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Euclid’s Algorithm

• The question arises. We know that given integers a, b not
both 0, there are integers x and y so that

(a, b) = ax + by .

How do we find x and y?

• A method for solving this problem, known as Euclid’s
algorithm, first appeared in Euclid’s Elements more than
2000 years ago.

• Moreover this solution gives a very efficient algorithm and
it is still the basis for many numerical methods in
arithmetical applications.

• We may certainly suppose that a and b > 0 since
multiplying either by (−1) does not change the (a, b) - we
can replace x by −x and y by −y .
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• We can certainly suppose that b ≤ a. For convenience of
notation put r0 = b, r−1 = a.

• Now apply the division algorithm iteratively as follows

r−1 = r0q1 + r1, 0 < r1 ≤ r0,

r0 = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

. . .

rs−3 = rs−2qs−1 + rs−1, 0 < rs−1 < rs−2,

rs−2 = rs−1qs .

• That is, we stop the moment that there is a remainder
equal to 0.

• This could be r1 if b|a, for example, although the way it is
written out above it is as if s is at least 3.

• The important point is that because rj < rj−1, sooner or
later we must have a zero remainder.
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• Repeating

r−1 = r0q1 + r1, 0 < r1 ≤ r0,

r0 = r1q2 + r2, 0 < r2 < r1,

r1 = r2q3 + r3, 0 < r3 < r2,

. . .

rs−3 = rs−2qs−1 + rs−1, 0 < rs−1 < rs−2,

rs−2 = rs−1qs .

• Euclid proved that (a, b) = rs−1.
• First of all (a, b)|a and (a, b)|b, and so (a, b)|r1.
• Repeating this we get (a, b)|rj for j = 2, 3, . . . , s − 1.
• On the other hand, starting at the bottom line rs−1|rs−2,
rs−1|rs−3 and so on until we have rs−1|b and rs−1|a.
Recall that this means that rs−1|(a, b).

• Thus we have just proved that

rs−1|(a, b), (a, b)|rs−1, rs−1 = (a, b).
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• Consider.

Example 1

Let a = 10678, b = 42

10678 = 42× 254 + 10

42 = 10× 4 + 2

10 = 2× 5.

Thus (10678, 42) = 2.

• But how to compute the x and y in (a, b) = ax + by?

• We could just work backwards through the algorithm using
back substitution,

2 = 42− 10× 4 = 42− (10678− 42× 254)× 4

= 42× 1017− 10678× 4.

• In general this is tedious and computationally wasteful
since it requires all our calculations to be stored.
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• A simpler way is as follows.

• Define x−1 = 1, y−1 = 0, x0 = 0, y0 = 1 and then lay the
calculations out as follows.

r−1 = r0q1 + r1, x1 = x−1 − q1x0, y1 = y−1 − q1y0
r0 = r1q2 + r2, x2 = x0 − q2x1, y2 = y0 − q2y1
r1 = r2q3 + r3, x3 = x1 − q3x2, y3 = y1 − q3y2
...

...
...

rs−2 = rs−1qs .

• The claim is that x = xs−1, y = ys−1. More generally
rj = axj + byj and this can be proved by induction.

• By construction we have r−1 = ax−1 + by−1,
r0 = ax0 + by0.

• Suppose rj = axj + byj is established for all j ≤ k . Then

rk+1 = rk−1 − qk+1rk

= (axk−1 + byk−1)− qk+1(axk + byk)

= axk+1 + byk+1.

• In particular (a, b) = rs−1 = axs−1 + bys−1.
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• Hence laying out the example above in this expanded form
we have

r−1 = 10678, r0 = 42, x−1 = 1, x0 = 0, y−1 = 0, y0 = 1,

10678 = 42 · 254 + 10, x1 = 1, y1 = −254
42 = 10 · 4 + 2, x2 = −4, y2 = 1017
10 = 2 · 5.

(10678, 42) = 2 = 10678 · (−4) + 42 · (1017).

• It is also possible to set this up using matrices.



Introduction
to Number
Theory

Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

• Hence laying out the example above in this expanded form
we have

r−1 = 10678, r0 = 42, x−1 = 1, x0 = 0, y−1 = 0, y0 = 1,

10678 = 42 · 254 + 10, x1 = 1, y1 = −254
42 = 10 · 4 + 2, x2 = −4, y2 = 1017
10 = 2 · 5.

(10678, 42) = 2 = 10678 · (−4) + 42 · (1017).

• It is also possible to set this up using matrices.



Introduction
to Number
Theory

Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

• Lay out the sequences in rows

r−1, x−1, y−1

r0, x0, y0
...

...
...

• Now proceed to compute each successive row as follows.

• If the s-th row is the last one to be computed, calculate
qs = ⌊rs−1/rs⌋.

• Then take the last two rows computed and pre multiply by
(1,−qs)

(1,−qs)
(
rs−1, xs−1, ys−1

rs , xs , ys

)
= (rs+1, xs+1, ys+1)

to obtain the s + 1-st row.
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• Here is a simple example.

Example 2

Let a = 4343, b = 973. We can lay this out as follows

4343 1 0
4 973 0 1
2 451 1 −4
6 71 −2 9
2 25 13 −58
1 21 −28 125
5 4 41 −183

1 −233 1040

Thus (4343, 973) = 1 = (−233)4343 + (1040)973.
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• We can use Euclid’s algorithm to find the complete
solution in integers to linear diophantine equations of the
kind

ax + by = c .

• Here a, b, c are integers and we wish to find all integers x
and y which satisfy this.

• There are some obvious necessary conditions.

• First of all if a = b = 0, then it is not soluble unless c = 0
and then it is soluble by any x and y , which is not very
interesting.

• Thus it makes sense to suppose that one of a or b is
non-zero.

• Then since (a, b) divides the left hand side, we can only
have solutions if (a, b)|c .
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• We are considering ax + by = c and we are assuming that
a and b are not both 0 and (a, b)|c.

• If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + b(yc/(a, b)) = (ax + by)c/(a, b) = c

so we certainly have a solution of our equation.

• Call it x0, y0.

• Now consider any other solution. Then

ax + by − ax0 − by0 = c − c = 0, a(x − x0) = b(y0 − y).

• Hence
a

(a, b)
(x − x0) =

b

(a, b)
(y0 − y).

• Then as
(

a
(a,b) ,

b
(a,b)

)
= 1 we have by an earlier example

that y0 − y = z a
(a,b) and x − x0 = z b

(a,b) for some z .

• But any x and y of this form give a solution, so we have
found the complete solution set.



Introduction
to Number
Theory

Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

• We are considering ax + by = c and we are assuming that
a and b are not both 0 and (a, b)|c.

• If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + b(yc/(a, b)) = (ax + by)c/(a, b) = c

so we certainly have a solution of our equation.

• Call it x0, y0.

• Now consider any other solution. Then

ax + by − ax0 − by0 = c − c = 0, a(x − x0) = b(y0 − y).

• Hence
a

(a, b)
(x − x0) =

b

(a, b)
(y0 − y).

• Then as
(

a
(a,b) ,

b
(a,b)

)
= 1 we have by an earlier example

that y0 − y = z a
(a,b) and x − x0 = z b

(a,b) for some z .

• But any x and y of this form give a solution, so we have
found the complete solution set.



Introduction
to Number
Theory

Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

• We are considering ax + by = c and we are assuming that
a and b are not both 0 and (a, b)|c.

• If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + b(yc/(a, b)) = (ax + by)c/(a, b) = c

so we certainly have a solution of our equation.

• Call it x0, y0.

• Now consider any other solution. Then

ax + by − ax0 − by0 = c − c = 0, a(x − x0) = b(y0 − y).

• Hence
a

(a, b)
(x − x0) =

b

(a, b)
(y0 − y).

• Then as
(

a
(a,b) ,

b
(a,b)

)
= 1 we have by an earlier example

that y0 − y = z a
(a,b) and x − x0 = z b

(a,b) for some z .

• But any x and y of this form give a solution, so we have
found the complete solution set.



Introduction
to Number
Theory

Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

• We are considering ax + by = c and we are assuming that
a and b are not both 0 and (a, b)|c.

• If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + b(yc/(a, b)) = (ax + by)c/(a, b) = c

so we certainly have a solution of our equation.

• Call it x0, y0.

• Now consider any other solution. Then

ax + by − ax0 − by0 = c − c = 0, a(x − x0) = b(y0 − y).

• Hence
a

(a, b)
(x − x0) =

b

(a, b)
(y0 − y).

• Then as
(

a
(a,b) ,

b
(a,b)

)
= 1 we have by an earlier example

that y0 − y = z a
(a,b) and x − x0 = z b

(a,b) for some z .

• But any x and y of this form give a solution, so we have
found the complete solution set.



Introduction
to Number
Theory

Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

• We are considering ax + by = c and we are assuming that
a and b are not both 0 and (a, b)|c.

• If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + b(yc/(a, b)) = (ax + by)c/(a, b) = c

so we certainly have a solution of our equation.

• Call it x0, y0.

• Now consider any other solution. Then

ax + by − ax0 − by0 = c − c = 0, a(x − x0) = b(y0 − y).

• Hence
a

(a, b)
(x − x0) =

b

(a, b)
(y0 − y).

• Then as
(

a
(a,b) ,

b
(a,b)

)
= 1 we have by an earlier example

that y0 − y = z a
(a,b) and x − x0 = z b

(a,b) for some z .

• But any x and y of this form give a solution, so we have
found the complete solution set.



Introduction
to Number
Theory

Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

• We are considering ax + by = c and we are assuming that
a and b are not both 0 and (a, b)|c.

• If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + b(yc/(a, b)) = (ax + by)c/(a, b) = c

so we certainly have a solution of our equation.

• Call it x0, y0.

• Now consider any other solution. Then

ax + by − ax0 − by0 = c − c = 0, a(x − x0) = b(y0 − y).

• Hence
a

(a, b)
(x − x0) =

b

(a, b)
(y0 − y).

• Then as
(

a
(a,b) ,

b
(a,b)

)
= 1 we have by an earlier example

that y0 − y = z a
(a,b) and x − x0 = z b

(a,b) for some z .

• But any x and y of this form give a solution, so we have
found the complete solution set.



Introduction
to Number
Theory

Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

• We are considering ax + by = c and we are assuming that
a and b are not both 0 and (a, b)|c.

• If we choose x and y so that ax + by = (a, b), then we
have

a(xc/(a, b)) + b(yc/(a, b)) = (ax + by)c/(a, b) = c

so we certainly have a solution of our equation.

• Call it x0, y0.

• Now consider any other solution. Then

ax + by − ax0 − by0 = c − c = 0, a(x − x0) = b(y0 − y).

• Hence
a

(a, b)
(x − x0) =

b

(a, b)
(y0 − y).

• Then as
(

a
(a,b) ,

b
(a,b)

)
= 1 we have by an earlier example

that y0 − y = z a
(a,b) and x − x0 = z b

(a,b) for some z .

• But any x and y of this form give a solution, so we have
found the complete solution set.



Introduction
to Number
Theory

Chapter 2
Euclid’s

Algorithm and
Applications

Robert C.
Vaughan

Euclid’s
algorithm

Linear
Diophantine
Equations

• We have

Theorem 3

Suppose that a and b are not both 0 and (a, b)|c . Suppose
further that ax0 + by0 = c. Then every solution of

ax + by = c

is given by

x = x0 + z
b

(a, b)
, y = y0 − z

a

(a, b)

where z is any integer.

• One can see here that the solutions x all leave the same
remainder on division by b

(a,b) and likewise for y on

division by a
(a,b) . This suggests that there may be a useful

way of classifying integers.
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