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Primitive Roots

• We have seen that on the residue classes modulo m we can
perform many of the standard operations of arithmetic.

• Such an object is called a ring. In this case it is usually
denoted by Z/mZ or Zm.

• In this chapter we will look at its multiplicative structure.

• In particular we will consider the reduced residue classes
modulo m.
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• An obvious question is what happens if we take powers of
a fixed residue a?

Definition 1

Given m ∈ N, a ∈ Z, (a,m) = 1 we define the order ordm(a) of
a modulo m to be the smallest positive integer t such that

at ≡ 1 (mod m).

We may express this by saying that a belongs to the exponent t
modulo m, or that t is the order of a modulo m.

• Note that by Euler’s theorem, aϕ(m) ≡ 1 (mod m), so
that ordm(a) exists.
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• We can do better than that.

Theorem 2

Suppose that m ∈ N, (a,m) = 1 and n ∈ N is such that an ≡ 1
(mod m). Then ordm(a)|n. In particular ordm(a)|ϕ(m).

• Proof. For concision let t = ordm(a).

• Since t is minimal we have t ≤ n.

• Thus by the division algorithm there are q and r with
0 ≤ r < t such that n = tq + r .

• Hence

ar ≡ (at)qar = aqt+r = an ≡ 1 (mod m).

• But 0 ≤ r < t.

• If we would have r > 0, then we would contradict the
minimality of t.

• Hence r = 0.
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• Here is an application we will make use of later.

Theorem 3

Suppose that d |p − 1. Then the congruence xd ≡ 1 (mod p)
has exactly d solutions.

• Proof. We have

xp−1 − 1 = (xd − 1)(xp−1−d + xd−p−2d + · · ·+ xd + 1).

• To see this just multiply out the right hand side and
observe that the terms telescope.

• We know from Euler’s theorem that there are exactly
p − 1 incongruent roots to the left hand side modulo p.

• On the other hand, by Lagrange’s theorem, the second
factor has at most p − 1− d such roots, so the first factor
must account for at least d of them.

• On the other hand, again by Lagrange’s theorem, it has at
most d roots modulo p.
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• We have already seen that, when (a,m) = 1, a has order
modulo m which divides ϕ(m).

• One question one can ask is, given any d |ϕ(m), are there
elements of order d?

• In the special case d = ϕ(m) this would mean that

a, a2, . . . , aϕ(m)

are distinct modulo m,

• because otherwise we would have

au ≡ av (mod m)

with 1 ≤ u < v ≤ ϕ(m),

• and then
av−u ≡ 1 (mod m)

and 1 ≤ v − u < ϕ(m) contradicting the assumption that
ordm(a) = ϕ(m).
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• Consider

Example 4

m = 7.

• a = 1, ord7(1) = 1.

• a = 2, 22 = 4, 23 = 8 ≡ 1. ord7(2) = 3.

• a = 3, 32 = 9 ≡ 2, 33 = 27 ≡ 6, 34 ≡ 18 ≡ 4,
35 ≡ 12 ≡ 5, 36 ≡ 1, ord7(3) = 6.

• a = 4, 42 ≡ 2, 43 ≡ 26 ≡ 1, ord7(4) = 3.

• a = 5, 52 = 25 ≡ 4, 53 ≡ 20 ≡ 6, 54 ≡ 30 ≡ 2,
55 ≡ 10 ≡ 3, 56 ≡ 1, ord7(5) = 6.

• a = 6, 62 = 36 ≡ 1, ord7(6) = 2.

• Thus there is one element of order 1, one element of order
2, two of order 3 and two of order 6.

• Is it a fluke that for each d |6 = ϕ(7) the number of
elements of order d is ϕ(d)?
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• a = 4, 42 ≡ 2, 43 ≡ 26 ≡ 1, ord7(4) = 3.

• a = 5, 52 = 25 ≡ 4, 53 ≡ 20 ≡ 6, 54 ≡ 30 ≡ 2,
55 ≡ 10 ≡ 3, 56 ≡ 1, ord7(5) = 6.

• a = 6, 62 = 36 ≡ 1, ord7(6) = 2.

• Thus there is one element of order 1, one element of order
2, two of order 3 and two of order 6.

• Is it a fluke that for each d |6 = ϕ(7) the number of
elements of order d is ϕ(d)?
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• We now come to an important concept

Definition 5

Suppose that m ∈ N and (a,m) = 1. If ordm(a) = ϕ(m) then
we say that a is a primitive root modulo m.

• We know that we do not always have primitive roots.

• For example, any number a with (a, 8) = 1 is odd and so
a2 ≡ 1 mod 8, whereas ϕ(8) = 4.

• There are primitive roots to some moduli. For example,
modulo 7 the powers of 3 are successively 3, 2, 6, 4, 5, 1.

• Gauss determined precisely which moduli possess primitive
roots. The first step is the case of prime modulus.

Theorem 6 (Gauss)

Suppose that p is a prime number. Let d |p − 1 then there are
ϕ(d) residue classes a with ordp(a) = d. In particular there are
ϕ(p − 1) = ϕ(ϕ(p)) primitive roots modulo p.
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• Proof of Gauss’ Theorem We have seen that the order
of every reduced residue class modulo p divides p − 1.

• For a given d |p − 1 let ψ(d) denote the number of
reduced residues of order d modulo p.

• The congruence xd ≡ 1 (mod p) has exactly d solutions.

• Thus every solution has order dividing d .

• Also each residue with order dividing d is a solution.

• Thus for each d |p − 1 we have
∑
r |d

ψ(r) = d .

• This is reminiscent of an earlier formula
∑
r |d

ϕ(r) = d .

• Let 1 = d1 < d2 < . . . < dk = p − 1 be the divisors of
p − 1 in order.

• We have a relationship
∑
r |dj

ψ(r) = dj for each j = 1, 2, . . .

and, of course, the sum is over a subset of the divisors of
p − 1. I claim that this determines ψ(dj) uniquely.
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• We have a relationship∑
r |dj

ψ(r) = dj

for each j = 1, 2, . . . where the sum is over the divisors of
dj and so is over a subset of the divisors of p − 1.

• I claim that these relationships determines ψ(dj) uniquely.

• We can prove this by observing that if N is the number of
positive divisors of p − 1, then we have N linear equations
in the N unknowns ψ(r) and we can we can write this in
matrix notation

ψψψU = d.

• Moreover U is an upper triangular matrix with non-zero
entries on the diagonal and so is invertible.

• Hence the ψ(dj) are uniquely determined.

• But we already know a solution, namely ψ = ϕ.
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• If we wish to avoid the linear algebra, starting from∑
r |dj

ψ(r) = dj

for each j = 1, 2, . . . we can prove uniqueness by induction.

• For the base case we have ψ(1) = 1.
• Then suppose that ψ(d1), . . . , ψ(dj) are determined.
• Then we have ∑

r |dj+1

ψ(r) = dj+1.

• Hence
ψ(dj+1) = dj+1 −

∑
r |dj+1

r<dj+1

ψ(r)

and every term on the right hand side is already
determined.

• Thus we can conclude there is only one solution to our
system of equations.

• But we already know one solution, namely ψ(r) = ϕ(r).
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ψ(r) = dj+1.

• Hence
ψ(dj+1) = dj+1 −

∑
r |dj+1

r<dj+1

ψ(r)

and every term on the right hand side is already
determined.

• Thus we can conclude there is only one solution to our
system of equations.

• But we already know one solution, namely ψ(r) = ϕ(r).
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• To get a better insight here is the proof in the special case
p = 13

Example 7

Here is the proof when p = 13, so we are concerned with the
divisors of 12.

(
ψ(1), ψ(2), ψ(3), ψ(4), ψ(6), ψ(12)

)


1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1


= (1, 2, 3, 4, 6, 12)
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• How about higher powers of odd primes?

Theorem 8 (Gauss)

We have primitive roots modulo m when m = 2, m = 4,
m = pk and m = 2pk with p an odd prime and in no other
cases.

• In applications one can usually reduce via the Chinese
Remainder Theorem to powers of primes.

• Thus the lack of primitive roots for higher powers of 2 us
a nuisance.

• Nevertheless Gauss did prove something.

Theorem 9 (Gauss)

Suppose that k ≥ 3. Then the numbers (−1)u5v with u = 0, 1
and 0 ≤ v < 2k−2 form a set of reduced residues modulo 2k

• We will not need these results but I will include the proofs
in the class text for anyone interested.
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Binomial Congruences

• As an application of primitive roots we can say something
when p is odd about the solution of congruences of the
form

xk ≡ a (mod p).

• The case a = 0 is easy.
• The only solution is x ≡ 0 (mod p).
• Suppose a ̸≡ 0 (mod p). Then pick a primitive root g

modulo p, and a c so that g c ≡ a (mod p).
• Also, since any solution x will have p ∤ x we can define y
so that g y ≡ x (mod p).

• Thus our congruence becomes

gky ≡ g c (mod p).

• Hence it follows that

ky ≡ c (mod p − 1).
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• We have turned a polynomial congruence into a linear one.

• This is a bit like using logarithms on real numbers.

xk ≡ a (mod p), gky ≡ g c (mod p),

ky ≡ c (mod p − 1).

• Sometimes the exponents c and y are referred to as the
discrete logarithms modulo p to the base g .

• Computing them numerically is hard and there is a
protocol (Diffie-Hellman) which uses them to exchange
secure keys and passwords.

• Our new congruence is soluble if and only if (k, p − 1)|c ,
and when this holds the y which satisfy it lie in a residue
class modulo p−1

(k,p−1) , i.e. (k, p − 1) different residue
classes modulo p − 1.

• Thus, when a ̸≡ 0 (mod p) the original congruence is
either insoluble or has (k , p − 1) solutions.

• Thus we just proved a theorem.
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Discrete Logarithms

• Thus we just proved a theorem.

Theorem 10

Suppose p is an odd prime. When p ∤ a the congruence xk ≡ a
(mod p) has 0 or (k, p − 1) solutions, and the number of
reduced residues a modulo p for which it is soluble is p−1

(k,p−1) .

• The above theorem suggests the following.

Definition 11

Given a primitive root g and a reduced residue class a modulo
m we define the discrete logarithm dlogg (a), or index indg (a)

to be that unique residue class l modulo ϕ(m) such that g l ≡ a
(mod m)

• The notation indg (x) is more commonly used, but
dlogg (x) seems more natural.
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• It is useful to work through a detailed example.

Example 12

Find a primitive root modulo 11 and construct a table of
discrete logarithms.

• First we try 2. The divisors of 11− 1 = 10 are 1, 2, 5, 10
and 21 = 2 ̸≡ 1 (mod 11), 22 = 4 ̸≡ 1 (mod 11),
25 = 32 ≡ 10 ̸≡ 1 (mod 11), so 2 is a primitive root.

• Now we construct a table of powers of 2 modulo 11

y 1 2 3 4 5 6 7 8 9 10

x ≡ 2y 2 4 8 5 10 9 7 3 6 1
• Then we construct the “inverse” table

x 1 2 3 4 5 6 7 8 9 10

y = dlog2(x) 10 1 8 2 4 9 7 3 6 5
• Note that while x is a residue modulo p (here p = 11), the

y are residues modulo p − 1 (here 10).
• y is the order, or exponent, to which 2 has to be raised to
give x modulo p. In other words x ≡ gdlogg (x) (mod p).

• We can use this to solve congruences.
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• We can use this to solve congruences.
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• It is useful to work through a detailed example.

Example 12

Find a primitive root modulo 11 and construct a table of
discrete logarithms.

• First we try 2. The divisors of 11− 1 = 10 are 1, 2, 5, 10
and 21 = 2 ̸≡ 1 (mod 11), 22 = 4 ̸≡ 1 (mod 11),
25 = 32 ≡ 10 ̸≡ 1 (mod 11), so 2 is a primitive root.

• Now we construct a table of powers of 2 modulo 11
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• y 1 2 3 4 5 6 7 8 9 10

x ≡ 2y 2 4 8 5 10 9 7 3 6 1

x 1 2 3 4 5 6 7 8 9 10

y = dlog2(x) 10 1 8 2 4 9 7 3 6 5

• We can use this to solve,

Example 13

if possible, the congruences,

x3 ≡ 6 (mod 11),

x5 ≡ 9 (mod 11),

x65 ≡ 10 (mod 11)

• In the first put x ≡ 2y (mod 11), so that x3 = 23y and we
see from the second table that 6 ≡ 29 (mod 11).

• We need 3y ≡ 9 (mod 10).
• This has the unique solution y ≡ 3 (mod 10).
• Going to the first table we find that x ≡ 8 (mod 11).
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• y 1 2 3 4 5 6 7 8 9 10

x ≡ 2y 2 4 8 5 10 9 7 3 6 1

x 1 2 3 4 5 6 7 8 9 10

y = dlog2(x) 10 1 8 2 4 9 7 3 6 5

x3 ≡ 6 (mod 11),

x5 ≡ 9 (mod 11),

x65 ≡ 10 (mod 11)

• For the second congruence we find that 5y ≡ 6 (mod 10)
and now we see that this has no solutions because
(5, 10) = 5 ∤ 6.

• In the third case we have 65y ≡ 5 (mod 10) and this is
equivalent to 13y ≡ 1 (mod 2) and this has one solution
modulo y ≡ 1 (mod 2), and so 5 solutions modulo 10
given by y ≡ 1, 3, 5, 7 or 9 modulo 10.

• Hence the original congruence has five solutions given by

x ≡ 2, 8, 10, 7, 6 (mod 11)
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• Rivest, Shamir and Adleman in 1978 rediscovered an idea
which had already been described internally at GCHQ by
Cocks in 1973 and then shared with NSA.

• This is sometimes described as a way of sharing
information by public key encryption.

• The principle of the method is as follows.
• Let n, d , e ∈ N be such that de ≡ 1 (mod ϕ(n)).
• Given a message M encoded as a number with M < n,
• compute E ≡ Me (mod n) and transmit E .
• The recipient then computes Ed (mod n).
• Then Ed ≡ (Me)d = Mde ≡ M (mod n), since
ϕ(n)|de − 1, and the recipient recovers the message.

• The sender has to know only n and e.
• The recipient only has to know n and d .
• The level of security depends only on the ease with which
one can find d knowing n and e.

• The numbers n and e can be in the public domain.
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• Let n, d , e ∈ N be such that de ≡ 1 (mod ϕ(n)).
• Given a message M encoded as a number with M < n,
• compute E ≡ Me (mod n) and transmit E .
• The recipient then computes Ed (mod n).
• Then Ed ≡ (Me)d = Mde ≡ M (mod n), since
ϕ(n)|de − 1, and the recipient recovers the message.

• The sender has to know only n and e.
• The recipient only has to know n and d .
• The level of security depends only on the ease with which
one can find d knowing n and e.

• The numbers n and e can be in the public domain.
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• The crucial question is, given n and d , the solubility of

de ≡ 1 (mod ϕ(n))

and this in turn requires the value of ϕ(n).

• Suppose that n is the product of two primes

n = pq.

• If n can be factored then we have ϕ(n) = (p − 1)(q − 1).
• But this factorization is a known hard problem, especially
when the primes are roughly of the same size.

• Of course if the value of ϕ(n) can be discovered not only
is the message easily broken,

• but n is easily factored since one has

p + q = pq + 1− ϕ(n) = n + 1− ϕ(n),

pq = n

and once can substitute for q and then solve the quadratic
equation in p.

• In other words, knowing ϕ(n) is equivalent to factoring n.
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