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® The question arises. We know that given integers a, b not
both 0, there are integers x and y so that

(a, b) = ax + by.
How do we find x and y?
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algorithm, first appeared in Euclid’'s Elements more than
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Euclid's Algorithm

® The question arises. We know that given integers a, b not
both 0, there are integers x and y so that

(a, b) = ax + by.

How do we find x and y?

® A method for solving this problem, known as Euclid’s
algorithm, first appeared in Euclid’'s Elements more than
2000 years ago.

® Moreover this solution gives a very efficient algorithm and
it is still the basis for many numerical methods in
arithmetical applications.
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Euclid's Algorithm

The question arises. We know that given integers a, b not
both 0, there are integers x and y so that

(a, b) = ax + by.

How do we find x and y?

A method for solving this problem, known as Euclid’s
algorithm, first appeared in Euclid’'s Elements more than
2000 years ago.

Moreover this solution gives a very efficient algorithm and
it is still the basis for many numerical methods in
arithmetical applications.

We may certainly suppose that a and b > 0 since
multiplying either by (—1) does not change the (a, b) - we
can replace x by —x and y by —y.



® \We can certainly suppose that b < a. For convenience of
notation put rp = b, r_1 = a.
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to Number ® \We can certainly suppose that b < a. For convenience of
Theory

Chapter 2 notation put rp = b, r_1 = a.
Euclid's
pacids o . . :
o o ® Now apply the division algorithm iteratively as follows
Robert C.
Vaughan rri=rqg+n, 0<n<rn,
Euclid's n=nq+r, 0<n<nmn,
algorithm

n=nqg+rmn 0<rrn<n,

rs—3 =rs—2Qs—1+rs—1, 0<rs_1<rs_2,

rs—2 = rs—1Qs.
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® That is, we stop the moment that there is a remainder
equal to 0.
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equal to 0.

® This could be r if b|a, for example, although the way it is
written out above it is as if s is at least 3.
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to Number ® \We can certainly suppose that b < a. For convenience of
Theory

Chapter 2 notation put rp = b, r_1 = a.
Euclid’'s
Algorithm and ° wviel 1 1 1
o o Now apply the division algorithm iteratively as follows
Robert C.
Vaughan rri=rqg+n, 0<n<rn,
Euclid's n=ng+rn 0<n<n,
algorithm

n=nqg+rmn 0<rrn<n,

rs—3 =rs—2Qs—1+rs—1, 0<rs_1<rs_2,

rs—2 = rs—1Qs.

® That is, we stop the moment that there is a remainder
equal to 0.

® This could be r if b|a, for example, although the way it is
written out above it is as if s is at least 3.

® The important point is that because r; < rj_1, sooner or
later we must have a zero remainder.
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® Repeating

rri=rq+n, 0<n<n,
n=nq+nrn 0<n<n,
rn=nqg+rmn, 0<rr<n,

rs—3 ="rs—2qs—1+rs—1, 0<rs_1<rs_2,

fs—2 = rs—14Qs-
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Euclid's
algorithm rs—3 = rs—2Qs—1 + rs—1, 0 <rs_1 <rs_2,

fs—2 = rs—14Qs-

e Euclid proved that (a, b) = rs_1.
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fs—2 = rs—14Qs-

Euclid proved that (a, b) = rs_;.
First of all (a, b)|a and (a, b)|b, and so (a, b)|r.
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Euclid’'s
algorithm rs—3 ="rs—2qs—1+rs—1, 0<rs_1<rs_2,

rs—2 = rs—1Qs.

e Euclid proved that (a, b) = rs_1.

e First of all (a, b)|a and (a, b)|b, and so (a, b)|r1.

® Repeating this we get (a, b)|rj for j =2,3,...,s — L.

® On the other hand, starting at the bottom line rs_1|rs_2,
rs—1|rs—3 and so on until we have rs_1|b and rs_1]a.
Recall that this means that rs_1](a, b).
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rn = rqs + ro, 0<r2<r1,

Euclid’'s
algorithm rs—3 ="rs—2qs—1+rs—1, 0<rs_1<rs_2,

rs—2 = rs—1Qs.

e Euclid proved that (a, b) = rs_1.

e First of all (a, b)|a and (a, b)|b, and so (a, b)|r1.

® Repeating this we get (a, b)|rj for j =2,3,...,s — L.

® On the other hand, starting at the bottom line rs_1|rs_2,
rs—1|rs—3 and so on until we have rs_1|b and rs_1]a.
Recall that this means that rs_1](a, b).

® Thus we have just proved that

rs—1|(a, b), (a,b)|rs—1, rs—1 = (a,b).
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Equations

e Consider.

Let a = 10678, b = 42

10678 = 42 x 254 + 10

Thus (10678, 42) = 2.

42=10x4+2
10 =2 x 5.
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e Consider.

Let a = 10678, b = 42

10678 = 42 x 254 + 10
42=10x4+2
10 =2 x 5.

Thus (10678, 42) = 2.

® But how to compute the x and y in (a, b) = ax + by?
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Thus (10678, 42) = 2.
® But how to compute the x and y in (a, b) = ax + by?

® We could just work backwards through the algorithm using
back substitution,

2=42—-10 x 4 =42 — (10678 — 42 x 254) x 4
=42 x 1017 — 10678 x 4.
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Robert C.

Vaughan 10678 = 42 x 254 + 10
Euclid’s 42=10x4+2
algorithm

Linear 10 = 2 X 5.

Diophantine
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Thus (10678,42) = 2.

® But how to compute the x and y in (a, b) = ax + by?

® We could just work backwards through the algorithm using
back substitution,

2=42—-10 x 4 =42 — (10678 — 42 x 254) x 4
=42 x 1017 — 10678 x 4.

® In general this is tedious and computationally wasteful
since it requires all our calculations to be stored. _
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apter .

Euclidis calculations out as follows.

Algorithm and

Applications r-1=1rqr+rn, Xi=X_1—qiXo, Y1 =Y-1—qi)0
b, n=ngq+tr, X=X —qxXx, Y2=Yo—Gqn

n=nmrnq+mn, X3=X1—43X2, Yy3=JY1—q3)?
Euclid’'s
algorithm : :

rs—2 = rs—1Qs.
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ri = ax; + by; and this can be proved by induction.
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Applications r-1=1rqr+rn, Xi=X_1—qiXo, Y1 =Y-1—qi)0
b, n=ngq+tr, X=X —qxXx, Y2=Yo—Gqn
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® The claim is that x = xs_1, y = ys—1. More generally
ri = ax; + by; and this can be proved by induction.
® By construction we have r_; = ax_1 + by_1,
ro = axp + byp.
® Suppose r; = ax;j + by; is established for all j < k. Then

Mk+1 = Fk—1 — Qk+17k
= (axk—1 + byk—1) — qrs1(axk + byx)
axk+1 + byk+1-
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A simpler way is as follows.

Define x_ 1 =1, y_1 =0, xo =0, yg = 1 and then lay the

calculations out as follows.
r-1=rqi+n, xX1=X-1—4qiXo, Y1=Y-1—q1)0
fh=nq+r, X2=X0—qX1, Y2=Y0o— Q)1
n=nmng+rmnr, X3=X—qX, Y3=Yy1—Gq)

rs—2 = rs—1Qs.

The claim is that x = xs_1, ¥ = ¥s—1. More generally

ri = ax; + by; and this can be proved by induction.

By construction we have r_; = ax_1 + by_1,

ro = axp + byp.

Suppose r; = ax; + by; is established for all j < k. Then

Mk+1 = Fk—1 — Qk+17k
= (axk—1 + byk—1) — qrs1(axk + byx)
= aXk+1 + byk+1-

In particular (a,b) = rs—1 = axs—1 + bys._1.
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42 =10-4+ 2, xp = —4, y, = 1017
10=2-5.

(10678,42) = 2 = 10678 - (—4) + 42 - (1017).
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® Hence laying out the example above in this expanded form
we have

r—1 = 10678, n = 42, X_1 = ].7 Xp = 0, Y—1= 0, Yo = 1,

42 =10-4+ 2, xp = —4, y, = 1017
10=2.5.

(10678,42) = 2 = 10678 - (—4) + 42 - (1017).

® |t is also possible to set this up using matrices.



® | ay out the sequences in rows

r-i,

X-1, Y-1
o,

X0, Yo
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® | ay out the sequences in rows

r-i, X-1, Y-1
r, X0, Yo

® Now proceed to compute each successive row as follows.
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algorithm

® Now proceed to compute each successive row as follows.

If the s-th row is the last one to be computed, calculate
gs = |rs—1/rs].
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Lay out the sequences in rows
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® Now proceed to compute each successive row as follows.

If the s-th row is the last one to be computed, calculate
gs = |rs—1/rs].

® Then take the last two rows computed and pre multiply by
(]-a _qs)
(1,=qs) (rs—1, Xs—1, Ys-1) _
re, Xe, ve ) (rs+1,Xs 41, Yst1)

to obtain the s + 1-st row.
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ren Let a = 4343, b = 973. We can lay this out as follows
Elucli_d's
o w3 1o
S o3 0 1
451 1 —4
71 —2 9

25 13 58
21 28 125
4 41 —183
1 —233 1040

Thus (4343,973) = 1 = (—233)4343 + (1040)973.
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® We can use Euclid’s algorithm to find the complete
solution in integers to linear diophantine equations of the

kind
ax + by = c.
® Here a, b, ¢ are integers and we wish to find all integers x
and y which satisfy this.

® There are some obvious necessary conditions.
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We can use Euclid’s algorithm to find the complete
solution in integers to linear diophantine equations of the
kind

ax + by = c.
Here a, b, ¢ are integers and we wish to find all integers x
and y which satisfy this.
There are some obvious necessary conditions.

First of all if a= b =0, then it is not soluble unless ¢ =0
and then it is soluble by any x and y, which is not very
interesting.
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We can use Euclid’s algorithm to find the complete
solution in integers to linear diophantine equations of the
kind

ax + by = c.
Here a, b, ¢ are integers and we wish to find all integers x
and y which satisfy this.
There are some obvious necessary conditions.

First of all if a= b =0, then it is not soluble unless ¢ =0
and then it is soluble by any x and y, which is not very
interesting.

Thus it makes sense to suppose that one of a or b is
non-zero.



Introduction
to Number
Theory
Chapter 2
Euclid’s
Algorithm and
Applications

Robert C.
Vaughan

Linear
Diophantine
Equations

We can use Euclid’s algorithm to find the complete
solution in integers to linear diophantine equations of the
kind

ax + by = c.
Here a, b, ¢ are integers and we wish to find all integers x
and y which satisfy this.
There are some obvious necessary conditions.

First of all if a= b =0, then it is not soluble unless ¢ =0
and then it is soluble by any x and y, which is not very
interesting.

Thus it makes sense to suppose that one of a or b is
non-zero.

Then since (a, b) divides the left hand side, we can only
have solutions if (a, b)|c.
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® We are considering ax + by = ¢ and we are assuming that
a and b are not both 0 and (a, b)|c.
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® We are considering ax + by = ¢ and we are assuming that
a and b are not both 0 and (a, b)|c.

e |f we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + blyc/(a, b)) = (ax + by)c/(a,b) = ¢

so we certainly have a solution of our equation.



Introduction ® We are considering ax + by = ¢ and we are assuming that
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= a and b are not both 0 and (a, b)|c.
s e |f we choose x and y so that ax + by = (a, b), then we
Applications have
Robert C.
Vaughan a(xc/(a, b)) + b(yc/(a, b)) = (ax + by)c/(a, b) = ¢
so we certainly have a solution of our equation.
Linear e Call it xg, yo.

Diophantine
Equations
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We are considering ax 4+ by = ¢ and we are assuming that
a and b are not both 0 and (a, b)|c.

If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + blyc/(a, b)) = (ax + by)c/(a,b) = ¢

so we certainly have a solution of our equation.
Call it xg, yo.
Now consider any other solution. Then

ax+ by —axg— by =c—c=0, a(x — x0) = b(yo — y)-
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We are considering ax 4+ by = ¢ and we are assuming that
a and b are not both 0 and (a, b)|c.

If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + blyc/(a, b)) = (ax + by)c/(a,b) = ¢

so we certainly have a solution of our equation.
Call it xg, yo.
Now consider any other solution. Then

ax+ by —axg— by =c—c=0, a(x — x0) = b(yo — y)-

Hence
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We are considering ax 4+ by = ¢ and we are assuming that
a and b are not both 0 and (a, b)|c.

If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + blyc/(a, b)) = (ax + by)c/(a,b) = ¢

so we certainly have a solution of our equation.
Call it xg, yo.
Now consider any other solution. Then

ax+ by —axg— by =c—c=0, a(x — x0) = b(yo — y)-

Hence
a b
(a,b)(X_XO) = (a,b)()/O _y)

Then as ((a"b , (abb ) =1 we have by an earlier example

thatyo—y:z( b

~
~

and x — xg —z( B) for some z.

~
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We are considering ax 4+ by = ¢ and we are assuming that
a and b are not both 0 and (a, b)|c.

If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + blyc/(a, b)) = (ax + by)c/(a,b) = ¢

so we certainly have a solution of our equation.
Call it xg, yo.
Now consider any other solution. Then

ax+ by —axg— by =c—c=0, a(x — x0) = b(yo — y)-

Hence
a b
(a,b)(X_XO) = (a,b)()/O _y)

Then as (ﬁ, ﬁ) = 1 we have by an earlier example

that yg — v = zﬁ and x — xp = zﬁ for some z.

But any x and y of this form give a solution, so we have
found the complete solution set.
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® \We have
Theorem 3

Suppose that a and b are not both 0 and (a, b)|c. Suppose
further that axg + byg = c¢. Then every solution of

ax + by =c¢

is given by

b
(ab) 7~ %(@b)

X=X+ 2z

where z is any integer.
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® We have
Theorem 3
Suppose that a and b are not both 0 and (a, b)|c. Suppose
further that axg + byg = c¢. Then every solution of

ax+ by =c

is given by

X=X+ 2z

b a
- —
(b)) 7" (@)
where z is any integer.

® One can see here that the solutions x all leave the same
. S b . .
remainder on division by @b and likewise for y on
a

division by @b This suggests that there may be a useful
way of classifying integers.
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