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® The next topic was first developed by Gauss.

Definition 1

Let m € N and define the residue class ¥ modulo m by
F={x€Z:m|(x—r)}.

By the division algorithm every integer is in one

0,1,...,m—1.

This is often called a complete system of residues modulo m.
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® The next topic was first developed by Gauss.
Definition 1
Let m € N and define the residue class ¥ modulo m by

F={x€Z:m|(x—r)}.

By the division algorithm every integer is in one

0,1,...,m—1.
This is often called a complete system of residues modulo m.

® The remarkable thing is that we can perform arithmetic on
the residue classes just as if they were numbers.
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Definition 1
Let m € N and define the residue class ¥ modulo m by

F={x€Z:m|(x—r)}.

By the division algorithm every integer is in one

0,1,...,m—1.

This is often called a complete system of residues modulo m.

The remarkable thing is that we can perform arithmetic on
the residue classes just as if they were numbers.

The residue class 0 behaves like the number 0,



Introduction
to Number
Theory
Chapter 3
Congruences
and Residue
Classes

Robert C.
Vaughan

Residue
Classes

Residue Classes

® The next topic was first developed by Gauss.

Definition 1
Let m € N and define the residue class ¥ modulo m by

F={x€Z:m|(x—r)}.

By the division algorithm every integer is in one

0,1,...,m—1.

This is often called a complete system of residues modulo m.

® The remarkable thing is that we can perform arithmetic on
the residue classes just as if they were numbers.

® The residue class 0 behaves like the number 0,

® because 0 is the set of multiples of m and adding any one
of them to an element of ¥ does not change the remainder.
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® Thus for any r

0+7=7=7+0.
® Suppose that we are given any two residue classes 7 and 5
modulo m. Let t be the remainder of r + s on division by
m. Then the elements of ¥ and 5 are of the form r + mx
and s + my and we know that r +s = t + mz for some z.
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® Thus for any r

0+7=7=7+0.

® Suppose that we are given any two residue classes 7 and 5
modulo m. Let t be the remainder of r + s on division by
m. Then the elements of ¥ and 5 are of the form r + mx
and s + my and we know that r +s = t + mz for some z.

® Thus r+mx+s+my=t+m(z+x+y)isint, and it
is readily seen that the converse is true.
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Thus for any r

0+7=7=7+0.

Suppose that we are given any two residue classes 7 and §
modulo m. Let t be the remainder of r + s on division by
m. Then the elements of ¥ and 5 are of the form r + mx
and s + my and we know that r +s = t + mz for some z.
Thusr+mx+s+my=t+m(z+x+y)isint, and it
is readily seen that the converse is true.

Thus it makes sense to write ¥ +35 = t, and then we have
r+s=s-+rT.



Introduction
to Number
Theory

Chapter 3 ® Thus for any r
Congruences — _ _ _ —
and Residue O—|—r:r:r+0.

Classes

Robert C. ® Suppose that we are given any two residue classes 7 and 5

aug an R . ..

modulo m. Let t be the remainder of r + s on division by

AT m. Then the elements of 7 and 5 are of the form r + mx
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and s + my and we know that r +s = t + mz for some z.

® Thus r+mx+s+my=t+m(z+x+y)isint, and it
is readily seen that the converse is true.

® Thus it makes sense to write 7 +35 = t, and then we have
r+s=5s+4r.

® One can also check that

F+—-r=0.
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® |n connection with this Gauss introduced a notation.

Definition 2
Let m € N. If two integers x and y satisfy m|x — y, then we
write

x =y (mod m)

and we say that x is congruent to y modulo m.
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® |n connection with this Gauss introduced a notation.

Definition 2
Let m € N. If two integers x and y satisfy m|x — y, then we

write
x =y (mod m)

and we say that x is congruent to y modulo m.
® Here are some of the properties of congruences.
x = x (mod m),
x =y (mod m) iff y = x (mod m),

x =y (mod m),y =z (mod m) implies x =z (mod m).
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A and we say that x is congruent to y modulo m.

® Here are some of the properties of congruences.
x = x (mod m),
x =y (mod m) iff y = x (mod m),
x =y (mod m),y =z (mod m) implies x =z (mod m).

® These say that the relationship = is reflexive, symmetric
and transitive.



Introduction ® |n connection with this Gauss introduced a notation.

to Number
Theory

Chapter 3 Def|n|t|0n 2
Congruences
and Residue Let m € N. If two integers x and y satisfy m|x — y, then we
Robert C. write
Vaughan x =y (mod m)

Residue
Classes

and we say that x is congruent to y modulo m.
® Here are some of the properties of congruences.
x = x (mod m),
x =y (mod m) iff y = x (mod m),
x =y (mod m),y =z (mod m) implies x =z (mod m).

® These say that the relationship = is reflexive, symmetric
and transitive.

® | |eave their proofs as an exercise.
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and we say that x is congruent to y modulo m.
® Here are some of the properties of congruences.
x = x (mod m),
x =y (mod m) iff y = x (mod m),
x =y (mod m),y =z (mod m) implies x =z (mod m).

® These say that the relationship = is reflexive, symmetric
and transitive.
® | leave their proofs as an exercise.

e |t follows that congruences modulo m partition the
integers into equivalence classes.
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¢ If x=y (mod m), then for any n € N, x" = y" (mod m)
(use induction on n).
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If x=y (mod m), then for any n € N, x" = y" (mod m)
(use induction on n).

If fis a polynomial with integer coefficients, and x =y
(mod m), then f(x) = f(y) (mod m).
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¢ If x=y (mod m)and z=t (mod m), then
Sesidue x+z=y+t (mod m)and xz=yt (mod m).
¢ If x=y (mod m), then for any n € N, x" = y" (mod m)
(use induction on n).
e |f f is a polynomial with integer coefficients, and x = y

(mod m), then f(x) = f(y) (mod m).

® Wait a minute, this means that one can use congruences
just like doing arithmetic on the integers!
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® The following tells us something about this structure.

Theorem 3
Suppose that me N, k € Z, (k,m) =1 and

a1, az,...,am
forms a complete set of residues modulo m. Then so does

kai, kap, ..., kanm.
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Theorem 3
Suppose that me N, k € Z, (k,m) =1 and

a1, az,...,am
forms a complete set of residues modulo m. Then so does

kai, kap, ..., kanm.

® Proof. Since we have m residue classes, we need only
check that they are disjoint.
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® The following tells us something about this structure.

Theorem 3
Suppose that me N, k € Z, (k,m) =1 and

a1, az,...,am
forms a complete set of residues modulo m. Then so does
kai, kap, ..., kanm.
® Proof. Since we have m residue classes, we need only

check that they are disjoint. o
® Consider any two of them, ka; and ka;.
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kai, kap, ..., kanm.

® Proof. Since we have m residue classes, we need only
check that they are disjoint.

e Consider any two of them, ka; and Hj.

® let ka; + mx and kaj + my be typical members of each.
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forms a complete set of residues modulo m. Then so does

ka1, kap, . .., kam.
® Proof. Since we have m residue classes, we need only
check that they are disjoint.
e Consider any two of them, ka;j and Hj.
® let ka; + mx and kaj + my be typical members of each.
® If they were the same integer, than ka; + mx = ka; + my,

so that k(a;j — a;) = m(y — x).



Introduction ® The following tells us something about this structure.
to Number

Theot
Chapter 3 Theorem 3

Congruences

and Residue Suppose that me N, k € Z, (k,m) =1 and

Classes

Robert C. _ _
Vaughan d1,d2,...,dm

Resid o

Classes forms a complete set of residues modulo m. Then so does

kai, kap, ..., kanm.

® Proof. Since we have m residue classes, we need only
check that they are disjoint.

e Consider any two of them, ka;j and Hj.

® let ka; + mx and kaj + my be typical members of each.

® If they were the same integer, than ka; + mx = ka; + my,
so that k(a;j — a;) = m(y — x).

® But then m|k(a; — a;) and since (k, m) = 1 we would have
m|a; — aj so a; and a; would be identical residue classes,
so i =j.



® An important role is played by the residue classes r
modulo m with (r,m) = 1.
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® An important role is played by the residue classes r
modulo m with (r,m) = 1.
® In connection with this we introduce Euler’'s function.

Definition 4

A function defined on N is called an arithmetical function.

Definition 5

Euler’s function ¢(n) is the number of x € N with 1 < x < n
and (x,n) = 1.

Definition 6

A set of ¢(m) distinct residue classes 7 modulo m with
(r,m) =1 is called a set of reduced residues modulo m.
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® An important role is played by the residue classes r
modulo m with (r,m) = 1.
® In connection with this we introduce Euler’'s function.

Definition 4

A function defined on N is called an arithmetical function.

Definition 5

Euler’s function ¢(n) is the number of x € N with 1 < x < n
and (x,n) = 1.

Definition 6

A set of ¢(m) distinct residue classes 7 modulo m with
(r,m) =1 is called a set of reduced residues modulo m.

® Since (1,1) =1 we have ¢(1) = 1.
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® An important role is played by the residue classes r
modulo m with (r,m) = 1.
® In connection with this we introduce Euler’'s function.

Definition 4

A function defined on N is called an arithmetical function.

Definition 5

Euler’s function ¢(n) is the number of x € N with 1 < x < n
and (x,n) = 1.

Definition 6

A set of ¢(m) distinct residue classes 7 modulo m with
(r,m) =1 is called a set of reduced residues modulo m.

® Since (1,1) =1 we have ¢(1) = 1.
e |f pis prime, then the x with 1 < x < p — 1 satisfy
(x,p) =1, but (p,p) = p # 1. Hence ¢(p) = p — 1.



Introduction ® An important réle is played by the residue classes r

to Number

Theory modulo m with (r,m) = 1.

Chapter 3 . . . . ] .
Congruences ® |n connection with this we introduce Euler’s function.
and Residue

S Definition 4
Robert C.
Vaughan A function defined on N is called an arithmetical function.
S Definition 5
Euler’s function ¢(n) is the number of x € N with 1 < x < n
and (x,n) = 1.
Definition 6

A set of ¢(m) distinct residue classes 7 modulo m with
(r,m) =1 is called a set of reduced residues modulo m.

® Since (1,1) =1 we have ¢(1) = 1.

e |f pis prime, then the x with 1 < x < p — 1 satisfy
(x,p) =1, but (p,p) = p # 1. Hence ¢(p) = p — 1.

® The numbers x with 1 < x < 30 and (x,30) =1 are
1,7,11,13,17,19,23,29, so $(30) = 8.
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® Now remove just the ones whose numerator has a
common factor d > 1 with m.
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® What is left are the ¢(m) reduced fractions with
denominator m.
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® One way of thinking about reduced sets of residues is to
start from a complete set of fractions with denominator m
in the interval (0, 1]
1 2 m
77 7, e ey -
m’' m m
® Now remove just the ones whose numerator has a
common factor d > 1 with m.

® What is left are the ¢(m) reduced fractions with
denominator m.

® Suppose instead of removing the non-reduced ones we just
write them in their lowest form.
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One way of thinking about reduced sets of residues is to
start from a complete set of fractions with denominator m
in the interval (0, 1]
1 2 m
77 7, e ey -
m’' m m
Now remove just the ones whose numerator has a
common factor d > 1 with m.

What is left are the ¢(m) reduced fractions with
denominator m.

Suppose instead of removing the non-reduced ones we just
write them in their lowest form.

Then for each divisor kK of m we obtain all the reduced
fractions with denominator k.



® |n fact we just proved the following.

For each m € N we have

> ¢(k) =m.

klm
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Linear
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o ® We just saw that ¢(1) =1, ¢(p) =p—1, $(30) =8

polynomial

- _

The divisors of 30 are 1,2,3,5,6,10, 15,30 and

¢(6) = 2, $(10) = 4,¢(15) = 8

SO

> pk)=1+1+2+4+2+4+8+8=30.
k|30

it
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® Now we can prove a companion theorem to Theorem 3 for
reduced residue classes.

Theorem 9
Suppose that (k,m) =1 and that

a1, s, ..., a¢(m)
forms a set of reduced residue classes modulo m. Then
kal, kag, ceey ka¢(m)

also forms a set of reduced residues modulo m.
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® Now we can prove a companion theorem to Theorem 3 for
reduced residue classes.

Theorem 9
Suppose that (k,m) =1 and that
a1, a2, - - dg(m)
forms a set of reduced residue classes modulo m. Then
ka1, kaz, . .., kag(m)

also forms a set of reduced residues modulo m.

® Proof. In view of the earlier theorem the residue classes
ka;j are distinct, and since (a;, m) = 1 we have
(kaj, m) =1 so they give ¢(m) distinct reduced residue
classes, so they are all of them in some order.
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® We now examine the structure of residue systems.
Theorem 10

Suppose m, n € N and (m,n) = 1, and consider the xn + ym
with1 < x < mand1l <y < n. Then they form a complete
set of residues modulo mn. If in addition x and y satisfy
(x,m) =1 and (y,n) =1, then they form a reduced set.
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® We now examine the structure of residue systems.
Theorem 10

Suppose m, n € N and (m,n) = 1, and consider the xn + ym
with1 < x < mand1l <y < n. Then they form a complete
set of residues modulo mn. If in addition x and y satisfy
(x,m) =1 and (y,n) =1, then they form a reduced set.

® Proof. If xn+ym = x'n+ y’'m (mod mn), then xn = x'n
(mod m), so x = x’ (mod m), x = x’. Likewise y = y'.
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® We now examine the structure of residue systems.
Theorem 10

Suppose m, n € N and (m,n) = 1, and consider the xn + ym
with1 < x < mand1l <y < n. Then they form a complete
set of residues modulo mn. If in addition x and y satisfy
(x,m) =1 and (y,n) =1, then they form a reduced set.

® Proof. If xn+ym = x'n+ y’'m (mod mn), then xn = x'n
(mod m), so x = x’ (mod m), x = x’. Likewise y = y'.
® Hence in either case the xn + ym are distinct modulo mn.
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et withl1 < x < mand1l <y <n. Then they form a complete
Vauggien set of residues modulo mn. If in addition x and y satisfy
et (x,m) =1 and (y,n) =1, then they form a reduced set.
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® Proof. If xn+ym = x'n+ y’'m (mod mn), then xn = x'n
(mod m), so x = x’ (mod m), x = x’. Likewise y = y'.
® Hence in either case the xn + ym are distinct modulo mn.
® |n the unrestricted case we have mn objects, so they form
a complete set.
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® We now examine the structure of residue systems.

Theorem 10

Suppose m, n € N and (m,n) = 1, and consider the xn + ym
with1 < x < mand1l <y < n. Then they form a complete
set of residues modulo mn. If in addition x and y satisfy
(x,m) =1 and (y,n) =1, then they form a reduced set.

® Proof. If xn+ym = x'n+ y’'m (mod mn), then xn = x'n
(mod m), so x = x’ (mod m), x = x’. Likewise y = y'.

® Hence in either case the xn + ym are distinct modulo mn.

® |n the unrestricted case we have mn objects, so they form
a complete set.

® In the restricted case (xn+ym, m) = (xn,m) = (x,m) =1
and likewise (xn+ ym, n) =1, so (xn+ ym, mn) = 1 and
the xn + ym all belong to reduced residue classes.
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® We now examine the structure of residue systems.

Theorem 10

Suppose m, n € N and (m,n) = 1, and consider the xn + ym
with1 < x < mand1l <y < n. Then they form a complete
set of residues modulo mn. If in addition x and y satisfy
(x,m) =1 and (y,n) =1, then they form a reduced set.

Proof. If xn+ym = x'n+y'm (mod mn), then xn = x'n
(mod m), so x = x’ (mod m), x = x’. Likewise y = y'.
Hence in either case the xn 4+ ym are distinct modulo mn.
In the unrestricted case we have mn objects, so they form
a complete set.

In the restricted case (xn+ym, m) = (xn,m) = (x,m) =1
and likewise (xn+ ym, n) =1, so (xn+ ym, mn) = 1 and
the xn + ym all belong to reduced residue classes.

Now let (z, mn) = 1. Choose x’,y’, x, y so that
x'n+y'm=1 x=x'z (mod m)and y = y’z (mod n).
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® We now examine the structure of residue systems.

Theorem 10

Suppose m, n € N and (m,n) = 1, and consider the xn + ym
with1 < x < mand1l <y < n. Then they form a complete
set of residues modulo mn. If in addition x and y satisfy
(x,m) =1 and (y,n) =1, then they form a reduced set.

Proof. If xn+ym = x'n+y'm (mod mn), then xn = x'n
(mod m), so x = x’ (mod m), x = x’. Likewise y = y'.
Hence in either case the xn 4+ ym are distinct modulo mn.
In the unrestricted case we have mn objects, so they form
a complete set.

In the restricted case (xn+ym, m) = (xn,m) = (x,m) =1
and likewise (xn+ ym, n) =1, so (xn+ ym, mn) = 1 and
the xn + ym all belong to reduced residue classes.

Now let (z, mn) = 1. Choose x’,y’, x, y so that
x'n+y'm=1 x=x'z (mod m)and y = y’z (mod n).
Then xn+ ym = x'zn+ y’zm = z (mod mn) and hence
every reduced residue is included.



Introduction
to Number
Theory
Ch 8 .
Comgrnences ® Here is a table of xn+ ym (mod mn) when m =5, n=6.

and Residue

Robert C.

Vaughan

x| 1 2 3 4] 5
Residue
Classes
o 11 17 23 29| 5
congruences 16 22 28 4 10
General

21 271 3 9|15
26 2 8 14|20

1 7 13 19|25
6 6 12 18 24| 30

The 30 numbers 1 through 30 appear exactly once each. The 8
reduced residue classes occur precisely in the intersection of
rows 1 and 5 and columns 1 through 4.

polynomial
congruences

Gl W NI




® |mmediate from Theorem 10 we have

[Corallary 12
If (m,n) =1, then ¢(mn) = $(m)p(n).
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® I[mmediate from Theorem 10 we have

Corollary 12
If (m,n) =1, then ¢(mn) = ¢p(m)eo(n).
® Thus ¢ is an example of a multiplicative function.

Definition 13

If an arithmetical function f which is not identically 0 satisfies
f(mn) = f(m)f(n)

whenever (m, n) = 1 we say that f is multiplicative.
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® I[mmediate from Theorem 10 we have

Corollary 12
If (m,n) =1, then ¢(mn) = ¢p(m)eo(n).
® Thus ¢ is an example of a multiplicative function.

Definition 13

If an arithmetical function f which is not identically 0 satisfies
f(mn) = f(m)f(n)
whenever (m, n) = 1 we say that f is multiplicative.

® Thus we have another
Corollary 14

Euler’s function is multiplicative.

This enables a full evaluation of ¢(n).
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e If n = pX, then the number of reduced residue classes
modulo p¥ is the number of x with 1 < x < p¥ and p { x.
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e If n = pX, then the number of reduced residue classes
modulo p¥ is the number of x with 1 < x < p¥ and p { x.

® This is pX — N where N is the number of x with
1 < x < pkand plx, and N = pk—1.
® Thus ¢(p*) = p* — p*~1 = pk(1—1/p).
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e If n = pX, then the number of reduced residue classes
modulo p¥ is the number of x with 1 < x < p¥ and p { x.

® This is pX — N where N is the number of x with
1 < x < pXand p|x, and N = pk— 1,

® Thus ¢(p*) = p* — p*~1 = pk(1—1/p).

® Putting this all together gives

Theorem 15

1
Let n € N. Then ¢(n) = nH (1 - ) where when n =1 we
p
pln
interpret the product as an “empty” product 1.
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If n = pk, then the number of reduced residue classes
modulo p¥ is the number of x with 1 < x < p¥ and p 1 x.

This is p¥ — N where N is the number of x with
1 < x < pkand plx, and N = pk—1.

Thus ¢(pk) = p* — pk=1 = p*(1 - 1/p).
® Putting this all together gives
Theorem 15

1
Let n € N. Then ¢(n) = nH (1 - —) where when n =1 we
p
pln

interpret the product as an “empty” product 1.

® Some special cases.

We have ¢(9) = 6, ¢(5) = 4, ¢(45) = 24. Note that ¢(3) =2
and §(9) # 4(3)2.

u}
8]
I
i
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® Here is a beautiful and useful theorem.

Suppose that m € N and a € Z with (a, m) = 1. Then

a?mM =1 (mod m).
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® Here is a beautiful and useful theorem.
Theorem 17 (Euler)
Suppose that m € N and a € Z with (a,m) = 1. Then

a®(m =1 (mod m).

® Proof. Let a1, a2,...,a4(m) be a reduced set modulo m.
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® Here is a beautiful and useful theorem.

Theorem 17 (Euler)

Suppose that m € N and a € Z with (a,m) = 1. Then

26(m)

® Proof. Let aj, as,...

)

=1 (mod m).

ay(m) be a reduced set modulo m.

® Then aay, aay, ..., aag(m) is another. Hence

diaz... a¢(m)

aa1aay . .. ady(m) (mod m)

aias... a¢(m)a¢(m) (mod m).
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® Here is a beautiful and useful theorem.

Theorem 17 (Euler)
Suppose that m € N and a

26(m)

® Proof. Let aj,ay,...,

€ Z with (a,m) = 1. Then

=1 (mod m).

ay(m) be a reduced set modulo m.

® Then aay, aay, ..., aag(m) is another. Hence

diaz... a¢(m) =

aa1aay . .. ady(m) (mod m)

aias... a¢(m)a¢(m) (mod m).

® As (a132...a4(m), m) = 1 we may cancel a1z ... ag(m)-
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® Here is a beautiful and useful theorem.
Theorem 17 (Euler)
Suppose that m € N and a € Z with (a,m) = 1. Then

a®(m =1 (mod m).

Proof. Let a1, a2,...,34(m) be a reduced set modulo m.

Then aay, aas, ..., aay(m) is another. Hence
a132 ... dy(m) = 231332 ... adg(m) (mod m)
=a1as... a¢(m)a¢(m) (mod m).
® As (a132...a4(m), m) = 1 we may cancel a1z ... ag(m)-
® Thus
Corollary 18 (Fermat)

Let p be a prime and a € Z. Then aP = a (mod p). Ifpta,
then aP~* =1 (mod p).



® Could Fermat's theorem give a primality test?

«O> «Fr «=>»

«E)»

DA



Introduction
to Number
Theory
Chapter 3
Congruences
and Residue
Classes

Robert C.
Vaughan

Residue
Classes

® Could Fermat's theorem give a primality test?
e Unfortunately it is possible that a""* =1 (mod n) when
n is not prime, although this is rare.
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e Unfortunately it is possible that a" ! =
n is not prime, although this is rare.
® For example, when are n = 341, 561, 645

2"1 =1 (mod n)

(mod n) when
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n—1 _

Unfortunately it is possible that a
n is not prime, although this is rare.
For example, when are n = 341, 561, 645

2"1 =1 (mod n)

Such n are called pseudoprimes.

(mod n) when
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Could Fermat's theorem give a primality test?
Unfortunately it is possible that a”~* =1 (mod n) when
n is not prime, although this is rare.

For example, when are n = 341, 561, 645

2"1 =1 (mod n)

Such n are called pseudoprimes.
There are 245 less than 10°, compared with 78498 primes.
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® Could Fermat's theorem give a primality test?

n—1 _

Unfortunately it is possible that a (mod n) when

n is not prime, although this is rare.
For example, when are n = 341, 561, 645

2"1 =1 (mod n)

Such n are called pseudoprimes.

® There are 245 less than 10°, compared with 78498 primes.

Moreover
3371 =56 £ 1 (mod 341)

suggests a possible primality test.
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® Could Fermat's theorem give a primality test?

n—1 _

Unfortunately it is possible that a
n is not prime, although this is rare.
For example, when are n = 341, 561, 645

2"1 =1 (mod n)

Such n are called pseudoprimes.

(mod n) when

® There are 245 less than 10°, compared with 78498 primes.

Moreover
3371 =56 £ 1 (mod 341)

suggests a possible primality test.
Given n try trial division a few times, say for d = 2,3,5,7
and then check successively for a =2,3,5,7

a" =1 (mod n).
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® Could Fermat's theorem give a primality test?

n—1 _

Unfortunately it is possible that a
n is not prime, although this is rare.
For example, when are n = 341, 561, 645

2"1 =1 (mod n)

Such n are called pseudoprimes.

(mod n) when

® There are 245 less than 10°, compared with 78498 primes.

Moreover
3371 =56 £ 1 (mod 341)

suggests a possible primality test.
Given n try trial division a few times, say for d = 2,3,5,7
and then check successively for a =2,3,5,7

a" =1 (mod n).

Unfortunately one can still have false positives.
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® Could Fermat's theorem give a primality test?

Unfortunately it is possible that a”~* =1 (mod n) when
n is not prime, although this is rare.
For example, when are n = 341, 561, 645

2"1 =1 (mod n)

Such n are called pseudoprimes.

® There are 245 less than 10°, compared with 78498 primes.

Moreover
3371 =56 £ 1 (mod 341)

suggests a possible primality test.
Given n try trial division a few times, say for d = 2,3,5,7
and then check successively for a =2,3,5,7

a" =1 (mod n).

Unfortunately one can still have false positives.

® Thus 561 = 3.11.17 satisfies

2> =1 (mod 561)
for all a with (a,561) = 1.



® Such numbers are interesting

A composite n which satisfies a™ ! = 1 (mod n) for all a with

(a,n) =1 is called a Carmichael number.
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® Such numbers are interesting

Definition 19

A composite n which satisfies a™ ! =1 (mod n) for all a with
(a,n) =1 is called a Carmichael number.

® There are infinitely Carmichael number. The smallest is
561 and there are 2163 of them below 25 x 10°.
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® Such numbers are interesting

Definition 19
A composite n which satisfies a™ ! =1 (mod n) for all a with

(a,n) =1 is called a Carmichael number.

® There are infinitely Carmichael number. The smallest is
561 and there are 2163 of them below 25 x 10°.

® Also of interest.

Definition 20

Define M(n) = 2" — 1. If it is prime it is a Mersenne prime.
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® Such numbers are interesting

Definition 19

A composite n which satisfies a™ ! =1 (mod n) for all a with
(a,n) =1 is called a Carmichael number.

® There are infinitely Carmichael number. The smallest is
561 and there are 2163 of them below 25 x 10°.

® Also of interest.

Definition 20

Define M(n) = 2" — 1. If it is prime it is a Mersenne prime.

e If n= ab, then M(ab) = (22 — 1)(22(b-1) ... 4+ 22 4+ 1).
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® Such numbers are interesting

Definition 19

A composite n which satisfies a (mod n) for all a with
(a,n) =1 is called a Carmichael number.

n—1 _

® There are infinitely Carmichael number. The smallest is
561 and there are 2163 of them below 25 x 10°.

® Also of interest.

Definition 20
Define M(n) = 2" — 1. If it is prime it is a Mersenne prime.

e If n= ab, then M(ab) = (22 — 1)(22(b-1) ... 4+ 22 4+ 1).

® Thus for M(n) to be prime it is necessary that n be prime.

Wehave3=22-1,7=2%-1,31=2°-1127=27 — 1.
However that is not sufficient. 211 — 1 = 2047 = 23 x 89.



® As with linear equations, linear congruences are easiest.
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® As with linear equations, linear congruences are easiest.
® We have already solved ax = b (mod m) in principle since
it is equivalent to ax + my = b.
Theorem 22

The congruence ax = b (mod m) is soluble iff (a, m)|b, and
the general solution is given by a residue class xo modulo
m/(a, m). xo can be found by applying Euclid’s algorithm.
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® As with linear equations, linear congruences are easiest.
® We have already solved ax = b (mod m) in principle since
it is equivalent to ax + my = b.
Theorem 22

The congruence ax = b (mod m) is soluble iff (a, m)|b, and
the general solution is given by a residue class xo modulo
m/(a, m). xo can be found by applying Euclid’s algorithm.

® Proof. The congruence is equivalent to the equation
ax + my = b and there can be no solution if (a, m) t b.
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® As with linear equations, linear congruences are easiest.
® We have already solved ax = b (mod m) in principle since
it is equivalent to ax + my = b.
Theorem 22

The congruence ax = b (mod m) is soluble iff (a, m)|b, and
the general solution is given by a residue class xo modulo
m/(a, m). xo can be found by applying Euclid’s algorithm.

® Proof. The congruence is equivalent to the equation
ax + my = b and there can be no solution if (a, m) t b.

e If (a, m)|b, then Euclid’s algorithm solves

a n m b
(a, m) (a, m)y ~(a,m)’
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C::;fe% ® We have already solved ax = b (mod m) in principle since
Coneenses it is equivalent to ax + my = b.
Classes
Robert C. Theorem 22
Vaughan
The congruence ax = b (mod m) is soluble iff (a, m)|b, and
the general solution is given by a residue class xo modulo
. m/(a, m). xo can be found by applying Euclid’s algorithm.

congruences
® Proof. The congruence is equivalent to the equation
ax + my = b and there can be no solution if (a, m) t b.

e If (a, m)|b, then Euclid’s algorithm solves
a n m b

X = .

@m " @m’ @m)

® |et xg, Yo be such a solution and let x, y be any solution.
Then a/(a, m)(x — xp) =0 (mod m/(a, m)) and since
(a/(a, m), m/(a, m)) =1 it follows that x is in the residue
class xg (mod m/(a, m)).



® A curious result which uses somewhat similar ideas.

Let p be a prime number, then (p — 1)! = —1 (mod p).
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® A curious result which uses somewhat similar ideas.
Theorem 23 (Wilson)
Let p be a prime number, then (p —1)! = —1 (mod p).
® Proof. Thecasesp=2and p=3are(2—-1)=1=
(mod 2) and (3—1) =2=—1 (mod 3).

® Thus we may suppose p > 5. Observe now that x* =1
(mod p) implies x = £1 (mod p)

-1
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A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)
Let p be a prime number, then (p —1)! = —1 (mod p).

Proof. Thecasesp=2andp=3are(2-1)l=1=-1
(mod 2) and (3—1) =2= -1 (mod 3).

Thus we may suppose p > 5. Observe now that x> =1
(mod p) implies x = £1 (mod p)

Thus the numbers 2,3,..., p — 2 can be paired off into

pT_3 mutually exclusive pairs a, b such that ab=1

(mod p).
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® A curious result which uses somewhat similar ideas.
Theorem 23 (Wilson)
Let p be a prime number, then (p —1)! = —1 (mod p).

® Proof. Thecasesp=2and p=3are(2-1)=1=-1
(mod 2) and (3—1) =2= -1 (mod 3).

® Thus we may suppose p > 5. Observe now that x* =1
(mod p) implies x = £1 (mod p)

® Thus the numbers 2,3,...,p — 2 can be paired off into

pT_3 mutually exclusive pairs a, b such that ab=1

(mod p).
® Thus(p—1)l=p—1= -1 (mod p).
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A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)

Let p be a prime number, then (p —1)! = —1 (mod p).

Proof. Thecasesp=2andp=3are(2-1)l=1=-1
(mod 2) and (3—1) =2= -1 (mod 3).

Thus we may suppose p > 5. Observe now that x> =1
(mod p) implies x = £1 (mod p)

Thus the numbers 2,3,..., p — 2 can be paired off into
pT_3 mutually exclusive pairs a, b such that ab=1
(mod p).

Thus (p—1)!=p—-1= -1 (mod p).

This theorem actually gives a necessary and sufficient
condition for p to be a prime, since if p were to be
composite, then we would have ((p — 1)!,p) > 1.
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A curious result which uses somewhat similar ideas.

Theorem 23 (Wilson)

Let p be a prime number, then (p —1)! = —1 (mod p).

Proof. Thecasesp=2andp=3are(2-1)l=1=-1
(mod 2) and (3—1) =2= -1 (mod 3).

Thus we may suppose p > 5. Observe now that x> =1
(mod p) implies x = £1 (mod p)

Thus the numbers 2,3,..., p — 2 can be paired off into
pT_3 mutually exclusive pairs a, b such that ab=1
(mod p).

Thus (p—1)!=p—-1= -1 (mod p).

This theorem actually gives a necessary and sufficient
condition for p to be a prime, since if p were to be
composite, then we would have ((p — 1)!,p) > 1.

However this is useless since (p — 1)! grows very rapidly.
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® What about simultaneous linear congruences?

aix = by (mod q1),
» (2.1)
arx =b, (mod q,).

® There can only be a solution when each individual
equation is soluble, so we require (aj, q;)|b;j for every j.



Introduction
to Number
Theory
Chapter 3
Congruences
and Residue
Classes

Robert C.
Vaughan

Linear
congruences

® What about simultaneous linear congruences?

a1 x

arx

= b; (mod q1),

(2.1)
= b, (mod q,).

® There can only be a solution when each individual
equation is soluble, so we require (aj, q;)|b;j for every j.

® Then we know that each individual equation is soluble by
some residue class modulo g;/(aj, gj). Thus for some

values of ¢; and m; this

X

reduces to

=c; (mod my),
(2.2)

= ¢, (mod m,)
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What about simultaneous linear congruences?

aix = by (mod q1),
(2.1)
arx =b, (mod q,).
There can only be a solution when each individual
equation is soluble, so we require (aj, q;)|b;j for every j.
Then we know that each individual equation is soluble by

some residue class modulo g;/(aj, gj). Thus for some
values of ¢; and m; this reduces to

x =a (mod my),
(2.2)

x  =c¢ (mod m,)

Suppose for some i and j # i we have (m;, m;) =d > 1.
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® There can only be a solution when each individual
equation is soluble, so we require (aj, q;)|b;j for every j.

Linear °

Then we know that each individual equation is soluble by
some residue class modulo g;/(aj, gj). Thus for some
values of ¢; and m; this reduces to

congruences

x =a (mod my),
(2.2)
x  =c¢ (mod m,)

® Suppose for some i and j # i we have (m;, m;) =d > 1.
® Then x has to satisfy ¢; = x = ¢; (mod d).
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What about simultaneous linear congruences?

aix = by (mod q1),

(2.1)

arx =b, (mod q,).

There can only be a solution when each individual
equation is soluble, so we require (aj, q;)|b;j for every j.
Then we know that each individual equation is soluble by
some residue class modulo g;/(aj, gj). Thus for some
values of ¢; and m; this reduces to

x =a (mod my),
(2.2)
x  =c¢ (mod m,)
Suppose for some i and j # i we have (m;, m;) =d > 1.

Then x has to satisfy ¢; = x = ¢; (mod d).
This imposes conditions on ¢; which can get complicated.
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What about simultaneous linear congruences?

aix = by (mod q1),
(2.1)
arx =b, (mod q,).

There can only be a solution when each individual
equation is soluble, so we require (aj, q;)|b;j for every j.
Then we know that each individual equation is soluble by
some residue class modulo g;/(aj, gj). Thus for some
values of ¢; and m; this reduces to

x =a (mod my),
(2.2)

x  =c¢ (mod m,)

Suppose for some i and j # i we have (m;, m;) =d > 1.
Then x has to satisfy ¢; = x = ¢; (mod d).

This imposes conditions on ¢; which can get complicated.
Thus it is convenient to assume (m;, m;) = 1 when i # j.
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® The following is known as the Chinese Remainder Theorem
Theorem 24
Suppose that (mj, m;) =1 for every i # j. Then the system

(2.2) has as its complete solution precisely the members of a
unique residue class modulo mymy ... m,.
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® The following is known as the Chinese Remainder Theorem

Theorem 24

Suppose that (mj, m;) =1 for every i # j. Then the system
(2.2) has as its complete solution precisely the members of a
unique residue class modulo mymy ... m,.

® Proof. We first show that there is a solution.
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® The following is known as the Chinese Remainder Theorem

Theorem 24

Suppose that (mj, m;) =1 for every i # j. Then the system
(2.2) has as its complete solution precisely the members of a
unique residue class modulo mymy ... m,.

® Proof. We first show that there is a solution.
® Let M=mimy...m, and M; = M/m;, so that
(Mj, mj) = 1.
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j:;éggj; Suppose that (mj, m;) =1 for every i # j. Then the system
Robert C (2.2) has as its complete solution precisely the members of a
VEmgien unique residue class modulo mymy ... m,.
® Proof. We first show that there is a solution.
. ® Let M=mimy...m, and M; = M/m;, so that

(Mj, mj) =1.
® We know that there is an N; so that M;N; = ¢; (mod m;)
(solve yM; = ¢; (mod mj) in y).



Introduction ® The following is known as the Chinese Remainder Theorem

to Number
Theory

Chapter 3 Theorem 24
Congruences
and Residue Suppose that (mj, m;) =1 for every i # j. Then the system
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® We know that there is an N; so that M;N; = ¢; (mod m;)
(solve yM; = ¢; (mod mj) in y).
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Let x be any member of the residue class

NiMy + -+ NM, (mod M).
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® The following is known as the Chinese Remainder Theorem

Theorem 24

Suppose that (mj, m;) =1 for every i # j. Then the system
(2.2) has as its complete solution precisely the members of a
unique residue class modulo mymy ... m,.

Proof. We first show that there is a solution.

Let M =myim>...m, and M; = M/m;, so that

(Mj, mj) = 1.

We know that there is an N; so that M;N; = ¢; (mod mj)
(solve yM; = ¢; (mod mj) in y).

Let x be any member of the residue class

NiMy + -+ NM, (mod M).

Then for every j, since mj|M; when i # j we have
X = NJ'MJ' (mod mj)
= ¢ (mod mj)

so the residue class x (mod M) gives a solution.



x =c (mod my),

X

= Cr (mod mr)
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Now we have to show that the solution modulo M is
Linear unique.
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x =c (mod my),

x =¢ (mod m,)

Now we have to show that the solution modulo M is
unique.

Suppose y is also a solution of the system.
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Now we have to show that the solution modulo M is
unique.

Linear
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® Suppose y is also a solution of the system.

Then for every j we have

y = ¢ (mod mj)

x (mod mj)

and so mjly — x.
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x =c (mod my),

x =¢ (mod m,)

Now we have to show that the solution modulo M is
unique.
Suppose y is also a solution of the system.

Then for every j we have

y = ¢ (mod mj)

x (mod mj)

and so mjly — x.

Since the mj are pairwise co-prime we have M|y — x, so y
is in the residue class x modulo M.
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e Consider

x =3 (mod 4),
x =5 (mod 21),
x =7 (mod 25).
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General
polynomial
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e Consider

x =3 (mod 4),
x =5 (mod 21),
x =7 (mod 25).

* m =4, m =21, m3=25 M=2100, M; =525,

My = 100, M3 = 84. Thus first we have to solve

525N; =3 (mod 4),
100N, =5 (mod 21),
84N; =7 (mod 25).



525N; =3 (mod 4),
100N, =5 (mod 21),
84N3 =7 (mod 25).

<O < Fr <=
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525N; =3 (mod 4),
100N, =5 (mod 21),
84N3; =7 (mod 25).
® Reducing the constants gives
Ny =3 (mod 4),
(=5)N2 =5 (mod 21),
9N3 =7 (mod 25).
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Vaughan

® Reducing the constants gives
e Ny =3 (mod 4),
congruences (_5)N2 E 5 (mod 21)’
9N3 =7 (mod 25).
® Thus we can take N; =3, N, =20, 7= —18 (mod 25) so
N3 = —2 =23 (mod 25). Then the complete solution is
x = NyMy 4+ NoMs + N3 M3
=3 x 525420 x 100 4 23 x 84
= 5507
= 1307 (mod 2100).
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® The solution of a general polynomial congruence can be
quite tricky, even for a polynomial with a single variable

f(X) = ao+alx+. . .+ajxj+, .

where the a; are integers.

'a_/XJE

0 (mod m) (3.3)
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® The solution of a general polynomial congruence can be
quite tricky, even for a polynomial with a single variable

f(x) := ap+arx+---+apx+---a;x) =0 (mod m) (3.3)

where the a; are integers.

® The largest k such that ax # 0 (mod m) is the degree of
f modulo m.
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® The solution of a general polynomial congruence can be
quite tricky, even for a polynomial with a single variable

f(x) := ap+arx+---+apx+---a;x) =0 (mod m) (3.3)

where the a; are integers.

® The largest k such that ax # 0 (mod m) is the degree of
f modulo m.

® If a; =0 (mod m) for every j, then the degree of f
modulo m is not defined.
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The solution of a general polynomial congruence can be
quite tricky, even for a polynomial with a single variable

f(x) := ap+arx+---+apx+---a;x) =0 (mod m) (3.3)

where the a; are integers.

The largest k such that ax #0 (mod m) is the degree of
f modulo m.

If aj =0 (mod m) for every j, then the degree of f
modulo m is not defined.

We have already seen that
x?2=1 (mod 8)

is solved by any odd x, so that it has four solutions
modulo 8, x =1, 3,5, 7 (mod 8).
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The solution of a general polynomial congruence can be
quite tricky, even for a polynomial with a single variable

f(x) := ap+arx+---+apx+---a;x) =0 (mod m) (3.3)

where the a; are integers.

The largest k such that ax #0 (mod m) is the degree of
f modulo m.

If aj =0 (mod m) for every j, then the degree of f
modulo m is not defined.

We have already seen that
x?2=1 (mod 8)

is solved by any odd x, so that it has four solutions
modulo 8, x =1, 3,5, 7 (mod 8).

That is, more than the degree 2. However, when the
modulus is prime we have a more familiar conclusion.
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Suppose that p is prime, and f(x) = ag+aix+---+ajx) +---
is a polynomial with integer coefficients aj and it has degree k
modulo p. Then the number of incongruent solutions of
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congruences

is at most k.
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® When we have a solution x to a polynomial congruence

such as (3.3) we may sometimes refer to such values as a
root of the polynomial modulo m.

Theorem 26 (Lagrange)

Suppose that p is prime, and f(x) = ag + aix + - -+ ajxj + e
is a polynomial with integer coefficients aj and it has degree k
modulo p. Then the number of incongruent solutions of

f(x) =0 (mod p)
is at most k.

® Proof. Degree 0 is obvious so we suppose k > 1.
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® When we have a solution x to a polynomial congruence

such as (3.3) we may sometimes refer to such values as a
root of the polynomial modulo m.

Theorem 26 (Lagrange)

Suppose that p is prime, and f(x) = ag + aix + - -+ ajxj + e
is a polynomial with integer coefficients aj and it has degree k
modulo p. Then the number of incongruent solutions of

f(x) =0 (mod p)
is at most k.

® Proof. Degree 0 is obvious so we suppose k > 1.
® \We use induction on the degree k.
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® When we have a solution x to a polynomial congruence
such as (3.3) we may sometimes refer to such values as a
root of the polynomial modulo m.

Theorem 26 (Lagrange)

Suppose that p is prime, and f(x) = ag + aix + - -+ ajxj + e
is a polynomial with integer coefficients aj and it has degree k
modulo p. Then the number of incongruent solutions of

f(x) =0 (mod p)

is at most k.

® Proof. Degree 0 is obvious so we suppose k > 1.

® \We use induction on the degree k.

® |f a polynomial f has degree 1 modulo p, so that
f(x) = ap + a1x with p{ aj, then the congruence becomes
aix = —ap (mod p) and since a; Z 0 (mod p) (because
f has degree 1) we know that this is soluble by precisely
the members of a unique residue class modulo p.
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® Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f=ag+- -+ arp1x*t! has degree k + 1.
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® Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f=ag+- -+ arp1x*t! has degree k + 1.

e If f(x) =0 (mod p) has no solutions, then we are done.
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e ® If f(x) =0 (mod p) has no solutions, then we are done.
Robert C.
Vaughan ® Hence we may assume at least one, say x = xp (mod p).

By the division algorithm for polynomials we have

f(x) = (x — x0)q(x) + f(xo)

Congruenes where g(x) is a polynomial of degree k.

congruences
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Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f=ag+- -+ arp1x*t! has degree k + 1.

If f(x) =0 (mod p) has no solutions, then we are done.
Hence we may assume at least one, say x = xo (mod p).

By the division algorithm for polynomials we have
F(x) = (x — x0)a(x) + F(x0)

where g(x) is a polynomial of degree k.
Moreover the leading coefficient of g(x) is ax+1 Z 0
(mod p).
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Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f=ag+- -+ arp1x*t! has degree k + 1.

If f(x) =0 (mod p) has no solutions, then we are done.
Hence we may assume at least one, say x = xo (mod p).

By the division algorithm for polynomials we have
F(x) = (x — x0)a(x) + F(x0)

where g(x) is a polynomial of degree k.

Moreover the leading coefficient of g(x) is ax+1 Z 0
(mod p).

But f(xo) =0 (mod p), so that f(x) = (x — x0)q(x)
(mod p).
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Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that
f=ag+- -+ arp1x*t! has degree k + 1.

If f(x) =0 (mod p) has no solutions, then we are done.
Hence we may assume at least one, say x = xo (mod p).

By the division algorithm for polynomials we have
F(x) = (x — x0)a(x) + F(x0)

where g(x) is a polynomial of degree k.

Moreover the leading coefficient of g(x) is ax+1 Z 0
(mod p).

But f(xo) =0 (mod p), so that f(x) = (x — x0)q(x)
(mod p).

If f(x1) =0 (mod p), with x; # xp (mod p), then
ptx1— xo so that p|q(xy).
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Now suppose that the conclusion holds for all polynomials
of a given degree k and suppose that

f=ag+- -+ arp1x*t! has degree k + 1.

If f(x) =0 (mod p) has no solutions, then we are done.
Hence we may assume at least one, say x = xo (mod p).

By the division algorithm for polynomials we have

f(x) = (x = x0)a(x) + f(x0)

where g(x) is a polynomial of degree k.

Moreover the leading coefficient of g(x) is ax+1 Z 0
(mod p).

But f(xo) =0 (mod p), so that f(x) = (x — x0)q(x)
(mod p).

If f(x1) =0 (mod p), with x; # xp (mod p), then
ptx1— xo so that p|q(xy).

By the inductive hypothesis there are at most k
possibilities for x;, so at most k + 1 in all.
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Non-linear polynomials in one variable are complicated.

The general modulus can be reduced to a prime power
modulus, and that case can be reduced to the prime
modulus. | will include the theory in the class text for
those interested. In general the prime case leads to
algebraic number theory.
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® The quadratic case we will need and will look at later.
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