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Residue Classes

• The next topic was first developed by Gauss.

Definition 1

Let m ∈ N and define the residue class r modulo m by

r = {x ∈ Z : m|(x − r)}.

By the division algorithm every integer is in one

0, 1, . . . ,m − 1.

This is often called a complete system of residues modulo m.

• The remarkable thing is that we can perform arithmetic on
the residue classes just as if they were numbers.

• The residue class 0 behaves like the number 0,

• because 0 is the set of multiples of m and adding any one
of them to an element of r does not change the remainder.
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• Thus for any r
0 + r = r = r + 0.

• Suppose that we are given any two residue classes r and s
modulo m. Let t be the remainder of r + s on division by
m. Then the elements of r and s are of the form r +mx
and s +my and we know that r + s = t +mz for some z .

• Thus r +mx + s +my = t +m(z + x + y) is in t, and it
is readily seen that the converse is true.

• Thus it makes sense to write r + s = t, and then we have
r + s = s + r .

• One can also check that

r +−r = 0.
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• In connection with this Gauss introduced a notation.

Definition 2

Let m ∈ N. If two integers x and y satisfy m|x − y , then we
write

x ≡ y (mod m)

and we say that x is congruent to y modulo m.

• Here are some of the properties of congruences.

x ≡ x (mod m),

x ≡ y (mod m) iff y ≡ x (mod m),

x ≡ y (mod m), y ≡ z (mod m) implies x ≡ z (mod m).

• These say that the relationship ≡ is reflexive, symmetric
and transitive.

• I leave their proofs as an exercise.

• It follows that congruences modulo m partition the
integers into equivalence classes.
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• One can also check the following

• If x ≡ y (mod m) and z ≡ t (mod m), then
x + z ≡ y + t (mod m) and xz ≡ yt (mod m).

• If x ≡ y (mod m), then for any n ∈ N, xn ≡ yn (mod m)
(use induction on n).

• If f is a polynomial with integer coefficients, and x ≡ y
(mod m), then f (x) ≡ f (y) (mod m).

• Wait a minute, this means that one can use congruences
just like doing arithmetic on the integers!
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• The following tells us something about this structure.

Theorem 3

Suppose that m ∈ N, k ∈ Z, (k ,m) = 1 and

a1, a2, . . . , am

forms a complete set of residues modulo m. Then so does

ka1, ka2, . . . , kam.

• Proof. Since we have m residue classes, we need only
check that they are disjoint.

• Consider any two of them, kai and kaj .
• Let kai +mx and kaj +my be typical members of each.
• If they were the same integer, than kai +mx = kaj +my ,
so that k(ai − aj) = m(y − x).

• But then m|k(ai − aj) and since (k ,m) = 1 we would have
m|ai − aj so ai and aj would be identical residue classes,
so i = j .
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• An important rôle is played by the residue classes r
modulo m with (r ,m) = 1.

• In connection with this we introduce Euler’s function.

Definition 4

A function defined on N is called an arithmetical function.

Definition 5

Euler’s function ϕ(n) is the number of x ∈ N with 1 ≤ x ≤ n
and (x , n) = 1.

Definition 6

A set of ϕ(m) distinct residue classes r modulo m with
(r ,m) = 1 is called a set of reduced residues modulo m.

• Since (1, 1) = 1 we have ϕ(1) = 1.
• If p is prime, then the x with 1 ≤ x ≤ p − 1 satisfy
(x , p) = 1, but (p, p) = p ̸= 1. Hence ϕ(p) = p − 1.

• The numbers x with 1 ≤ x ≤ 30 and (x , 30) = 1 are
1, 7, 11, 13, 17, 19, 23, 29, so ϕ(30) = 8.
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• One way of thinking about reduced sets of residues is to
start from a complete set of fractions with denominator m
in the interval (0, 1]

1

m
,
2

m
, . . . ,

m

m
.

• Now remove just the ones whose numerator has a
common factor d > 1 with m.

• What is left are the ϕ(m) reduced fractions with
denominator m.

• Suppose instead of removing the non-reduced ones we just
write them in their lowest form.

• Then for each divisor k of m we obtain all the reduced
fractions with denominator k .
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• Then for each divisor k of m we obtain all the reduced
fractions with denominator k .
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• In fact we just proved the following.

Theorem 7

For each m ∈ N we have∑
k|m

ϕ(k) = m.

• We just saw that ϕ(1) = 1, ϕ(p) = p − 1, ϕ(30) = 8

Example 8

The divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30 and

ϕ(6) = 2, ϕ(10) = 4, ϕ(15) = 8

so ∑
k|30

ϕ(k) = 1 + 1 + 2 + 4 + 2 + 4 + 8 + 8 = 30.
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• Now we can prove a companion theorem to Theorem 3 for
reduced residue classes.

Theorem 9

Suppose that (k ,m) = 1 and that

a1, a2, . . . , aϕ(m)

forms a set of reduced residue classes modulo m. Then

ka1, ka2, . . . , kaϕ(m)

also forms a set of reduced residues modulo m.

• Proof. In view of the earlier theorem the residue classes
kaj are distinct, and since (aj ,m) = 1 we have
(kaj ,m) = 1 so they give ϕ(m) distinct reduced residue
classes, so they are all of them in some order.
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• We now examine the structure of residue systems.

Theorem 10

Suppose m, n ∈ N and (m, n) = 1, and consider the xn + ym
with 1 ≤ x ≤ m and 1 ≤ y ≤ n. Then they form a complete
set of residues modulo mn. If in addition x and y satisfy
(x ,m) = 1 and (y , n) = 1, then they form a reduced set.

• Proof. If xn + ym ≡ x ′n + y ′m (mod mn), then xn ≡ x ′n
(mod m), so x ≡ x ′ (mod m), x = x ′. Likewise y = y ′.

• Hence in either case the xn + ym are distinct modulo mn.
• In the unrestricted case we have mn objects, so they form
a complete set.

• In the restricted case (xn+ ym,m) = (xn,m) = (x ,m) = 1
and likewise (xn + ym, n) = 1, so (xn + ym,mn) = 1 and
the xn + ym all belong to reduced residue classes.

• Now let (z ,mn) = 1. Choose x ′, y ′, x , y so that
x ′n + y ′m = 1, x ≡ x ′z (mod m) and y ≡ y ′z (mod n).

• Then xn + ym ≡ x ′zn + y ′zm = z (mod mn) and hence
every reduced residue is included.
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• Here is a table of xn+ ym (mod mn) when m = 5, n = 6.

Example 11

x 1 2 3 4 5
y

1 11 17 23 29 5

2 16 22 28 4 10
3 21 27 3 9 15
4 26 2 8 14 20

5 1 7 13 19 25

6 6 12 18 24 30

The 30 numbers 1 through 30 appear exactly once each. The 8
reduced residue classes occur precisely in the intersection of
rows 1 and 5 and columns 1 through 4.
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• Immediate from Theorem 10 we have

Corollary 12

If (m, n) = 1, then ϕ(mn) = ϕ(m)ϕ(n).

• Thus ϕ is an example of a multiplicative function.

Definition 13

If an arithmetical function f which is not identically 0 satisfies

f (mn) = f (m)f (n)

whenever (m, n) = 1 we say that f is multiplicative.

• Thus we have another

Corollary 14

Euler’s function is multiplicative.

This enables a full evaluation of ϕ(n).
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• If n = pk , then the number of reduced residue classes
modulo pk is the number of x with 1 ≤ x ≤ pk and p ∤ x .

• This is pk − N where N is the number of x with
1 ≤ x ≤ pk and p|x , and N = pk−1.

• Thus ϕ(pk) = pk − pk−1 = pk(1− 1/p).

• Putting this all together gives

Theorem 15

Let n ∈ N. Then ϕ(n) = n
∏
p|n

(
1− 1

p

)
where when n = 1 we

interpret the product as an “empty” product 1.

• Some special cases.

Example 16

We have ϕ(9) = 6, ϕ(5) = 4, ϕ(45) = 24. Note that ϕ(3) = 2
and ϕ(9) ̸= ϕ(3)2.
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• Here is a beautiful and useful theorem.

Theorem 17 (Euler)

Suppose that m ∈ N and a ∈ Z with (a,m) = 1. Then

aϕ(m) ≡ 1 (mod m).

• Proof. Let a1, a2, . . . , aϕ(m) be a reduced set modulo m.

• Then aa1, aa2, . . . , aaϕ(m) is another. Hence

a1a2 . . . aϕ(m) ≡ aa1aa2 . . . aaϕ(m) (mod m)

≡ a1a2 . . . aϕ(m)a
ϕ(m) (mod m).

• As (a1a2 . . . aϕ(m),m) = 1 we may cancel a1a2 . . . aϕ(m).

• Thus

Corollary 18 (Fermat)

Let p be a prime and a ∈ Z. Then ap ≡ a (mod p). If p ∤ a,
then ap−1 ≡ 1 (mod p).
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• Then aa1, aa2, . . . , aaϕ(m) is another. Hence

a1a2 . . . aϕ(m) ≡ aa1aa2 . . . aaϕ(m) (mod m)

≡ a1a2 . . . aϕ(m)a
ϕ(m) (mod m).

• As (a1a2 . . . aϕ(m),m) = 1 we may cancel a1a2 . . . aϕ(m).

• Thus

Corollary 18 (Fermat)

Let p be a prime and a ∈ Z. Then ap ≡ a (mod p). If p ∤ a,
then ap−1 ≡ 1 (mod p).
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• Could Fermat’s theorem give a primality test?

• Unfortunately it is possible that an−1 ≡ 1 (mod n) when
n is not prime, although this is rare.

• For example, when are n = 341, 561, 645

2n−1 ≡ 1 (mod n)

• Such n are called pseudoprimes.
• There are 245 less than 106, compared with 78498 primes.
• Moreover

3341−1 ≡ 56 ̸= 1 (mod 341)

suggests a possible primality test.
• Given n try trial division a few times, say for d = 2, 3, 5, 7

and then check successively for a = 2, 3, 5, 7

an−1 ≡ 1 (mod n).

• Unfortunately one can still have false positives.
• Thus 561 = 3.11.17 satisfies

a560 ≡ 1 (mod 561)

for all a with (a, 561) = 1.
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• Such numbers are interesting

Definition 19

A composite n which satisfies an−1 ≡ 1 (mod n) for all a with
(a, n) = 1 is called a Carmichael number.

• There are infinitely Carmichael number. The smallest is
561 and there are 2163 of them below 25× 109.

• Also of interest.

Definition 20

Define M(n) = 2n − 1. If it is prime it is a Mersenne prime.

• If n = ab, then M(ab) = (2a − 1)(2a(b−1) + · · ·+ 2a + 1).

• Thus for M(n) to be prime it is necessary that n be prime.

Example 21

We have 3 = 22 − 1, 7 = 23 − 1, 31 = 25 − 1 127 = 27 − 1.
However that is not sufficient. 211 − 1 = 2047 = 23× 89.
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• As with linear equations, linear congruences are easiest.

• We have already solved ax ≡ b (mod m) in principle since
it is equivalent to ax +my = b.

Theorem 22

The congruence ax ≡ b (mod m) is soluble iff (a,m)|b, and
the general solution is given by a residue class x0 modulo
m/(a,m). x0 can be found by applying Euclid’s algorithm.

• Proof. The congruence is equivalent to the equation
ax +my = b and there can be no solution if (a,m) ∤ b.

• If (a,m)|b, then Euclid’s algorithm solves

a

(a,m)
x +

m

(a,m)
y =

b

(a,m)
.

• Let x0, y0 be such a solution and let x , y be any solution.
Then a/(a,m)(x − x0) ≡ 0 (mod m/(a,m)) and since
(a/(a,m),m/(a,m)) = 1 it follows that x is in the residue
class x0 (mod m/(a,m)).
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• A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)

Let p be a prime number, then (p − 1)! ≡ −1 (mod p).

• Proof. The cases p = 2 and p = 3 are (2− 1)! = 1 ≡ −1
(mod 2) and (3− 1)! = 2 ≡ −1 (mod 3).

• Thus we may suppose p ≥ 5. Observe now that x2 ≡ 1
(mod p) implies x ≡ ±1 (mod p)

• Thus the numbers 2, 3, . . . , p − 2 can be paired off into
p−3
2 mutually exclusive pairs a, b such that ab ≡ 1

(mod p).

• Thus (p − 1)! ≡ p − 1 ≡ −1 (mod p).

• This theorem actually gives a necessary and sufficient
condition for p to be a prime, since if p were to be
composite, then we would have ((p − 1)!, p) > 1.

• However this is useless since (p − 1)! grows very rapidly.
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• This theorem actually gives a necessary and sufficient
condition for p to be a prime, since if p were to be
composite, then we would have ((p − 1)!, p) > 1.

• However this is useless since (p − 1)! grows very rapidly.
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• What about simultaneous linear congruences?
a1x ≡ b1 (mod q1),

. . . . . .

arx ≡ br (mod qr ).

(2.1)

• There can only be a solution when each individual
equation is soluble, so we require (aj , qj)|bj for every j .

• Then we know that each individual equation is soluble by
some residue class modulo qj/(aj , qj). Thus for some
values of cj and mj this reduces to

x ≡ c1 (mod m1),

. . . . . .

x ≡ cr (mod mr )

(2.2)

• Suppose for some i and j ̸= i we have (mi ,mj) = d > 1.
• Then x has to satisfy ci ≡ x ≡ cj (mod d).
• This imposes conditions on cj which can get complicated.
• Thus it is convenient to assume (mi ,mj) = 1 when i ̸= j .
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• The following is known as the Chinese Remainder Theorem

Theorem 24

Suppose that (mi ,mj) = 1 for every i ̸= j . Then the system
(2.2) has as its complete solution precisely the members of a
unique residue class modulo m1m2 . . .mr .

• Proof. We first show that there is a solution.
• Let M = m1m2 . . .mr and Mj = M/mj , so that
(Mj ,mj) = 1.

• We know that there is an Nj so that MjNj ≡ cj (mod mj)
(solve yMj ≡ cj (mod mj) in y).

• Let x be any member of the residue class

N1M1 + · · ·+ NrMr (mod M).

• Then for every j , since mj |Mi when i ̸= j we have

x ≡ NjMj (mod mj)

≡ cj (mod mj)

so the residue class x (mod M) gives a solution.
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• 
x ≡ c1 (mod m1),

. . . . . .

x ≡ cr (mod mr )

• Now we have to show that the solution modulo M is
unique.

• Suppose y is also a solution of the system.

• Then for every j we have

y ≡ cj (mod mj)

≡ x (mod mj)

and so mj |y − x .

• Since the mj are pairwise co-prime we have M|y − x , so y
is in the residue class x modulo M.
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• Consider

Example 25

x ≡ 3 (mod 4),

x ≡ 5 (mod 21),

x ≡ 7 (mod 25).

• m1 = 4, m2 = 21, m3 = 25, M = 2100, M1 = 525,
M2 = 100, M3 = 84. Thus first we have to solve

525N1 ≡ 3 (mod 4),

100N2 ≡ 5 (mod 21),

84N3 ≡ 7 (mod 25).
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•

525N1 ≡ 3 (mod 4),

100N2 ≡ 5 (mod 21),

84N3 ≡ 7 (mod 25).

• Reducing the constants gives

N1 ≡ 3 (mod 4),

(−5)N2 ≡ 5 (mod 21),

9N3 ≡ 7 (mod 25).

• Thus we can take N1 = 3, N2 = 20, 7 ≡ −18 (mod 25) so
N3 ≡ −2 ≡ 23 (mod 25). Then the complete solution is

x ≡ N1M1 + N2M2 + N3M3

= 3× 525 + 20× 100 + 23× 84

= 5507

≡ 1307 (mod 2100).
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• The solution of a general polynomial congruence can be
quite tricky, even for a polynomial with a single variable

f (x) := a0+a1x+· · ·+ajx
j+· · · aJxJ ≡ 0 (mod m) (3.3)

where the aj are integers.

• The largest k such that ak ̸≡ 0 (mod m) is the degree of
f modulo m.

• If aj ≡ 0 (mod m) for every j , then the degree of f
modulo m is not defined.

• We have already seen that

x2 ≡ 1 (mod 8)

is solved by any odd x , so that it has four solutions
modulo 8, x ≡ 1, 3, 5, 7 (mod 8).

• That is, more than the degree 2. However, when the
modulus is prime we have a more familiar conclusion.
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• When we have a solution x to a polynomial congruence
such as (3.3) we may sometimes refer to such values as a
root of the polynomial modulo m.

Theorem 26 (Lagrange)

Suppose that p is prime, and f (x) = a0 + a1x + · · ·+ ajx
j + · · ·

is a polynomial with integer coefficients aj and it has degree k
modulo p. Then the number of incongruent solutions of

f (x) ≡ 0 (mod p)

is at most k .

• Proof. Degree 0 is obvious so we suppose k ≥ 1.

• We use induction on the degree k.

• If a polynomial f has degree 1 modulo p, so that
f (x) = a0 + a1x with p ∤ a1, then the congruence becomes
a1x ≡ −a0 (mod p) and since a1 ̸≡ 0 (mod p) (because
f has degree 1) we know that this is soluble by precisely
the members of a unique residue class modulo p.
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• Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f = a0 + · · ·+ ak+1x

k+1 has degree k + 1.

• If f (x) ≡ 0 (mod p) has no solutions, then we are done.

• Hence we may assume at least one, say x ≡ x0 (mod p).

• By the division algorithm for polynomials we have

f (x) = (x − x0)q(x) + f (x0)

where q(x) is a polynomial of degree k .

• Moreover the leading coefficient of q(x) is ak+1 ̸≡ 0
(mod p).

• But f (x0) ≡ 0 (mod p), so that f (x) ≡ (x − x0)q(x)
(mod p).

• If f (x1) ≡ 0 (mod p), with x1 ̸≡ x0 (mod p), then
p ∤ x1 − x0 so that p|q(x1).

• By the inductive hypothesis there are at most k
possibilities for x1, so at most k + 1 in all.



Introduction
to Number
Theory

Chapter 3
Congruences
and Residue

Classes

Robert C.
Vaughan

Residue
Classes

Linear
congruences

General
polynomial
congruences

• Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f = a0 + · · ·+ ak+1x

k+1 has degree k + 1.

• If f (x) ≡ 0 (mod p) has no solutions, then we are done.

• Hence we may assume at least one, say x ≡ x0 (mod p).

• By the division algorithm for polynomials we have

f (x) = (x − x0)q(x) + f (x0)

where q(x) is a polynomial of degree k .

• Moreover the leading coefficient of q(x) is ak+1 ̸≡ 0
(mod p).

• But f (x0) ≡ 0 (mod p), so that f (x) ≡ (x − x0)q(x)
(mod p).

• If f (x1) ≡ 0 (mod p), with x1 ̸≡ x0 (mod p), then
p ∤ x1 − x0 so that p|q(x1).

• By the inductive hypothesis there are at most k
possibilities for x1, so at most k + 1 in all.



Introduction
to Number
Theory

Chapter 3
Congruences
and Residue

Classes

Robert C.
Vaughan

Residue
Classes

Linear
congruences

General
polynomial
congruences

• Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f = a0 + · · ·+ ak+1x

k+1 has degree k + 1.

• If f (x) ≡ 0 (mod p) has no solutions, then we are done.

• Hence we may assume at least one, say x ≡ x0 (mod p).

• By the division algorithm for polynomials we have

f (x) = (x − x0)q(x) + f (x0)

where q(x) is a polynomial of degree k .

• Moreover the leading coefficient of q(x) is ak+1 ̸≡ 0
(mod p).

• But f (x0) ≡ 0 (mod p), so that f (x) ≡ (x − x0)q(x)
(mod p).

• If f (x1) ≡ 0 (mod p), with x1 ̸≡ x0 (mod p), then
p ∤ x1 − x0 so that p|q(x1).

• By the inductive hypothesis there are at most k
possibilities for x1, so at most k + 1 in all.



Introduction
to Number
Theory

Chapter 3
Congruences
and Residue

Classes

Robert C.
Vaughan

Residue
Classes

Linear
congruences

General
polynomial
congruences

• Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f = a0 + · · ·+ ak+1x

k+1 has degree k + 1.

• If f (x) ≡ 0 (mod p) has no solutions, then we are done.

• Hence we may assume at least one, say x ≡ x0 (mod p).

• By the division algorithm for polynomials we have

f (x) = (x − x0)q(x) + f (x0)

where q(x) is a polynomial of degree k .

• Moreover the leading coefficient of q(x) is ak+1 ̸≡ 0
(mod p).

• But f (x0) ≡ 0 (mod p), so that f (x) ≡ (x − x0)q(x)
(mod p).

• If f (x1) ≡ 0 (mod p), with x1 ̸≡ x0 (mod p), then
p ∤ x1 − x0 so that p|q(x1).

• By the inductive hypothesis there are at most k
possibilities for x1, so at most k + 1 in all.



Introduction
to Number
Theory

Chapter 3
Congruences
and Residue

Classes

Robert C.
Vaughan

Residue
Classes

Linear
congruences

General
polynomial
congruences

• Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f = a0 + · · ·+ ak+1x

k+1 has degree k + 1.

• If f (x) ≡ 0 (mod p) has no solutions, then we are done.

• Hence we may assume at least one, say x ≡ x0 (mod p).

• By the division algorithm for polynomials we have

f (x) = (x − x0)q(x) + f (x0)

where q(x) is a polynomial of degree k .

• Moreover the leading coefficient of q(x) is ak+1 ̸≡ 0
(mod p).

• But f (x0) ≡ 0 (mod p), so that f (x) ≡ (x − x0)q(x)
(mod p).

• If f (x1) ≡ 0 (mod p), with x1 ̸≡ x0 (mod p), then
p ∤ x1 − x0 so that p|q(x1).

• By the inductive hypothesis there are at most k
possibilities for x1, so at most k + 1 in all.



Introduction
to Number
Theory

Chapter 3
Congruences
and Residue

Classes

Robert C.
Vaughan

Residue
Classes

Linear
congruences

General
polynomial
congruences

• Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f = a0 + · · ·+ ak+1x

k+1 has degree k + 1.

• If f (x) ≡ 0 (mod p) has no solutions, then we are done.

• Hence we may assume at least one, say x ≡ x0 (mod p).

• By the division algorithm for polynomials we have

f (x) = (x − x0)q(x) + f (x0)

where q(x) is a polynomial of degree k .

• Moreover the leading coefficient of q(x) is ak+1 ̸≡ 0
(mod p).

• But f (x0) ≡ 0 (mod p), so that f (x) ≡ (x − x0)q(x)
(mod p).

• If f (x1) ≡ 0 (mod p), with x1 ̸≡ x0 (mod p), then
p ∤ x1 − x0 so that p|q(x1).

• By the inductive hypothesis there are at most k
possibilities for x1, so at most k + 1 in all.



Introduction
to Number
Theory

Chapter 3
Congruences
and Residue

Classes

Robert C.
Vaughan

Residue
Classes

Linear
congruences

General
polynomial
congruences

• Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f = a0 + · · ·+ ak+1x

k+1 has degree k + 1.

• If f (x) ≡ 0 (mod p) has no solutions, then we are done.

• Hence we may assume at least one, say x ≡ x0 (mod p).

• By the division algorithm for polynomials we have

f (x) = (x − x0)q(x) + f (x0)

where q(x) is a polynomial of degree k .

• Moreover the leading coefficient of q(x) is ak+1 ̸≡ 0
(mod p).

• But f (x0) ≡ 0 (mod p), so that f (x) ≡ (x − x0)q(x)
(mod p).

• If f (x1) ≡ 0 (mod p), with x1 ̸≡ x0 (mod p), then
p ∤ x1 − x0 so that p|q(x1).

• By the inductive hypothesis there are at most k
possibilities for x1, so at most k + 1 in all.



Introduction
to Number
Theory

Chapter 3
Congruences
and Residue

Classes

Robert C.
Vaughan

Residue
Classes

Linear
congruences

General
polynomial
congruences

• Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f = a0 + · · ·+ ak+1x

k+1 has degree k + 1.

• If f (x) ≡ 0 (mod p) has no solutions, then we are done.

• Hence we may assume at least one, say x ≡ x0 (mod p).

• By the division algorithm for polynomials we have

f (x) = (x − x0)q(x) + f (x0)

where q(x) is a polynomial of degree k .

• Moreover the leading coefficient of q(x) is ak+1 ̸≡ 0
(mod p).

• But f (x0) ≡ 0 (mod p), so that f (x) ≡ (x − x0)q(x)
(mod p).

• If f (x1) ≡ 0 (mod p), with x1 ̸≡ x0 (mod p), then
p ∤ x1 − x0 so that p|q(x1).

• By the inductive hypothesis there are at most k
possibilities for x1, so at most k + 1 in all.



Introduction
to Number
Theory

Chapter 3
Congruences
and Residue

Classes

Robert C.
Vaughan

Residue
Classes

Linear
congruences

General
polynomial
congruences

• Non-linear polynomials in one variable are complicated.

• The general modulus can be reduced to a prime power
modulus, and that case can be reduced to the prime
modulus. I will include the theory in the class text for
those interested. In general the prime case leads to
algebraic number theory.

• The quadratic case we will need and will look at later.
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