv 5 \pmod{11}$ has the solutions $x \equiv 4, 7 \pmod{11}$.

If c ≡ 0 (mod p), then the only solution to (5.1) is x ≡ 0 (mod p) (note that p|x² implies that p|x). If c ≠ 0 (mod p) and the congruence has one solution, say x ≡ x₀ (mod p), then x ≡ p - x₀ (mod p) gives another.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions We know x² ≡ (mod p) (5.1) has at most two solutions, and that sometimes it is soluble and sometimes not

Example 1

 $x^2 \equiv 6 \mod 7$ has no solution (check $x \equiv 0, 1, 2, 3 \pmod{7}$), but $x^2 \equiv 5 \pmod{11}$ has the solutions $x \equiv 4, 7 \pmod{11}$.

- If c ≡ 0 (mod p), then the only solution to (5.1) is x ≡ 0 (mod p) (note that p|x² implies that p|x). If c ≠ 0 (mod p) and the congruence has one solution, say x ≡ x₀ (mod p), then x ≡ p x₀ (mod p) gives another.
- Can we characterise or classify those *c* for which the congruence (5.1) is soluble? Better still can we quickly determine, given *c*, whether (5.1) is soluble?

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• We know $x^2 \equiv \pmod{p}$ (5.1) has at most two solutions, and that sometimes it is soluble and sometimes not

Example 1

 $x^2 \equiv 6 \mod 7$ has no solution (check $x \equiv 0, 1, 2, 3 \pmod{7}$), but $x^2 \equiv 5 \pmod{11}$ has the solutions $x \equiv 4, 7 \pmod{11}$.

- If c ≡ 0 (mod p), then the only solution to (5.1) is x ≡ 0 (mod p) (note that p|x² implies that p|x). If c ≠ 0 (mod p) and the congruence has one solution, say x ≡ x₀ (mod p), then x ≡ p x₀ (mod p) gives another.
- Can we characterise or classify those *c* for which the congruence (5.1) is soluble? Better still can we quickly determine, given *c*, whether (5.1) is soluble?

Definition 2

If $c \neq 0 \pmod{p}$, and (5.1) has a solution, then we call c a *quadratic residue* which we abbreviate to QR. If it does not have a solution, then we call c a *quadratic non-residue* or QNR.

Sac

• Some authors call 0 a QR. We leave it undefined

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

Theorem 3

Let p be an odd prime number. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of (non-zero) quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

• **Proof.** Suppose that
$$1 \le x < y \le \frac{1}{2}(p-1)$$
. If $p|y^2 - x^2 = (y-x)(y+x)$, then $p|y - x$ or $p|y + x$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

Theorem 3

Let p be an odd prime number. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of (non-zero) quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$. If $p|y^2 x^2 = (y-x)(y+x)$, then p|y x or p|y + x.
- But $0 < y x < y + x < 2y \le p 1 < p$. Thus the numbers $1, 2^2, 3^2, \dots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

Theorem 3

Let p be an odd prime number. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of (non-zero) quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$. If $p|y^2 x^2 = (y-x)(y+x)$, then p|y x or p|y + x.
- But $0 < y x < y + x < 2y \le p 1 < p$. Thus the
 - numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p.
- Now suppose that c is a quadratic residue modulo p.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

Theorem 3

Let p be an odd prime number. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of (non-zero) quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$. If $p|y^2 x^2 = (y-x)(y+x)$, then p|y x or p|y + x.
- But $0 < y x < y + x < 2y \le p 1 < p$. Thus the numbers $1, 2^2, 3^2, \dots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p.
- Now suppose that c is a quadratic residue modulo p.
- For some x, $1 \le x \le p-1$ we have $x^2 \equiv c \pmod{p}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

Theorem 3

Let p be an odd prime number. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of (non-zero) quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$. If $p|y^2 x^2 = (y-x)(y+x)$, then p|y x or p|y + x.
- But $0 < y x < y + x < 2y \le p 1 < p$. Thus the numbers $1, 2^2, 3^2, \dots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p.
- Now suppose that c is a quadratic residue modulo p.
- For some x, $1 \le x \le p-1$ we have $x^2 \equiv c \pmod{p}$.
- If $x \leq \frac{1}{2}(p-1)$, then x^2 is in our list and represents c.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

Theorem 3

Let p be an odd prime number. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of (non-zero) quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$. If $p|y^2 x^2 = (y-x)(y+x)$, then p|y x or p|y + x.
- But $0 < y x < y + x < 2y \le p 1 < p$. Thus the numbers $1, 2^2, 3^2, \dots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p.
- Now suppose that c is a quadratic residue modulo p.
- For some x, $1 \le x \le p-1$ we have $x^2 \equiv c \pmod{p}$.
- If $x \leq \frac{1}{2}(p-1)$, then x^2 is in our list and represents c.
- If $\frac{1}{2}(p-1) < x \le p-1$, then $(p-x)^2 \equiv x^2 \equiv c \pmod{p}$, and $1 \le p - x \le \frac{1}{2}(p-1)$. Moreover $(p-x)^2$ is in our list.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

Theorem 3

Let p be an odd prime number. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of (non-zero) quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$. If $p|y^2 x^2 = (y-x)(y+x)$, then p|y x or p|y + x.
- But $0 < y x < y + x < 2y \le p 1 < p$. Thus the numbers $1, 2^2, 3^2, \dots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p.
- Now suppose that c is a quadratic residue modulo p.
- For some x, $1 \le x \le p-1$ we have $x^2 \equiv c \pmod{p}$.
- If $x \leq \frac{1}{2}(p-1)$, then x^2 is in our list and represents c.
- If $\frac{1}{2}(p-1) < x \le p-1$, then $(p-x)^2 \equiv x^2 \equiv c \pmod{p}$, and $1 \le p - x \le \frac{1}{2}(p-1)$. Moreover $(p-x)^2$ is in our list.
- So each QR is listed each member is distinct and a QR.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

Theorem 3

Let p be an odd prime number. The numbers $1, 2^2, 3^2, \ldots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p and give a complete set of (non-zero) quadratic residues modulo p. There are exactly $\frac{1}{2}(p-1)$ QR modulo p and exactly $\frac{1}{2}(p-1)$ QNR.

- **Proof.** Suppose that $1 \le x < y \le \frac{1}{2}(p-1)$. If $p|y^2 x^2 = (y-x)(y+x)$, then p|y x or p|y + x.
- But $0 < y x < y + x < 2y \le p 1 < p$. Thus the numbers $1, 2^2, 3^2, \dots, \left(\frac{p-1}{2}\right)^2$ are distinct modulo p.
- Now suppose that c is a quadratic residue modulo p.
- For some x, $1 \le x \le p-1$ we have $x^2 \equiv c \pmod{p}$.
- If $x \leq \frac{1}{2}(p-1)$, then x^2 is in our list and represents c.
- If $\frac{1}{2}(p-1) < x \le p-1$, then $(p-x)^2 \equiv x^2 \equiv c \pmod{p}$, and $1 \le p-x \le \frac{1}{2}(p-1)$. Moreover $(p-x)^2$ is in our list.
- So each QR is listed each member is distinct and a QR.
- Hence there are $\frac{1}{2}(p-1)$ QR and the remaining $p-1-\frac{1}{2}(p-1)=\frac{1}{2}(p-1)$ are QNR.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use this in various ways.

Example 4

Find a complete set of quadratic residues r modulo 19 with $1 \le r \le 18$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• We can use this in various ways.

Example 4

Find a complete set of quadratic residues r modulo 19 with $1 \le r \le 18$.

• We solve this by noting that $1^2 = 1, 2^2 = 4, 3^2 = 9, 4^2 = 16, 5^2 = 25, 6^2 = 36, 7^2 = 49, 8^2 = 64, 9^2 = 81$ is a complete set of quadratic residues and then reduce them modulo 19 to give 1, 4, 9, 16, 6, 17, 11, 7, 5 which we can rearrange as 1, 4, 5, 6, 7, 9, 11, 16, 17.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other question

• To help understanding quadratic residues.

Definition 5

For an odd prime number p the Legendre symbol

$$\left(\frac{c}{p}\right)_{L} = \begin{cases} 0 & c \equiv 0 \pmod{p}, \\ 1 & c \neq QR \pmod{p}, \\ -1 & c \neq QNR \pmod{p}, \end{cases}$$
(1.1)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • To help understanding quadratic residues.

Definition 5

For an odd prime number p the Legendre symbol

$$\left(\frac{c}{p}\right)_{L} = \begin{cases} 0 & c \equiv 0 \pmod{p}, \\ 1 & c \text{ a QR } \pmod{p}, \\ -1 & c \text{ a QNR } \pmod{p}, \end{cases}$$
(1.1)

• The Legendre symbol has lots of interesting properties.

Example 6

One very important property is that it has the same value if one replaces c by c + kp regardless of the value of k. Thus given p it is periodic in c with period p.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other question

• Another

Example 7

Suppose that p is an odd prime and $a \not\equiv 0 \pmod{p}$. Then

$$\sum_{x=1}^{p} \left(\frac{ax+b}{p}\right)_{L} = 0.$$
 (1.2)

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other question

• Another

Example 7

Suppose that p is an odd prime and $a \not\equiv 0 \pmod{p}$. Then

$$\sum_{x=1}^{p} \left(\frac{ax+b}{p}\right)_{L} = 0.$$
 (1.2)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• The proof of this is rather easy. The expression ax + b runs through a complete set of residues as x does and so one of the terms is 0, half the rest are +1, and the remainder are -1.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

• Yet another

Example 8

The number of solutions of the congruence

$$x^2 \equiv c \pmod{p}$$

$$1 + \left(\frac{c}{p}\right)_L$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ● ●

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• Yet another

Example 8

The number of solutions of the congruence

$$x^2 \equiv c \pmod{p}$$

$$1 + \left(\frac{c}{p}\right)_L.$$

 We already know that the number of solutions is 1 when p|c, 2 when c is a QR, and 0 when c is a QNR and this matches the above exactly.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use this for more complicated congruences.

Example 9

How many solutions does $x^2 + y^2 \equiv c \pmod{p}$ have in x, y?

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use this for more complicated congruences.

Example 9

How many solutions does $x^2 + y^2 \equiv c \pmod{p}$ have in x, y?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Denote the number by N(p; c).

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use this for more complicated congruences.

Example 9

How many solutions does $x^2 + y^2 \equiv c \pmod{p}$ have in x, y?

- Denote the number by N(p; c).
- We can rewrite the congruence as z + w ≡ c (mod p), and then for each solution z, w ask for the number of solutions of x² ≡ z (mod p) and y² ≡ w (mod p).

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use this for more complicated congruences.

Example 9

How many solutions does $x^2 + y^2 \equiv c \pmod{p}$ have in x, y?

- Denote the number by N(p; c).
- We can rewrite the congruence as z + w ≡ c (mod p), and then for each solution z, w ask for the number of solutions of x² ≡ z (mod p) and y² ≡ w (mod p).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• From above this is $\left(1 + \left(\frac{z}{p}\right)_L\right) \left(1 + \left(\frac{w}{p}\right)_L\right).$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use this for more complicated congruences.

Example 9

How many solutions does $x^2 + y^2 \equiv c \pmod{p}$ have in x, y?

- Denote the number by N(p; c).
- We can rewrite the congruence as z + w ≡ c (mod p), and then for each solution z, w ask for the number of solutions of x² ≡ z (mod p) and y² ≡ w (mod p).
- From above this is $\left(1 + \left(\frac{z}{p}\right)_L\right) \left(1 + \left(\frac{w}{p}\right)_L\right)$.

• Also
$$w \equiv c - z \pmod{p}$$
, thus

$$N(p;c) = \sum_{z=1}^{p} \left(1 + \left(\frac{z}{p}\right)_{L}\right) \left(1 + \left(\frac{c-z}{p}\right)_{L}\right).$$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use this for more complicated congruences.

Example 9

How many solutions does $x^2 + y^2 \equiv c \pmod{p}$ have in x, y?

- Denote the number by N(p; c).
- We can rewrite the congruence as z + w ≡ c (mod p), and then for each solution z, w ask for the number of solutions of x² ≡ z (mod p) and y² ≡ w (mod p).
- From above this is $\left(1 + \left(\frac{z}{p}\right)_L\right) \left(1 + \left(\frac{w}{p}\right)_L\right)$.
- Also $w \equiv c z \pmod{p}$, thus

$$N(p;c) = \sum_{z=1}^{p} \left(1 + \left(\frac{z}{p}\right)_{L}\right) \left(1 + \left(\frac{c-z}{p}\right)_{L}\right).$$

• If we multiply this out we get

$$p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{c-z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}.$$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• We get N(p, c) =

 $p + \sum_{r=1}^{p} \left(\frac{z}{p}\right)_{L} + \sum_{r=1}^{p} \left(\frac{c-z}{p}\right)_{L} + \sum_{r=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}.$

イロト 不得 トイヨト イヨト ニヨー

Sac

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• We get N(p, c) =

$$p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{c-z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

• The first and second sums are 0, so that

$$N(p;c) = p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

•

ヘロト 人間 ト 人目 ト 人目 ト

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We get N(p, c) =

$$p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{c-z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

• The first and second sums are 0, so that

$$N(p;c) = p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

.

・ロト ・ 同ト ・ ヨト ・ ヨト

= nar

• It is possible also to evaluate the sum here, but we need to know a little more about the Legendre symbol.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We get N(p, c) =

$$p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{c-z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

• The first and second sums are 0, so that

$$N(p;c) = p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- It is possible also to evaluate the sum here, but we need to know a little more about the Legendre symbol.
- The Legendre symbol is a prototype for an important class of number theoretic functions called Dirichlet characters.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We get N(p, c) =

1

$$p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{c-z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

• The first and second sums are 0, so that

$$N(p;c) = p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

- It is possible also to evaluate the sum here, but we need to know a little more about the Legendre symbol.
- The Legendre symbol is a prototype for an important class of number theoretic functions called Dirichlet characters.
- A simple example would be to take an odd prime p and a primitive root modulo g modulo p, and then for a fixed h we can define χ(g^k) = e^{2πihk/(p-1)} and χ(n) = 0 if p|n.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We get N(p, c) =

1

$$p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{c-z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

• The first and second sums are 0, so that

$$N(p;c) = p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

- It is possible also to evaluate the sum here, but we need to know a little more about the Legendre symbol.
- The Legendre symbol is a prototype for an important class of number theoretic functions called Dirichlet characters.
- A simple example would be to take an odd prime p and a primitive root modulo g modulo p, and then for a fixed h we can define χ(g^k) = e^{2πihk/(p-1)} and χ(n) = 0 if p|n.

• The Legendre symbol is the special case $h = \frac{p-1}{2}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We get N(p, c) =

1

$$p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{c-z}{p}\right)_{L} + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

• The first and second sums are 0, so that

$$N(p;c) = p + \sum_{z=1}^{p} \left(\frac{z}{p}\right)_{L} \left(\frac{c-z}{p}\right)_{L}$$

- It is possible also to evaluate the sum here, but we need to know a little more about the Legendre symbol.
- The Legendre symbol is a prototype for an important class of number theoretic functions called Dirichlet characters.
- A simple example would be to take an odd prime p and a primitive root modulo g modulo p, and then for a fixed h we can define χ(g^k) = e^{2πihk/(p-1)} and χ(n) = 0 if p|n.
- The Legendre symbol is the special case $h = \frac{p-1}{2}$.
- Dirichlet used them to prove that if (a, m) = 1, then there are infinitely many primes in the residue class a modulo m.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can combine the definition of the Legendre symbol with a criterion first enunciated by Euler.

Theorem 10 (Euler's Criterion)

Suppose that p is an odd prime number. Then

$$\left(\frac{c}{p}\right)_{L} \equiv c^{\frac{p-1}{2}} \pmod{p}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

and the Legendre symbol, as a function of c, is totally multiplicative.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can combine the definition of the Legendre symbol with a criterion first enunciated by Euler.

Theorem 10 (Euler's Criterion)

Suppose that p is an odd prime number. Then

$$\left(\frac{c}{p}\right)_{L} \equiv c^{\frac{p-1}{2}} \pmod{p}$$

and the Legendre symbol, as a function of c, is totally multiplicative.

• Reminder

Remark 1

Recall that by multiplicative we mean a function f which satisfies

$$f(n_1n_2)=f(n_1)f(n_2)$$

whenever $(n_1, n_2) = 1$. Totally multiplicative means that the condition $(n_1, n_2) = 1$ can be dropped.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

Important

Remark 2

The totally multiplicative property means that if x and y are both QR, or both QNR, then their product is a QR, and their product can only be a QNR if one is a QR and the other is a QNR.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• Theorem 10. Suppose *p* is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= 900

and the Legendre symbol is totally multiplicative.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • **Theorem 10.** Suppose *p* is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= 900

and the Legendre symbol is totally multiplicative.

• If c is a QR, then there is an $x \not\equiv 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • Theorem 10. Suppose p is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

and the Legendre symbol is totally multiplicative.

• If c is a QR, then there is an $x \not\equiv 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.

• Hence
$$c^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 = \left(\frac{c}{p}\right)_L \pmod{p}.$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • **Theorem 10.** Suppose *p* is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

and the Legendre symbol is totally multiplicative.

- If c is a QR, then there is an $x \not\equiv 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.
- Hence $c^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 = \left(\frac{c}{p}\right)_L \pmod{p}$.
- We know that the congruence c^{p-1}/₂ ≡ 1 (mod p) has at most ^{p-1}/₂ solutions and so we have just shown that it has exactly that many solutions.
- We also have

$$\left(c^{\frac{p-1}{2}}-1\right)\left(c^{\frac{p-1}{2}}+1\right)=c^{p-1}-1$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

and we know that this has exactly p-1 roots modulo p.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • Theorem 10. Suppose p is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

and the Legendre symbol is totally multiplicative.

- If c is a QR, then there is an $x \not\equiv 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.
- Hence $c^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 = \left(\frac{c}{p}\right)_L \pmod{p}$.
- We know that the congruence c^{p-1}/₂ ≡ 1 (mod p) has at most ^{p-1}/₂ solutions and so we have just shown that it has exactly that many solutions.
- We also have

$$\left(c^{\frac{p-1}{2}}-1\right)\left(c^{\frac{p-1}{2}}+1\right)=c^{p-1}-1$$

and we know that this has exactly p-1 roots modulo p.

 In particular every QNR is a solution, but cannot be a root of c^{p-1/2} - 1.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • **Theorem 10.** Suppose *p* is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

and the Legendre symbol is totally multiplicative.

- If c is a QR, then there is an $x \not\equiv 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.
- Hence $c^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 = \left(\frac{c}{p}\right)_L \pmod{p}$.
- We know that the congruence c^{p-1}/₂ ≡ 1 (mod p) has at most ^{p-1}/₂ solutions and so we have just shown that it has exactly that many solutions.
- We also have

$$\left(c^{\frac{p-1}{2}}-1\right)\left(c^{\frac{p-1}{2}}+1\right)=c^{p-1}-1$$

and we know that this has exactly p-1 roots modulo p.

 In particular every QNR is a solution, but cannot be a root of c^{p-1/2} - 1.

• Hence if c is a QNR, then $c^{\frac{p-1}{2}} \equiv -1 = \left(\frac{c}{p}\right)_{l} \pmod{p}$.

・ロット (雪) (キョット (日)) ヨー

Sac

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • **Theorem 10.** Suppose *p* is an odd number. Then

$$\left(\frac{c}{p}\right)_L \equiv c^{\frac{p-1}{2}} \pmod{p}$$

and the Legendre symbol is totally multiplicative.

- If c is a QR, then there is an $x \not\equiv 0 \pmod{p}$ such that $x^2 \equiv c \pmod{p}$.
- Hence $c^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 = \left(\frac{c}{p}\right)_L \pmod{p}$.
- We know that the congruence c^{p-1}/₂ ≡ 1 (mod p) has at most ^{p-1}/₂ solutions and so we have just shown that it has exactly that many solutions.
- We also have

$$\left(c^{\frac{p-1}{2}}-1\right)\left(c^{\frac{p-1}{2}}+1\right)=c^{p-1}-1$$

and we know that this has exactly p-1 roots modulo p.

- In particular every QNR is a solution, but cannot be a root of c^{p-1/2} - 1.
- Hence if c is a QNR, then $c^{\frac{p-1}{2}} \equiv -1 = \left(\frac{c}{p}\right)$, (mod p).

-

This proves the first part of the theorem

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• To prove the second part, we have to show that for any integers c_1 , c_2 we have

$$\left(\frac{c_1c_2}{p}\right)_L = \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= √Q (~

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• To prove the second part, we have to show that for any integers c_1 , c_2 we have

$$\left(\frac{c_1c_2}{p}\right)_L = \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

• If $c_1 \equiv 0 \pmod{p}$ or $c_2 \equiv 0 \pmod{p}$, then both sides are 0, so we can suppose that $c_1c_2 \not\equiv 0 \pmod{p}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

3

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • To prove the second part, we have to show that for any integers c_1 , c_2 we have

$$\left(\frac{c_1c_2}{p}\right)_L = \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

• If $c_1 \equiv 0 \pmod{p}$ or $c_2 \equiv 0 \pmod{p}$, then both sides are 0, so we can suppose that $c_1c_2 \not\equiv 0 \pmod{p}$.

• Now

$$\begin{pmatrix} \frac{c_1c_2}{p} \end{pmatrix}_L \equiv (c_1c_2)^{\frac{p-1}{2}} \\ \equiv c_1^{\frac{p-1}{2}}c_2^{\frac{p-1}{2}} \\ \equiv \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L \pmod{p}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• To prove the second part, we have to show that for any integers c_1 , c_2 we have

$$\left(\frac{c_1c_2}{p}\right)_L = \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

• If $c_1 \equiv 0 \pmod{p}$ or $c_2 \equiv 0 \pmod{p}$, then both sides are 0, so we can suppose that $c_1c_2 \not\equiv 0 \pmod{p}$.

• Now

$$\begin{pmatrix} \frac{c_1c_2}{p} \end{pmatrix}_L \equiv (c_1c_2)^{\frac{p-1}{2}} \\ \equiv c_1^{\frac{p-1}{2}}c_2^{\frac{p-1}{2}} \\ \equiv \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L \pmod{p}.$$

• Thus *p* divides

$$\left(\frac{c_1c_2}{p}\right)_L - \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • To prove the second part, we have to show that for any integers c_1 , c_2 we have

$$\left(\frac{c_1c_2}{p}\right)_L = \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

• If $c_1 \equiv 0 \pmod{p}$ or $c_2 \equiv 0 \pmod{p}$, then both sides are 0, so we can suppose that $c_1c_2 \not\equiv 0 \pmod{p}$.

• Now

$$\begin{pmatrix} \frac{c_1c_2}{p} \end{pmatrix}_L \equiv (c_1c_2)^{\frac{p-1}{2}} \\ \equiv c_1^{\frac{p-1}{2}}c_2^{\frac{p-1}{2}} \\ \equiv \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L \pmod{p}.$$

• Thus p divides

$$\left(\frac{c_1c_2}{p}\right)_L - \left(\frac{c_1}{p}\right)_L \left(\frac{c_2}{p}\right)_L.$$

• But this is -2,0 or 2 and so has to be 0 since $p \ge 2$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• This example has some interesting consequences.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

- This example has some interesting consequences.
- 1. Every p > 2 dividing $x^2 + 1$ satisfies $p \equiv 1 \pmod{4}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

- This example has some interesting consequences.
- 1. Every p > 2 dividing $x^2 + 1$ satisfies $p \equiv 1 \pmod{4}$.
- 2. There are infinitely many primes of the form 4k + 1.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

- This example has some interesting consequences.
- 1. Every p > 2 dividing $x^2 + 1$ satisfies $p \equiv 1 \pmod{4}$.
- 2. There are infinitely many primes of the form 4k + 1.
- To see 1. observe that for any such prime factor -1 has to be a quadratic residue, so its Legendre symbol is 1.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then

$$\left(\frac{-1}{p}\right)_{L} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv 3 \pmod{4} \end{cases}.$$

Observe that by Euler's Criterion $\left(\frac{-1}{p}\right)_L \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$. Now the difference between the left and right hand sides is -2,0 or 2 and the same argument as above gives equality.

- This example has some interesting consequences.
- 1. Every p > 2 dividing $x^2 + 1$ satisfies $p \equiv 1 \pmod{4}$.
- 2. There are infinitely many primes of the form 4k + 1.
- To see 1. observe that for any such prime factor -1 has to be a quadratic residue, so its Legendre symbol is 1.
- To deduce 2., follow Euclid's argument by assuming there are only finitely many and take x to be twice their product.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

 A famous question, first asked by I. M. Vinogradov in 1919, concerns the size n₂(p) of the *least* positive QNR modulo p.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- A famous question, first asked by I. M. Vinogradov in 1919, concerns the size $n_2(p)$ of the *least* positive QNR modulo p.
- One thing one can see straight away is that n₂(p) has to be prime, since it must have a prime factor which is a QNR.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- A famous question, first asked by I. M. Vinogradov in 1919, concerns the size $n_2(p)$ of the *least* positive QNR modulo *p*.
- One thing one can see straight away is that n₂(p) has to be prime, since it must have a prime factor which is a QNR.
- Vinogradov conjectured that for any fixed positive number $\varepsilon > 0$ we should have

$$n_2(p) < C(\varepsilon)p^{\varepsilon}$$

and then proceeded to prove this at least when $\varepsilon > \frac{1}{2\sqrt{e}}$ where *e* is the base of the natural logarithm!

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- A famous question, first asked by I. M. Vinogradov in 1919, concerns the size $n_2(p)$ of the *least* positive QNR modulo *p*.
- One thing one can see straight away is that n₂(p) has to be prime, since it must have a prime factor which is a QNR.
- Vinogradov conjectured that for any fixed positive number $\varepsilon > 0$ we should have

$$n_2(p) < C(\varepsilon)p^{\varepsilon}$$

and then proceeded to prove this at least when $\varepsilon > \frac{1}{2\sqrt{e}}$ where *e* is the base of the natural logarithm!

• In 1959 David Burgess, in his PhD thesis reduced this to any $\varepsilon > \frac{1}{4\sqrt{e}}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- A famous question, first asked by I. M. Vinogradov in 1919, concerns the size $n_2(p)$ of the *least* positive QNR modulo p.
- One thing one can see straight away is that n₂(p) has to be prime, since it must have a prime factor which is a QNR.
- Vinogradov conjectured that for any fixed positive number $\varepsilon > 0$ we should have

$$n_2(p) < C(\varepsilon)p^{\varepsilon}$$

and then proceeded to prove this at least when $\varepsilon > \frac{1}{2\sqrt{e}}$ where *e* is the base of the natural logarithm!

• In 1959 David Burgess, in his PhD thesis reduced this to any $\varepsilon > \frac{1}{4\sqrt{e}}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Where on earth does the \sqrt{e} come from?

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- A famous question, first asked by I. M. Vinogradov in 1919, concerns the size $n_2(p)$ of the *least* positive QNR modulo p.
- One thing one can see straight away is that n₂(p) has to be prime, since it must have a prime factor which is a QNR.
- Vinogradov conjectured that for any fixed positive number $\varepsilon > 0$ we should have

$$n_2(p) < C(\varepsilon)p^{\varepsilon}$$

and then proceeded to prove this at least when $\varepsilon > \frac{1}{2\sqrt{e}}$ where *e* is the base of the natural logarithm!

- In 1959 David Burgess, in his PhD thesis reduced this to any $\varepsilon > \frac{1}{4\sqrt{e}}$.
- Where on earth does the \sqrt{e} come from?
- This was one of the things that got me interested in number theory when I was a student.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq \frac{1}{2}+\sqrt{p-\frac{3}{4}}.$$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

• **Proof.** Let k be the smallest k such that $p < kn_2(p)$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

• **Proof.** Let k be the smallest k such that $p < kn_2(p)$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

• $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

• **Proof.** Let k be the smallest k such that $p < kn_2(p)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.
- Thus $kn_2(p)$ is a QR, and so k is a QNR.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

• **Proof.** Let k be the smallest k such that $p < kn_2(p)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.
- Thus $kn_2(p)$ is a QR, and so k is a QNR.
- Therefore $n_2(p) \leq k$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

• **Proof.** Let k be the smallest k such that $p < kn_2(p)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.
- Thus $kn_2(p)$ is a QR, and so k is a QNR.
- Therefore $n_2(p) \leq k$.
- Hence $n_2(p)^2 \le p + n_2(p) 1$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

- **Proof.** Let k be the smallest k such that $p < kn_2(p)$.
- $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.
- Thus $kn_2(p)$ is a QR, and so k is a QNR.
- Therefore $n_2(p) \leq k$.
- Hence $n_2(p)^2 \le p + n_2(p) 1$.
- This can be rearranged as $n_2(p)^2 n_2(p) \le p 1$, so $(n_2(p) \frac{1}{2})^2 \le p \frac{3}{4}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

$$n_2(p)\leq rac{1}{2}+\sqrt{p-rac{3}{4}}.$$

- **Proof.** Let k be the smallest k such that $p < kn_2(p)$.
- $n_2(p)$ cannot divide p so $p < kn_2(p) < p + n_2(p)$.
- Thus $kn_2(p)$ is a QR, and so k is a QNR.
- Therefore $n_2(p) \leq k$.
- Hence $n_2(p)^2 \le p + n_2(p) 1$.
- This can be rearranged as $n_2(p)^2 n_2(p) \le p 1$, so $(n_2(p) \frac{1}{2})^2 \le p \frac{3}{4}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• The theorem follows by taking the square root.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • The multiplicative property of the Legendre symbol tells us that it suffices to understand

 $\left(\frac{q}{p}\right)_{r}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

when p is an odd prime and q is prime.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • The multiplicative property of the Legendre symbol tells us that it suffices to understand

$$\left(\frac{q}{p}\right)_L$$

when p is an odd prime and q is prime.

• When *q* is also odd, Euler found a remarkable relationship between this Legendre symbol and

$$\left(\frac{p}{q}\right)_L$$

but no one in the eighteenth century was able to prove it.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • The multiplicative property of the Legendre symbol tells us that it suffices to understand

$$\left(\frac{q}{p}\right)_L$$

when p is an odd prime and q is prime.

• When *q* is also odd, Euler found a remarkable relationship between this Legendre symbol and

$$\left(\frac{p}{q}\right)_L$$

but no one in the eighteenth century was able to prove it.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Gauss proved it when he was 19!

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • The multiplicative property of the Legendre symbol tells us that it suffices to understand

$$\left(\frac{q}{p}\right)_L$$

when p is an odd prime and q is prime.

• When *q* is also odd, Euler found a remarkable relationship between this Legendre symbol and

$$\left(\frac{p}{q}\right)_{L}$$

but no one in the eighteenth century was able to prove it.

- Gauss proved it when he was 19!
- The relationship enables one to imitate the Euclid algorithm and so rapidly evaluate the Legendre symbol.

Quadratic Reciprocity

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

Introduction to Number Theory Chapter 5 Quadratic Residues

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • What Euler spotted was a very curious relationship between the values of

 $\left(\frac{q}{p}\right)_L$

when p and q are different odd primes, which only depended on their residue classes modulo 4.

Quadratic Reciprocity

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction to Number Theory Chapter 5 Quadratic Residues

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • What Euler spotted was a very curious relationship between the values of

 $\left(\frac{q}{p}\right)_L$

when p and q are different odd primes, which only depended on their residue classes modulo 4.

• Of course, this was before the Legendre symbol was invented and he described the phenomenon in terms of quadratic residues and non-residues.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other question

Example 13

$p \setminus q$	3	5	7	11	13	17	19	23	29
3	0	-1	1	-1	1	-1	1	-1	-1
5	-1	0	-1	1	-1	-1	1	-1	1
7	-1	-1	0	1	-1	-1	-1	1	1
11	1	1	-1	0	-1	-1	-1	1	-1
13	1	-1	-1	-1	0	1	-1	1	1
17	-1	-1	-1	-1	1	0	-1	-1	-1
19	-1	1	1	1	-1	1	0	1	-1
23	1	-1	-1	-1	1	-1	-1	0	1
29	-1	1	1	-1	1	-1	-1	1	0

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

990

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other question

Example 13

.

$p \setminus q$	3	5	7	11	13	17	19	23	29
3	0	-1	1	-1	1	-1	1	-1	-1
5	-1	0	-1	1	-1	-1	1	-1	1
7	-1	-1	0	1	-1	-1	-1	1	1
11	1	1	-1	0	-1	-1	-1	1	-1
13	1	-1	-1	-1	0	1	-1	1	1
17	-1	-1	-1	-1	1	0	-1	-1	-1
19	-1	1	1	1	-1	1	0	1	-1
23	1	-1	-1	-1	1	-1	-1	0	1
29	-1	1	1	-1	1	-1	-1	1	0

• If $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$, then $\left(\frac{q}{p}\right)_L = \left(\frac{p}{q}\right)_L$, but if $p \equiv q \equiv 3 \pmod{4}$, then $\left(\frac{q}{p}\right)_L \neq \left(\frac{p}{q}\right)_L$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• Gauss was fascinated by this and eventually found at least seven (!) different proofs.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- Gauss was fascinated by this and eventually found at least seven (!) different proofs.
- The first step in many of them is Gauss' Lemma.

Theorem 14 (Gauss' Lemma)

Suppose that p is an odd prime and (a, p) = 1. Apply the division algorithm to write each of the $\frac{1}{2}(p-1)$ numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then we have

$$\left(\frac{a}{p}\right)_L = (-1)^m$$

where

$$m \equiv \sum_{1 \leq x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- Gauss was fascinated by this and eventually found at least seven (!) different proofs.
- The first step in many of them is Gauss' Lemma.

Theorem 14 (Gauss' Lemma)

Suppose that p is an odd prime and (a, p) = 1. Apply the division algorithm to write each of the $\frac{1}{2}(p-1)$ numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then we have

$$\left(\frac{a}{p}\right)_L = (-1)^m$$

where

$$m \equiv \sum_{1 \leq x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}.$$

 This theorem enables us to evaluate quite a number of cases.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Example 15

Take a = 2.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

Consider the numbers 2x with 1 ≤ x < ½p. They satisfy 2 ≤ 2x < p and are their own remainder, so we need to count the x with ½p < 2x < p, that is ¼p < x < ½p.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

Consider the numbers 2x with 1 ≤ x < ½p. They satisfy 2 ≤ 2x < p and are their own remainder, so we need to count the x with ½p < 2x < p, that is ¼p < x < ½p.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Hence the number of such x is $m = \lfloor \frac{p}{2} \rfloor - \lfloor \frac{p}{4} \rfloor$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

- Consider the numbers 2x with 1 ≤ x < ½p. They satisfy 2 ≤ 2x < p and are their own remainder, so we need to count the x with ½p < 2x < p, that is ¼p < x < ½p.
- Hence the number of such x is $m = \left|\frac{p}{2}\right| \left|\frac{p}{4}\right|$.
- Now suppose that p = 8k + 1. Then m = 4k 2k is even. Likewise when p = 8k + 7, m = 2k + 2 is also even.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

- Consider the numbers 2x with 1 ≤ x < ¹/₂p. They satisfy 2 ≤ 2x 1</sup>/₂p < 2x < p, that is ¹/₄p < x < ¹/₂p.
- Hence the number of such x is $m = \lfloor \frac{p}{2} \rfloor \lfloor \frac{p}{4} \rfloor$.
- Now suppose that p = 8k + 1. Then m = 4k 2k is even.
 Likewise when p = 8k + 7, m = 2k + 2 is also even.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Similarly if $p \equiv 3$ or 5 (mod 8), then *m* is odd.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

- Consider the numbers 2x with $1 \le x < \frac{1}{2}p$. They satisfy $2 \le 2x < p$ and are their own remainder, so we need to count the x with $\frac{1}{2}p < 2x < p$, that is $\frac{1}{4}p < x < \frac{1}{2}p$.
- Hence the number of such x is $m = \lfloor \frac{p}{2} \rfloor \lfloor \frac{p}{4} \rfloor$.
- Now suppose that p = 8k + 1. Then m = 4k 2k is even. Likewise when p = 8k + 7, m = 2k + 2 is also even.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- Similarly if $p \equiv 3$ or 5 (mod 8), then *m* is odd.
- $\left(\frac{2}{p}\right)_L = \pm 1$ according as $p \equiv \pm 1$ or $\pm 3 \pmod{8}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

Example 15

Take a = 2.

- Consider the numbers 2x with 1 ≤ x < ¹/₂p. They satisfy 2 ≤ 2x 1</sup>/₂p < 2x < p, that is ¹/₄p < x < ¹/₂p.
- Hence the number of such x is $m = \lfloor \frac{p}{2} \rfloor \lfloor \frac{p}{4} \rfloor$.
- Now suppose that p = 8k + 1. Then m = 4k 2k is even. Likewise when p = 8k + 7, m = 2k + 2 is also even.

- Similarly if $p \equiv 3$ or 5 (mod 8), then *m* is odd.
- $\left(\frac{2}{p}\right)_L = \pm 1$ according as $p \equiv \pm 1$ or $\pm 3 \pmod{8}$.
- Alternatively $\left(\frac{2}{p}\right)_L = (-1)^{\frac{p^2-1}{8}}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.

・ロット (雪) (キョット (日)) ヨー

Sar

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.
- **Proof.** The proof is a counting argument. Consider

$$a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x = \prod_{1 \le x < p/2} ax.$$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.
- **Proof.** The proof is a counting argument. Consider

$$a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x = \prod_{1 \le x < p/2} ax.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• This is $\equiv \prod_{1 \le x < p/2} r_x \pmod{p}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.
- **Proof.** The proof is a counting argument. Consider

$$a^{\frac{p-1}{2}}\prod_{1\leq x< p/2}x=\prod_{1\leq x< p/2}ax.$$

- This is $\equiv \prod_{1 \le x < p/2} r_x \pmod{p}$.
- Let \mathcal{A} be the set of x with $p/2 < r_x < p$ and \mathcal{B} the rest.

イロト 不得 トイヨト イヨト ニヨー

San

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- **Theorem 14.** Suppose p > 2 and $p \nmid a$. Write each of the numbers ax with $1 \le x < \frac{1}{2}p$ as $ax = q_xp + r_x$ with $0 \le r_x < p$. Let m be the number of r_x with $\frac{1}{2}p < r_x < p$. Then $\left(\frac{a}{p}\right)_L = (-1)^m$, $m \equiv \sum_{1 \le x < p/2} \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$.
- **Proof.** The proof is a counting argument. Consider

$$a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x = \prod_{1 \le x < p/2} ax$$

- This is $\equiv \prod_{1 \le x < p/2} r_x \pmod{p}$.
- Let \mathcal{A} be the set of x with $p/2 < r_x < p$ and \mathcal{B} the rest.
- Then card $\mathcal{A} = m$ and rearranging gives $a^{rac{p-1}{2}} \prod_{1 \leq x < p/2} x \equiv$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x\pmod{p}$$
(2.3)

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• $a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x \equiv$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • $a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x \equiv$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

• Since $|r_x - r_y| < p$ and $r_x - r_y \equiv a(x - y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • $a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x \equiv$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

イロト 不得 トイヨト イヨト ニヨー

Sar

- Since $|r_x r_y| < p$ and $r_x r_y \equiv a(x y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.
- Also since $p \nmid a$ and $1 \leq x, y < p/2$ we have

$$p-r_x-r_y\equiv -a(x+y)\not\equiv 0 \pmod{p}.$$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • $a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x \equiv$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

- Since $|r_x r_y| < p$ and $r_x r_y \equiv a(x y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.
- Also since $p \nmid a$ and $1 \le x, y < p/2$ we have $p r_x r_y \equiv -a(x + y) \not\equiv 0 \pmod{p}$.
- Thus the $p r_x$ with $x \in \mathcal{A}$ differ from the r_y with $y \in \mathcal{B}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

$$\sum_{1 \le x < p/2}^{p-1} \prod_{1 \le x < p/2} x \equiv x$$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

- Since $|r_x r_y| < p$ and $r_x r_y \equiv a(x y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.
- Also since $p \nmid a$ and $1 \le x, y < p/2$ we have $p r_x r_y \equiv -a(x + y) \not\equiv 0 \pmod{p}$.
- Thus the $p r_x$ with $x \in \mathcal{A}$ differ from the r_y with $y \in \mathcal{B}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Hence the $\frac{1}{2}(p-1)$ numbers $p - r_x$ and r_x are just a permutation of the numbers z with $1 \le z \le \frac{1}{2}(p-1)$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

$$\sum_{1 \le x < p/2}^{p-1} \prod_{1 \le x < p/2} x \equiv x$$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

- Since $|r_x r_y| < p$ and $r_x r_y \equiv a(x y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.
- Also since $p \nmid a$ and $1 \le x, y < p/2$ we have $p r_x r_y \equiv -a(x + y) \not\equiv 0 \pmod{p}$.
- Thus the $p r_x$ with $x \in \mathcal{A}$ differ from the r_y with $y \in \mathcal{B}$.
- Hence the $\frac{1}{2}(p-1)$ numbers $p r_x$ and r_x are just a permutation of the numbers z with $1 \le z \le \frac{1}{2}(p-1)$.
- Thus (2.3) becomes

$$a^{rac{p-1}{2}} \prod_{1 \leq x < p/2} x \equiv (-1)^m \prod_{1 \leq x < p/2} x \pmod{p}$$

and, by Euler's Criterion, $\left(rac{a}{p}
ight)_L\equiv a^{rac{p-1}{2}}\equiv (-1)^m.$

590

・ロト ・ 同ト ・ ヨト ・ ヨト

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

$$\prod_{1 \le x < p/2} x \equiv$$

$$\left(\prod_{x\in\mathcal{A}}r_x\right)\prod_{x\in\mathcal{B}}r_x\equiv(-1)^m\left(\prod_{x\in\mathcal{A}}(p-r_x)\right)\prod_{x\in\mathcal{B}}r_x \pmod{p}.$$

- Since $|r_x r_y| < p$ and $r_x r_y \equiv a(x y) \pmod{p}$ we have $r_x \neq r_y$ when $x \neq y$ and so the r_x are distinct.
- Also since $p \nmid a$ and $1 \le x, y < p/2$ we have $p r_x r_y \equiv -a(x + y) \not\equiv 0 \pmod{p}$.
- Thus the $p r_x$ with $x \in \mathcal{A}$ differ from the r_y with $y \in \mathcal{B}$.
- Hence the $\frac{1}{2}(p-1)$ numbers $p r_x$ and r_x are just a permutation of the numbers z with $1 \le z \le \frac{1}{2}(p-1)$.
- Thus (2.3) becomes

$$a^{\frac{p-1}{2}} \prod_{1 \le x < p/2} x \equiv (-1)^m \prod_{1 \le x < p/2} x \pmod{p}$$

and, by Euler's Criterion, $\left(\frac{a}{p}\right)_{r} \equiv a^{\frac{p-1}{2}} \equiv (-1)^{m}$.

• Now the difference is -2, 0 or $\overline{2}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• For the final formula we note that

$$r_{x} = ax - p \left\lfloor \frac{ax}{p} \right\rfloor \tag{2.4}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

so that $0 \leq r_x < p$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • For the final formula we note that

$$r_x = ax - p \left\lfloor \frac{ax}{p} \right\rfloor \tag{2.4}$$

▲□▶▲□▶▲≡▶▲≡▶ = ● ●

so that $0 \leq r_x < p$.

• Now $0 < 2r_x/p < 2$ and so $\lfloor 2r_x/p \rfloor = 0$ or 1 and is 1 precisely when $p/2 < r_x < p$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • For the final formula we note that

$$r_x = ax - p \left\lfloor \frac{ax}{p} \right\rfloor \tag{2.4}$$

▲□▶▲□▶▲≡▶▲≡▶ = ● ●

so that $0 \leq r_x < p$.

- Now $0 < 2r_x/p < 2$ and so $\lfloor 2r_x/p \rfloor = 0$ or 1 and is 1 precisely when $p/2 < r_x < p$.
- Thus

$$m = \sum_{1 \le x < p/2} \lfloor 2r_x/p \rfloor.$$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • For the final formula we note that

$$r_x = ax - p \left\lfloor \frac{ax}{p} \right\rfloor \tag{2.4}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

so that $0 \leq r_x < p$.

• Now $0 < 2r_x/p < 2$ and so $\lfloor 2r_x/p \rfloor = 0$ or 1 and is 1 precisely when $p/2 < r_x < p$.

Thus

$$m = \sum_{1 \le x < p/2} \lfloor 2r_x/p \rfloor.$$

• Moreover, by (2.4)

$$\lfloor 2r_x/p \rfloor = \left\lfloor \frac{2ax}{p} - 2 \left\lfloor \frac{ax}{p} \right\rfloor \right\rfloor = \left\lfloor \frac{2ax}{p} \right\rfloor - 2 \left\lfloor \frac{ax}{p} \right\rfloor$$
$$\equiv \left\lfloor \frac{2ax}{p} \right\rfloor \pmod{2}$$

and the final formula follows.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• Restricting to odd *a* gives a useful variant.

Theorem 16

Suppose
$$p > 2$$
 and $(a, 2p) = 1$. Then $\left(\frac{a}{p}\right)_L = (-1)^n$ where $n = \sum_{1 \le x < p/2} \left\lfloor \frac{ax}{p} \right\rfloor$. We also have $\left(\frac{2}{p}\right)_L = (-1)^{\frac{p^2 - 1}{8}}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • Restricting to odd *a* gives a useful variant.

Theorem 16

Suppose
$$p > 2$$
 and $(a, 2p) = 1$. Then $\left(\frac{a}{p}\right)_L = (-1)^n$ where
 $n = \sum_{1 \le x < p/2} \left\lfloor \frac{ax}{p} \right\rfloor$. We also have $\left(\frac{2}{p}\right)_L = (-1)^{\frac{p^2 - 1}{8}}$.
• Proof. $\left(\frac{2}{p}\right)_L \left(\frac{a}{p}\right)_L = \left(\frac{2}{p}\right)_L \left(\frac{a+p}{p}\right)_L = \left(\frac{4}{p}\right)_L \left(\frac{(a+p)/2}{p}\right)_L$
 $= \left(\frac{(a+p)/2}{p}\right)_L = (-1)^l$

・ロト ・ 四ト ・ 回ト ・ 回ト

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• Restricting to odd *a* gives a useful variant.

Theorem 16

Suppose
$$p > 2$$
 and $(a, 2p) = 1$. Then $\left(\frac{a}{p}\right)_L = (-1)^n$ where
 $n = \sum_{1 \le x < p/2} \left\lfloor \frac{ax}{p} \right\rfloor$. We also have $\left(\frac{2}{p}\right)_L = (-1)^{\frac{p^2 - 1}{8}}$.
• Proof. $\left(\frac{2}{p}\right)_L \left(\frac{a}{p}\right)_L = \left(\frac{2}{p}\right)_L \left(\frac{a+p}{p}\right)_L = \left(\frac{4}{p}\right)_L \left(\frac{(a+p)/2}{p}\right)_L$
 $= \left(\frac{(a+p)/2}{p}\right)_L = (-1)^l$
• where $l = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{(a+p)x}{p} \right\rfloor = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{ax}{p} + x \right\rfloor = \sum_{x=1}^{(p-1)/2} \left(\left\lfloor \frac{ax}{p} \right\rfloor + x \right) = n + \frac{p^2 - 1}{8}.$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 = のへで

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• Restricting to odd *a* gives a useful variant.

Theorem 16

Suppose
$$p > 2$$
 and $(a, 2p) = 1$. Then $\left(\frac{a}{p}\right)_{L} = (-1)^{n}$ where
 $n = \sum_{1 \le x < p/2} \left\lfloor \frac{ax}{p} \right\rfloor$. We also have $\left(\frac{2}{p}\right)_{L} = (-1)^{\frac{p^{2}-1}{8}}$.
• Proof. $\left(\frac{2}{p}\right)_{L} \left(\frac{a}{p}\right)_{L} = \left(\frac{2}{p}\right)_{L} \left(\frac{a+p}{p}\right)_{L} = \left(\frac{4}{p}\right)_{L} \left(\frac{(a+p)/2}{p}\right)_{L}$
 $= \left(\frac{(a+p)/2}{p}\right)_{L} = (-1)^{l}$
• where $l = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{(a+p)x}{p} \right\rfloor = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{ax}{p} + x \right\rfloor =$
 $\sum_{x=1}^{(p-1)/2} \left(\left\lfloor \frac{ax}{p} \right\rfloor + x \right) = n + \frac{p^{2}-1}{8}$.
• If we take $a = 1$, then we have the formula for $\left(\frac{2}{p}\right)_{L}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

900

Robert C. Vaughan

Quadratic Reciprocity

• Restricting to odd *a* gives a useful variant.

Theorem 16

Suppose
$$p > 2$$
 and $(a, 2p) = 1$. Then $\left(\frac{a}{p}\right)_L = (-1)^n$ where
 $n = \sum_{1 \le x < p/2} \left\lfloor \frac{ax}{p} \right\rfloor$. We also have $\left(\frac{2}{p}\right)_L = (-1)^{\frac{p^2 - 1}{8}}$.
• Proof. $\left(\frac{2}{p}\right)_L \left(\frac{a}{p}\right)_L = \left(\frac{2}{p}\right)_L \left(\frac{a+p}{p}\right)_L = \left(\frac{4}{p}\right)_L \left(\frac{(a+p)/2}{p}\right)_L$
 $= \left(\frac{(a+p)/2}{p}\right)_L = (-1)^l$
• where $l = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{(a+p)x}{p} \right\rfloor = \sum_{x=1}^{(p-1)/2} \left\lfloor \frac{ax}{p} + x \right\rfloor = \sum_{x=1}^{(p-1)/2} \left(\left\lfloor \frac{ax}{p} \right\rfloor + x \right) = n + \frac{p^2 - 1}{8}.$

• If we take a = 1, then we have the formula for $\left(\frac{2}{p}\right)_{1}$.

• • • • • • • •

San

• Then factoring this out gives the result for $\left(\frac{a}{p}\right)_{L}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • Now we come to the big one. This is the Law of Quadratic Reciprocity. Gauss called it "Theorema Aureum", the Golden Theorem.

Theorem 17 (The Law of Quadratic Reciprocity)

Suppose that p and q are different odd prime numbers. Then

$$\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}},$$

or equivalently

$$\left(\frac{q}{p}\right)_L = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q}\right)_L,$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • Now we come to the big one. This is the Law of Quadratic Reciprocity. Gauss called it "Theorema Aureum", the Golden Theorem.

Theorem 17 (The Law of Quadratic Reciprocity)

Suppose that p and q are different odd prime numbers. Then

$$\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}},$$

or equivalently

$$\left(\frac{q}{p}\right)_L = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q}\right)_L,$$

• We can use this to compute rapidly Legendre symbols.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use this to compute rapidly Legendre symbols.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Example 18

Is $x^2 \equiv 951 \pmod{2017}$ soluble? 2017 is prime, but $951 = 3 \times 317$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use this to compute rapidly Legendre symbols.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Example 18

Is $x^2 \equiv 951 \pmod{2017}$ soluble? 2017 is prime, but $951 = 3 \times 317$.

• Thus
$$\left(\frac{951}{2017}\right)_L = \left(\frac{3}{2017}\right)_L \left(\frac{317}{2017}\right)_L$$
.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• We can use this to compute rapidly Legendre symbols.

Example 18

Is $x^2 \equiv 951 \pmod{2017}$ soluble? 2017 is prime, but $951 = 3 \times 317$.

- Thus $\left(\frac{951}{2017}\right)_L = \left(\frac{3}{2017}\right)_L \left(\frac{317}{2017}\right)_L$.
- By the law, as $2017 \equiv 1 \pmod{4}$,

$$\begin{split} & \left(\frac{3}{2017}\right)_L = \left(\frac{2017}{3}\right)_L = \left(\frac{1}{3}\right)_L = 1\\ & \left(\frac{317}{2017}\right)_L = \left(\frac{2017}{317}\right)_L = \left(\frac{115}{317}\right)_L = \left(\frac{5}{317}\right)_L \left(\frac{23}{317}\right)_L. \end{split}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use this to compute rapidly Legendre symbols.

Example 18

Is $x^2 \equiv 951 \pmod{2017}$ soluble? 2017 is prime, but $951 = 3 \times 317$.

- Thus $\left(\frac{951}{2017}\right)_L = \left(\frac{3}{2017}\right)_L \left(\frac{317}{2017}\right)_L$.
- By the law, as $2017 \equiv 1 \pmod{4}$,

$$\left(\frac{3}{2017}\right)_L = \left(\frac{2017}{3}\right)_L = \left(\frac{1}{3}\right)_L = 1$$
$$\left(\frac{317}{2017}\right)_L = \left(\frac{2017}{217}\right)_L = \left(\frac{115}{217}\right)_L = \left(\frac{5}{217}\right)_L \left(\frac{23}{217}\right)_L.$$

$$(\overline{2017})_L - (\overline{317})_L - (\overline{317})_L - (\overline{317})_L - (\overline{317})_L (\overline{317})_L$$

Again applying the law, we have

$$\begin{pmatrix} \frac{5}{317} \end{pmatrix}_{L} = \begin{pmatrix} \frac{317}{5} \end{pmatrix}_{L} = \begin{pmatrix} \frac{2}{5} \end{pmatrix}_{L} = -1$$

and $\begin{pmatrix} \frac{23}{317} \end{pmatrix}_{L} = \begin{pmatrix} \frac{317}{23} \end{pmatrix}_{L} = \begin{pmatrix} \frac{18}{23} \end{pmatrix}_{L} = \begin{pmatrix} \frac{2}{23} \end{pmatrix}_{L} = 1$ so that $\begin{pmatrix} \frac{317}{2017} \end{pmatrix}_{L} = -1$ and thus $\begin{pmatrix} \frac{951}{2017} \end{pmatrix}_{L} = -1$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can use this to compute rapidly Legendre symbols.

Example 18

Is $x^2 \equiv 951 \pmod{2017}$ soluble? 2017 is prime, but $951 = 3 \times 317$.

- Thus $\left(\frac{951}{2017}\right)_L = \left(\frac{3}{2017}\right)_L \left(\frac{317}{2017}\right)_L$.
- By the law, as $2017 \equiv 1 \pmod{4}$,

$$\left(\frac{3}{2017}\right)_L = \left(\frac{2017}{3}\right)_L = \left(\frac{1}{3}\right)_L = 1$$

$$\left(\frac{317}{2017}\right)_{L} = \left(\frac{2017}{317}\right)_{L} = \left(\frac{115}{317}\right)_{L} = \left(\frac{5}{317}\right)_{L} \left(\frac{23}{317}\right)_{L}.$$

• Again applying the law, we have

$$\left(\frac{5}{317}\right)_L = \left(\frac{317}{5}\right)_L = \left(\frac{2}{5}\right)_L = -1$$

- and $\left(\frac{23}{317}\right)_L = \left(\frac{317}{23}\right)_L = \left(\frac{18}{23}\right)_L = \left(\frac{2}{23}\right)_L = 1$ so that $\left(\frac{317}{2017}\right)_L = -1$ and thus $\left(\frac{951}{2017}\right)_L = -1$.
- Thus the congruence is insoluble.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• We can also use the law to obtain general rules, like that for 2 (mod *p*).

Example 19

Let p > 3 be an odd prime. Then

$$\left(\frac{3}{p}\right)_L = (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)_L.$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can also use the law to obtain general rules, like that for 2 (mod p).

Example 19

Let p > 3 be an odd prime. Then

$$\left(\frac{3}{p}\right)_L = (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)_L.$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

• Now p is a QR modulo 3 iff $p \equiv 1 \pmod{3}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can also use the law to obtain general rules, like that for 2 (mod *p*).

Example 19

Let p > 3 be an odd prime. Then

$$\left(\frac{3}{p}\right)_L = (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)_L.$$

• Now p is a QR modulo 3 iff $p \equiv 1 \pmod{3}$.

Thus

$$\left(\frac{3}{p}\right)_{L} = \begin{cases} (-1)^{\frac{p-1}{2}} & (p \equiv 1 \pmod{3}) \\ -(-1)^{\frac{p-1}{2}} & (p \equiv 2 \pmod{3}). \end{cases}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • We can also use the law to obtain general rules, like that for 2 (mod *p*).

Example 19

Let p > 3 be an odd prime. Then

$$\left(\frac{3}{p}\right)_L = (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)_L.$$

• Now p is a QR modulo 3 iff $p \equiv 1 \pmod{3}$.

Thus

$$\left(\frac{3}{p}\right)_{L} = \begin{cases} (-1)^{\frac{p-1}{2}} & (p \equiv 1 \pmod{3}) \\ -(-1)^{\frac{p-1}{2}} & (p \equiv 2 \pmod{3}). \end{cases}$$

 We can also combine this with the formula in the case of -1 (mod p) which follows from the Euler Criterion. Thus

$$\left(\frac{-3}{p}\right)_{L} = \begin{cases} 1 & (p \equiv 1 \pmod{3}) \\ -1 & (p \equiv 2 \pmod{3}) \end{cases}.$$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.

• Then
$$\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions • **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.

• Then
$$\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

• Observe that $\left\lfloor \frac{q_X}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le q_X/p$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

- Observe that $\left\lfloor \frac{qx}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le qx/p$.
- Thus the first sum is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < qx/p$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$ where $u = \sum_{1 \le x < p/2} \left|\frac{qx}{p}\right|$ and $v = \sum_{1 \le y < q/2} \left|\frac{py}{q}\right|$.
- Observe that $\left\lfloor \frac{q_x}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le q_x/p$.
- Thus the first sum is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < qx/p$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Likewise $\sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$ is the number of ordered pairs x, y with $1 \le y < q/2$ and $1 \le x < py/q$

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$ where $u = \sum_{1 \le x < p/2} \left|\frac{qx}{p}\right|$ and $v = \sum_{1 \le y < q/2} \left|\frac{py}{q}\right|$.
- Observe that $\left\lfloor \frac{qx}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le qx/p$.
- Thus the first sum is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < qx/p$.
- Likewise $\sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$ is the number of ordered pairs x, y with $1 \le y < q/2$ and $1 \le x < py/q$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• that is, with $1 \le x < p/2$ and xq/p < y < q/2.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

- Observe that $\left\lfloor \frac{qx}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le qx/p$.
- Thus the first sum is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < qx/p$.
- Likewise $\sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$ is the number of ordered pairs x, y with $1 \le y < q/2$ and $1 \le x < py/q$
- that is, with $1 \le x < p/2$ and xq/p < y < q/2.
- Hence u + v is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < q/2$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- **Proof of the Law of Quadratic Reciprocity.** We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{u+v}$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

- Observe that $\left\lfloor \frac{qx}{p} \right\rfloor$ is the number of positive integers y with $1 \le y \le qx/p$.
- Thus the first sum is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < qx/p$.
- Likewise $\sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$ is the number of ordered pairs x, y with $1 \le y < q/2$ and $1 \le x < py/q$
- that is, with $1 \le x < p/2$ and xq/p < y < q/2.
- Hence u + v is the number of ordered pairs x, y with $1 \le x < p/2$ and $1 \le y < q/2$.
- This is

$$\frac{p-1}{2}\cdot\frac{q-1}{2}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

and completes the proof.

> Robert C. Vaughan

Quadratic Reciprocity

- Proof of the Law of Quadratic Reciprocity. We start from two applications of the previous theorem.
- Then $\left(\frac{q}{p}\right)_{I}\left(\frac{p}{q}\right)_{I} = (-1)^{u+v}$

where
$$u = \sum_{1 \le x < p/2} \left\lfloor \frac{qx}{p} \right\rfloor$$
 and $v = \sum_{1 \le y < q/2} \left\lfloor \frac{py}{q} \right\rfloor$.

ı.

- Observe that $\left|\frac{qx}{p}\right|$ is the number of positive integers y with 1 < y < qx/p.
- Thus the first sum is the number of ordered pairs x, y with 1 < x < p/2 and 1 < y < qx/p.
- Likewise $\sum_{1 \le y < q/2} \left| \frac{py}{q} \right|$ is the number of ordered pairs x, y with $1 \le y < q/2$ and $1 \le x < py/q$
- that is, with 1 < x < p/2 and xq/p < y < q/2.
- Hence u + v is the number of ordered pairs x, y with 1 < x < p/2 and 1 < y < q/2.
- This is

$$\frac{p-1}{2}\cdot\frac{q-1}{2}$$

and completes the proof.

This argument is due to Eisenstein.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

• In Example 18, there were several occasions when we needed to factorise the *a* in $\left(\frac{a}{p}\right)_{I}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

- In Example 18, there were several occasions when we needed to factorise the *a* in $\left(\frac{a}{p}\right)_{I}$.
- Jacobi introduced an extension of the Legendre symbol which avoids this.

Definition 20

Suppose that *m* is an odd positive integer and *a* is an integer. Let $m = p_1^{r_1} \dots p_s^{r_s}$ be the canonical decomposition of *m*. Then we define the Jacobi symbol by

$$\left(\frac{a}{m}\right)_J = \prod_{j=1}^s \left(\frac{a}{p_j}\right)_L^{r_j}$$

Note that interpreting 1 as being an "empty product of primes" means that

$$\left(\frac{a}{1}\right)_J = 1.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions • Remarkably the Jacobi symbol has exactly the same properties as the Legendre symbol, except for one.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

- Remarkably the Jacobi symbol has exactly the same properties as the Legendre symbol, except for one.
- That is, for a general odd modulus *m* it does not tell us about the solubility of x² ≡ a (mod m).

Example 21

We have

$$\left(\frac{2}{15}\right)_J = \left(\frac{2}{3}\right)_L \left(\frac{2}{5}\right)_L = (-1)^2 = 1,$$

but $x^2 \equiv 2 \pmod{15}$ is insoluble because any solution would also be a solution of $x^2 \equiv 2 \pmod{3}$ which we know is insoluble.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

Properties of the Jacobi symbol

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sac

• 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

Properties of the Jacobi symbol

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_I = \left(\frac{a}{m_1}\right)_I \left(\frac{a}{m_2}\right)_I$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

Properties of the Jacobi symbol

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sar

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_{I} = \left(\frac{a}{m_1}\right)_{I} \left(\frac{a}{m_2}\right)_{I}$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

Properties of the Jacobi symbol

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_I = \left(\frac{a}{m_1}\right)_I \left(\frac{a}{m_2}\right)_I$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

Properties of the Jacobi symbol

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_{I} = \left(\frac{a}{m_1}\right)_{I} \left(\frac{a}{m_2}\right)_{I}$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.
- 5. Suppose that *m* is odd. Then $\left(\frac{2}{m}\right)_J = (-1)^{\frac{m^2-1}{8}}$.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

Properties of the Jacobi symbol

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_{I} = \left(\frac{a}{m_1}\right)_{I} \left(\frac{a}{m_2}\right)_{I}$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.
- 5. Suppose that *m* is odd. Then $\left(\frac{2}{m}\right)_J = (-1)^{\frac{m^2-1}{8}}$.
- 6. Suppose that m and n are odd and (m, n) = 1. Then

$$\left(\frac{n}{m}\right)_J \left(\frac{m}{n}\right)_J = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}.$$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

Properties of the Jacobi symbol

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_{I} = \left(\frac{a}{m_1}\right)_{I} \left(\frac{a}{m_2}\right)_{I}$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.
- 5. Suppose that m is odd. Then $\left(\frac{2}{m}\right)_J = (-1)^{\frac{m^2-1}{8}}$.
- 6. Suppose that m and n are odd and (m, n) = 1. Then

$$\left(\frac{n}{m}\right)_J \left(\frac{m}{n}\right)_J = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}$$

• The first three follow from the definition. The rest depend on algebraic identities and induction on the number of prime factors. For 4. $\frac{m_1-1}{2} + \frac{m_2-1}{2} \equiv \frac{m_1m_2-1}{2} \pmod{2}$,

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

Properties of the Jacobi symbol

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_I = \left(\frac{a}{m_1}\right)_I \left(\frac{a}{m_2}\right)_I$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.
- 5. Suppose that m is odd. Then $\left(\frac{2}{m}\right)_J = (-1)^{\frac{m^2-1}{8}}$.
- 6. Suppose that m and n are odd and (m, n) = 1. Then

$$\left(\frac{n}{m}\right)_J \left(\frac{m}{n}\right)_J = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}$$

- The first three follow from the definition. The rest depend on algebraic identities and induction on the number of prime factors. For 4. $\frac{m_1-1}{2} + \frac{m_2-1}{2} \equiv \frac{m_1m_2-1}{2} \pmod{2}$,
- 5. depends on $\frac{m_1^2 1}{8} + \frac{m_2^2 1}{8} \equiv \frac{m_1^2 m_2^2 1}{8} \pmod{2}$.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

Properties of the Jacobi symbol

- 1. Suppose that *m* is odd. Then $\left(\frac{a_1a_2}{m}\right)_J = \left(\frac{a_1}{m}\right)_J \left(\frac{a_2}{m}\right)_J$.
- 2. Suppose m_j are odd. Then $\left(\frac{a}{m_1m_2}\right)_{I} = \left(\frac{a}{m_1}\right)_{I} \left(\frac{a}{m_2}\right)_{I}$.
- 3. Suppose that *m* is odd and $a_1 \equiv a_2 \pmod{m}$. Then $\left(\frac{a_1}{m}\right)_J = \left(\frac{a_2}{m}\right)_J$.
- 4. Suppose that *m* is odd. Then $\left(\frac{-1}{m}\right)_J = (-1)^{\frac{m-1}{2}}$.
- 5. Suppose that *m* is odd. Then $\left(\frac{2}{m}\right)_J = (-1)^{\frac{m^2-1}{8}}$.
- 6. Suppose that m and n are odd and (m, n) = 1. Then

$$\left(\frac{n}{m}\right)_J \left(\frac{m}{n}\right)_J = (-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}.$$

- The first three follow from the definition. The rest depend on algebraic identities and induction on the number of prime factors. For 4. $\frac{m_1-1}{2} + \frac{m_2-1}{2} \equiv \frac{m_1m_2-1}{2} \pmod{2}$,
- 5. depends on $\frac{m_1^2-1}{8} + \frac{m_2^2-1}{8} \equiv \frac{m_1^2m_2^2-1}{8} \pmod{2}$.
- 6. uses $\frac{l-1}{2} \cdot \frac{m-1}{2} + \frac{n-1}{2} \cdot \frac{m-1}{2} \equiv \frac{ln-1}{2} \cdot \frac{m-1}{2} = \frac{m-1}{2} \cdot \frac{m-1$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other question

• Return to Example 18, where we evaluated $\left(\frac{951}{2017}\right)_I$.

Example 22

Now we don't have to factor 951. By the Jacobi version of the law

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other question

Example 22

Now we don't have to factor 951. By the Jacobi version of the law

$$\begin{pmatrix} \frac{951}{2017} \end{pmatrix}_L = \begin{pmatrix} \frac{2017}{951} \end{pmatrix}_J = \begin{pmatrix} \frac{115}{951} \end{pmatrix}_J = -\begin{pmatrix} \frac{951}{115} \end{pmatrix}_J$$
$$= -\begin{pmatrix} \frac{31}{115} \end{pmatrix}_J = \begin{pmatrix} \frac{115}{31} \end{pmatrix}_J = \begin{pmatrix} \frac{22}{31} \end{pmatrix}_J$$
$$= -\begin{pmatrix} \frac{31}{11} \end{pmatrix}_J = -\begin{pmatrix} \frac{9}{11} \end{pmatrix}_J = -1.$$

Note that we can process this like the Euclidean algorithm.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

• Suppose we are interested in $\left(\frac{n}{m}\right)_L$ where *n* and *m* are odd.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ●

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other question:

- Suppose we are interested in $\left(\frac{n}{m}\right)_L$ where *n* and *m* are odd.
- Follow the Euclidean algorithm and obtain

$$n = q_1 m + r_1,$$

 $m = q_2 r_1 + r_2,$
 $r_1 = q_3 r_2 + r_3,$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

÷ ÷

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacobi symbol

Other questions

- Suppose we are interested in $\left(\frac{n}{m}\right)_L$ where *n* and *m* are odd.
- Follow the Euclidean algorithm and obtain

$$n = q_1 m + r_1,$$

 $m = q_2 r_1 + r_2,$
 $r_1 = q_3 r_2 + r_3,$

÷

• When m, n, r_1, r_2, \ldots are odd, for suitable t_1, t_2, \ldots ,

:

$$\frac{n}{m} \int_{J} = \left(\frac{r_1}{m}\right)_J = (-1)^{t_1} \left(\frac{m}{r_1}\right)_J$$
$$= (-1)^{t_1} \left(\frac{r_2}{r_1}\right)_J = (-1)^{t_2} \left(\frac{r_1}{r_2}\right)_J$$
$$= (-1)^{t_2} \left(\frac{r_3}{r_2}\right)_J = (-1)^{t_3} \left(\frac{r_2}{r_3}\right)_J$$

÷

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

÷

÷

Robert C. Vaughan

The Jacobi symbol

- Suppose we are interested in $\left(\frac{n}{m}\right)_{I}$ where *n* and *m* are odd.
- Follow the Euclidean algorithm and obtain

$$n = q_1 m + r_1,$$

 $m = q_2 r_1 + r_2,$
 $r_1 = q_3 r_2 + r_3,$

When m, n, r_1, r_2, \ldots are odd, for suitable t_1, t_2, \ldots ,

•

$$\begin{pmatrix} \binom{n}{m} \end{pmatrix}_{J} = \left(\frac{r_{1}}{m}\right)_{J} = (-1)^{t_{1}} \left(\frac{m}{r_{1}}\right)_{J}$$

$$= (-1)^{t_{1}} \left(\frac{r_{2}}{r_{1}}\right)_{J} = (-1)^{t_{2}} \left(\frac{r_{1}}{r_{2}}\right)_{J}$$

$$= (-1)^{t_{2}} \left(\frac{r_{3}}{r_{2}}\right)_{J} = (-1)^{t_{3}} \left(\frac{r_{2}}{r_{3}}\right)_{J}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

• If any of the r_j are even we first take out the powers of 2.

.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• There are many interesting problems associated with quadratic residues and the Legendre and Jacobi symbols.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- There are many interesting problems associated with quadratic residues and the Legendre and Jacobi symbols.
- 1. How many consecutive quadratic residues are there, that is how many x with 1 ≤ x ≤ p - 2 have the property that x and x + 1 are both quadratic residues modulo p? This number is

$$\sum_{x=1}^{p-2} \frac{1}{4} \left(1 + \left(\frac{x}{p} \right)_L \right) \left(1 + \left(\frac{x+1}{p} \right)_L \right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The method of exercise 5.1.1.13 is useful here.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- There are many interesting problems associated with quadratic residues and the Legendre and Jacobi symbols.
- 1. How many consecutive quadratic residues are there, that is how many x with 1 ≤ x ≤ p - 2 have the property that x and x + 1 are both quadratic residues modulo p? This number is

$$\sum_{x=1}^{p-2} \frac{1}{4} \left(1 + \left(\frac{x}{p} \right)_L \right) \left(1 + \left(\frac{x+1}{p} \right)_L \right)$$

The method of exercise 5.1.1.13 is useful here.

• How about the number of triples x, x + 1, x + 2, or how about a fixed sequence of QR and QNR?

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

- There are many interesting problems associated with quadratic residues and the Legendre and Jacobi symbols.
- 1. How many consecutive quadratic residues are there, that is how many x with 1 ≤ x ≤ p - 2 have the property that x and x + 1 are both quadratic residues modulo p? This number is

$$\sum_{x=1}^{p-2} \frac{1}{4} \left(1 + \left(\frac{x}{p} \right)_L \right) \left(1 + \left(\frac{x+1}{p} \right)_L \right)$$

The method of exercise 5.1.1.13 is useful here.

- How about the number of triples x, x + 1, x + 2, or how about a fixed sequence of QR and QNR?
- 2. Given an N with 0 ≤ N ≤ p, how small can you make M, regardless of the value of N, and ensure that the interval (N, N + M] contains a quadratic non-residue?

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• 3. Let *m* be an odd positive integer, and for brevity write $\chi(x)$ for the Jacobi symbol $\left(\frac{x}{m}\right)_J$. For a complex number *z* define

$$L(z;\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{z}}$$

This converges for $\Re z > 0$. There is a Riemann hypothesis for this function but we cannot prove it.

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• 3. Let *m* be an odd positive integer, and for brevity write $\chi(x)$ for the Jacobi symbol $\left(\frac{x}{m}\right)_J$. For a complex number *z* define

$$L(z;\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{z}}$$

This converges for $\Re z > 0$. There is a Riemann hypothesis for this function but we cannot prove it.

• Also $L(1,\chi)$ has some interesting values. For example if m = 3, then

$$L(1,\chi)=\frac{\pi}{3\sqrt{3}}.$$

Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• 3. Let *m* be an odd positive integer, and for brevity write $\chi(x)$ for the Jacobi symbol $\left(\frac{x}{m}\right)_J$. For a complex number *z* define

$$L(z;\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^{z}}$$

This converges for $\Re z > 0$. There is a Riemann hypothesis for this function but we cannot prove it.

• Also $L(1,\chi)$ has some interesting values. For example if m = 3, then

$$L(1,\chi)=\frac{\pi}{3\sqrt{3}}.$$

• 4. The Gauss sum

$$\tau_p = \sum_{x=1}^p \left(\frac{x}{p}\right)_L e^{2\pi i x/p}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

was studied by Gauss in connection with several of his proofs of the law of quadratic reciprocity.

> Robert C. Vaughan

Quadratic Congruences

Quadratic Reciprocity

The Jacob symbol

Other questions

• Gauss showed that the sum

$$\tau_p = \sum_{x=1}^p \left(\frac{x}{p}\right)_L e^{2\pi i x/p}$$

satisfies

$$au_p = egin{cases} \sqrt{p} & (p\equiv 1 \pmod{4}) \ i\sqrt{p} & (p\equiv 3 \pmod{4}). \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ