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• We are motivated at this stage by wanting to understand
the basic operations of addition and multiplication. The
basic concept concerning multiplication is that of
divisibility.
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• We start with some definitions. We need some concept of
divisibility and factorization.

• Given two integers a and b we say that a divides b, if
there is a third integer c such that

ac = b

and we write
a|b.

• Example. If a|b and b|c , then a|c .
• Proof. There are d and e so that b = ad and c = be.

Hence a(de) = (ad)e = be = c and de is an integer.
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• There are some facts which are useful.

• For any a we have 0a = 0.

• If ab = 1, then a = ±1 and b = ±1 (with the same sign in
each case).

• If a ̸= 0 and ac = ad , then c = d .
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Definition 1

A member of N greater than 1 which is only divisible by 1 and
itself is called a prime number.

• We will use the letter p routinely to denote a prime
number.

• Example. 127 is a prime number.

• Proof. How to prove this? Well obviously one only needs
to check for divisors d with 1 < d < 127.

• Moreover if d |127, then there is an e = 127/d |127 and
one of d , e is ≤

√
127 so we only need to check out to 11.

• Oh, and really we only need to check 2, 3, 5, 7, 11.

• Also 2 and 5 are clearly not divisors and 3 is easily
checked, so only 7 and 11 need any checking, and 7 leaves
the remainder 1, not 0, and 11 the remainder 6.
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• By the way, factorization and primality testing methods
have important practical impact on some security systems.

• Factorization can be hard.

• Here is an example. Is

5954579759875958495749857985958598

4759457948579595794859456799501

prime or composite?

• Can you find a way to check this which is certain? Being
wrong could be expensive - an employer might be very
upset if you get it wrong! The method needs to be
provably correct.

• How about a number with 1000 digits?
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• Since we are dealing with simple proofs for facts about N
there is one proof method which is very important.

• This is the principle of induction.

• It is actually embedded into the definition of N.
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Axioms for the Natural Numbers

• The Peano axioms for N.

• (i) 1 is a natural number.

• (ii) If n is a natural number, then so is n + 1, the
successor of n.

• (iii) 1 is not the successor of any natural number.

• (iv) If m + 1 = n + 1, then m = n.

• (v) The Principle of Induction. If a statement is true of
1 and if the truth of that statement for a number implies
its truth for the successor of that number, then the
statement is true for every natural number.

• A statement which is provably equivalent is the
Well-ordering Principle which says that any non-empty
set of integers which is bounded below has a minimal
element.
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Primes and Factorization

• Theorem. Every member of N is a product of prime
numbers.

• Proof. 1 is an “empty product” of primes, so the case
n = 1 holds.

• Suppose that we have proved the result for every m with
m ≤ n.

• If n + 1 is prime we are done.

• Suppose n + 1 is not prime. Then there is an a with
a|n + 1 and 1 < a < n + 1.

• Then also 1 < n+1
a < n + 1.

• But then on the inductive hypothesis both a and n+1
a are

products of primes.
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Primes and Factorization

• We can use this to prove the following.
Theorem.[Euclid] There exist infinitely many primes.

• Proof. We argue by contradiction.

• Suppose there are only a finite number of primes, say
p1, p2, . . . , pn and let

m = p1p2 . . . pn + 1.

• Since 2 is a prime we have m > 1.

• By the previous theorem it is a product of primes, and in
particular there is a prime p dividing m.

• But p is one of the primes p1, p2, . . . , pn so
p|m − p1p2 . . . pn = 1.

• But 1 is not divisible by any prime. So our assumption was
false.
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• Proof. We argue by contradiction.

• Suppose there are only a finite number of primes, say
p1, p2, . . . , pn and let

m = p1p2 . . . pn + 1.

• Since 2 is a prime we have m > 1.

• By the previous theorem it is a product of primes, and in
particular there is a prime p dividing m.

• But p is one of the primes p1, p2, . . . , pn so
p|m − p1p2 . . . pn = 1.

• But 1 is not divisible by any prime. So our assumption was
false.
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Dirichlet Box Principle

• Here is an idea which we will use multiple times during
some of our simple proofs.

• Example. Dirichlet’s box principle

• Suppose that we have n boxes and a collection of n + 1
objects and we put the objects into boxes at random.
Then one box will contain at least two objects.

• Proof. The case n = 1 is obvious (I hope).

• Suppose the n-th case is already proven and now we have
n + 1 boxes and n + 2 objects.

• We argue by contradiction. Put the objects into the boxes
at random and suppose that no box would have two
objects in it.

• However even so at least one box would have one object in
it. Remove that box. Now we have placed n+ 1 objects in
the n remaining boxes and we have a contradiction to the
case already proven.
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Another Induction Example

• Example. The Fibonacci sequence is given by
F1 = F2 = 1, Fn+1 = Fn + Fn−1 (n = 2, 3, . . .).

• Show that if m, n ∈ N satisfy m|Fn and m|Fn+1, then
m = 1.

• We can use induction to give a proof.

• Proof. We know that if m ∈ N and m|1, then m = 1, so
this establishes the base case n = 1.

• Suppose that we know that the n-th case holds and that
m ∈ N, m|Fn+2 and m|Fn+1.

• Then Fn = Fn+2 − Fn+1 and so m|Fn.
• Hence, by the inductive hypothesis m = 1.
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Divisibility Example

• Example. Show that n|(n − 1)! for all composite n > 4.

• Here we can just use the divisibility properties.

• Proof. Since n is composite we have n = ab with
1 < a ≤ b < n.

• If a ̸= b, then a and b occur as separate factors in
(n − 1)! = 1.2.3...(n − 1) and we are done.

• Thus we may suppose that n = a2.

• Since n > 4 we have a > 2. Thus 1 < a < 2a < a2 = n, so
a and 2a are separate factors of (n − 1)!.
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The Division Algorithm

• We now come to something very important

• Theorem. The division algorithm. Suppose that a ∈ Z
and d ∈ N. Then there are unique q, r ∈ Z such that

a = dq + r , 0 ≤ r < d .

• The number q is called the quotient and r the remainder.
By the way, it is exactly this which one uses when one
performs long division.

• Example. Try dividing 19 into 192837465 by the method
you were taught at grade school.
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The Division Algorithm

• Theorem. The division algorithm. Suppose that a ∈ Z
and d ∈ N. Then there are unique q, r ∈ Z such that

a = dq + r , 0 ≤ r < d .

• Proof. We have two tasks, to existence & uniqueness.
• Existence. Define D = {a− dx : x ∈ Z}.
• If a ≥ 0, then a− d(−1) ∈ D and a− d(−1) = a+ d > 0,
and if a < 0, then a− d(a− 1) = (d − 1)(−a) + d > 0.

• Hence D contains positive integers.
• Let D∗ = D ∩ N.
• Then D∗ is bounded below and non-empty, so by the
well-ordering principle it has a minimum.

• Let r denote this minimum, and let q be the
corresponding value of x . Then a = dq + r , 0 ≤ r .

• If r ≥ d , then a = d(q + 1) + (r − d) is another solution,
but r − d < r contradicting the minimality of r .

• Hence r < d as required.
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• If a ≥ 0, then a− d(−1) ∈ D and a− d(−1) = a+ d > 0,
and if a < 0, then a− d(a− 1) = (d − 1)(−a) + d > 0.

• Hence D contains positive integers.
• Let D∗ = D ∩ N.
• Then D∗ is bounded below and non-empty, so by the
well-ordering principle it has a minimum.

• Let r denote this minimum, and let q be the
corresponding value of x . Then a = dq + r , 0 ≤ r .

• If r ≥ d , then a = d(q + 1) + (r − d) is another solution,
but r − d < r contradicting the minimality of r .

• Hence r < d as required.
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The Division Algorithm

• Theorem.The division algorithm. Suppose that a ∈ Z and
d ∈ N. Then there are unique q, r ∈ Z such that

a = dq + r , 0 ≤ r < d .

• Uniqueness. Observe that if we have a second solution

a = dq′ + r ′, 0 ≤ r ′ < d , q′ ̸= q,

then

0 = a− a = (dq′ + r ′)− (dq + r) = d(q′ − q) + (r ′ − r).

• Then we would have

d ≤ d |q′ − q| = |r ′ − r | < d

which is impossible.

• We will make frequent use of the division algorithm as well
as the next theorem.
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• Theorem. Given two integers a and b, not both 0, define

D(a, b) = {ax + by : x ∈ Z, y ∈ Z}.

Then D(a, b) has positive elements. Let (a, b) denote its
least positive element. Then (a, b) has the properties
(i) (a, b)|a,
(ii) (a, b)|b,
(iii) if c satisfies c |a and c |b, then c |(a, b).

• Definition. We call (a, b) the greatest common divisor of
a and b, often abbreviated to gcd or GCD. The symbol
(a, b) has many uses in mathematics, so to be clear one
sometimes writes

gcd(a, b) or GCD(a, b).
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D(a, b) = {ax + by : x ∈ Z, y ∈ Z}.

Then D(a, b) has positive elements. Let (a, b) denote its
least positive element. Then (a, b) has the properties
(i) (a, b)|a,
(ii) (a, b)|b,
(iii) if c satisfies c |a and c |b, then c |(a, b).

• Proof. Existence.

• If a is positive, then so is a.1 + b.0. Likewise if b is
positive. If a is negative, then a(−1) + b.0 is positive, and
again likewise if b is negative. The only remaining case is
a = b = 0 which is expressly excluded. Thus D(a, b) does
indeed have positive elements. Thus (a, b) exists.
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Then D(a, b) has positive elements. Let (a, b) denote its
least positive element. Then (a, b) has the properties
(i) (a, b)|a,
(ii) (a, b)|b,
(iii) if c satisfies c |a and c |b, then c |(a, b).

• Properties. Suppose (i) is false. By the division algorithm
we have a = (a, b)q + r with 0 ≤ r < (a, b).

• But the falsity of (i) means that 0 < r .
• Thus r = a− (a, b)q = a− (ax + by)q for some integers x
and y .

• Hence r = a(1− xq) + b(−yq).
• Since 0 < r < (a, b) this contradicts the minimality of
(a, b).

• Likewise for (ii).
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Then D(a, b) has positive elements. Let (a, b) denote its
least positive element. Then (a, b) has the properties
(i) (a, b)|a,
(ii) (a, b)|b,
(iii) if c satisfies c |a and c |b, then c |(a, b).

• Properties. (iii) if the integer c satisfies c |a and c |b, then
a = cu and b = cv for some integers u and v .

• and for some integers x and y we have (a, b) = ax + by .

• Thus

(a, b) = ax + by = cux + cvy = c(ux + vy)

so (iii) holds.
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• The GCD has some interesting properties. Here are two.

• Example. We have
(

a
(a,b) ,

b
(a,b)

)
= 1.

• To see this observe that if d =
(

a
(a,b) ,

b
(a,b)

)
, then d | a

(a,b)

and d | b
(a,b) , and hence d(a, b)|a and d(a, b)|b.

• But then d(a, b)|(a, b) and so d |1, whence d = 1.

• Example. Suppose that a and b are not both 0. Then for
any integer x we have (a+ bx , b) = (a, b).

• Here is a proof. First of all (a, b)|a and (a, b)|b, so
(a, b)|a+ bx .

• Hence (a, b)|(a+ bx , b).

• On the other hand (a+ bx , b)|a+ bx and (a+ bx , b)|b so
that (a+ bx)|a+ bx − bx = a.

• Hence (a+ bx , b)|(a, b)|(a+ bx , b) and so
(a, b) = (a+ bx , b).
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• Here is another.

• Example. Suppose that (a, b) = 1 and ax = by .

• Then there is a z such that x = bz , y = az .

• It suffices to show that b|x , for then the conclusion follows
on taking z = x/b.

• To see this observe that there are u and v so that
au + bv = (a, b) = 1. Hence
x = aux + bvx = byu + bvx = b(yu + vx) and so b|x .
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• Theorem. Given two integers a and b, not both 0, define

D(a, b) = {ax + by : x ∈ Z, y ∈ Z}.

Then D(a, b) has positive elements. Let (a, b) denote its
least positive element. Then (a, b) has the properties
(i) (a, b)|a,
(ii) (a, b)|b,
(iii) if c satisfies c |a and c |b, then c |(a, b).

• From the above we immediately have the following
• Corollary. Suppose that a and b are integers not both 0.
Then there are integers x and y such that

(a, b) = ax + by .

• Later we will look at a way of finding suitable x and y in
examples.

• As it stands the theorem gives no simple constructive way
of finding them. It is a pure existence proof.
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• Corollary. Suppose that a and b are integers not both 0.
Then there are integers x and y such that

(a, b) = ax + by .

• As a first application of the corollary we establish

• Theorem.Euclid. Suppose that p is a prime number, and
a and b are integers such that p|ab. Then either p|a or
p|b.

• You might think this is obvious, but .....
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An Example

• Consider the set A of integers of the form 4k + 1.

• If you multiply two together, e.g. (4k1 + 1)(4k2 + 1) =
16k1k2 + 4k2 + 4k1 + 1 = 4(4k1k2 + k1 + k2) + 1 you get
another of the same kind.

• So A has “closure” under multiplication.
• We can define a “prime” p in this system if it is only

divisible by 1 and itself in the system.
• Here is a list of “primes” in A.

5, 9, 13, 17, 21, 29, 33, 37, 41, 49 . . .

• Thus 9, 21 and 49 are primes in A because 3 and 7 are
not in A.

• Now look at 441.
• We have

441 = 9× 49 = 212.

So, in A factorisation is not unique!.
• Moreover 9|212 but 9 ∤ 21.
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An Example

• What is the difference between Z and A?

• Well Z has an additive structure and A does not.

• Add two members of Z and you get another one.

• Add two members of A and you get a number which
leaves the remainder 2 on division by 4, so is not in A.

• Amazingly we have to use the additive structure to get
something fundamental about the multiplicative structure.

• This is of huge significance and underpins some of the
most fundamental questions in mathematics.
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Euclid’s Theorem

• Theorem.Euclid. Suppose that p is a prime number, and
a and b are integers such that p|ab. Then either p|a or
p|b.

• Proof. If a or b are 0, then the result is obvious.

• Thus we may suppose that ab ̸= 0.

• Suppose that p ∤ a.
• We know from the previous theorem that there are x and
y so that (a, p) = ax + py and that (a, p)|p and (a, p)|a.

• Since p is prime we must have (a, p) = 1 or p.

• But we are supposing that p ∤ a so (a, p) ̸= p, i.e.
(a, p) = 1.

• Hence 1 = ax + py . But then

b = abx + pby

and since p|ab we have p|b as required.
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• But we are supposing that p ∤ a so (a, p) ̸= p, i.e.
(a, p) = 1.

• Hence 1 = ax + py . But then

b = abx + pby

and since p|ab we have p|b as required.
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• Theorem.Euclid. Suppose that p is a prime number, and
a and b are integers such that p|ab. Then either p|a or
p|b.

• We can use this to establish the following.

• Theorem. Suppose that p, p1, p2, . . . , pr are prime
numbers and p|p1p2 . . . pr . Then p = pj for some j .

• Proof. We prove this by induction on r .

• The case r = 1 is immediate from the definition of prime.

• Suppose we have established the r -th case and that we
have p|p1p2 . . . pr+1.

• Then by the previous theorem we have p|pr+1 or
p|p1p2 . . . pr .

• In the first case we must have p = pr+1.

• In the second by the inductive hypothesis we must have
p = pj for some j with 1 ≤ j ≤ r .
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• Theorem.The Fundamental Theorem of Arithmetic.
Factorization into prime numbers is unique apart from the
order of the factors.

• More precisely if a is a non-zero integer and a ̸= ±1, then

a = (±1)p1p2 . . . pr

for some r ≥ 1 and prime numbers p1, . . . , pr , and r and
the choice of sign is unique and the primes pj are unique
apart from their ordering.
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• Theorem.The Fundamental Theorem of Arithmetic.
Factorization into prime numbers is unique.

• Proof. We may certainly suppose that a > 0, and so
a ≥ 2. We saw in the very first theorem that a will be a
product of primes, say a = p1p2 . . . pr with r ≥ 1. We
have to prove uniqueness, and we will induct on r .

• Suppose r = 1 and a is another product of primes
a = p′1 . . . p

′
s where s ≥ 1.

• Then p′1|p1 and so p′1 = p1 and p′2 . . . p
′
s = 1, whence

s = 1 also, and so establishes the base case r = 1.
• Now suppose that the result holds for some r ≥ 1 and we

have a product of r + 1 primes, and and as before

a = p1p2 . . . pr+1 = p′1 . . . p
′
s .

• Then by the previous theorem p′1 = pj for some j and then
p′2 . . . p

′
s = p1p2 . . . pr+1/pj and we can apply the

inductive hypothesis to obtain the desired conclusion.
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GCD and LCM

• There are various other properties of GCDs.

• Suppose a, b ∈ N. Then we can write

a = pr11 . . . prkk , b = ps11 . . . pskk

where the p1, . . . pk are the different primes in the
factorization of a and b and we allow the possibility that
the exponents rj and sj may be zero.

• Then it can be checked easily that

(a, b) = p
min(r1,s1)
1 . . . p

min(rk ,sk )
k .

• Definition. We can also introduce here the least common
multiple LCM [a, b] = ab

(a,b) and this could also be defined
by

[a, b] = p
max(r1,s1)
1 . . . p

max(rk ,sk )
k .

• It has the property of being the smallest positive number
divisible by both a and b.
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• It has the property of being the smallest positive number
divisible by both a and b.
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• Example. Show that if a and b are positive integers and
n > 1, then an − bn ∤ an + bn.

• Proof. We can suppose that (a, b) = 1, because if
d = (a, b) and an − bn|an + bn, then
(a/d)n − (b/d)n|(a/d)n + (b/d)n.

• Suppose on the contrary that an − bn|an + bn.

• Then an − bn|an + bn ± (an − bn), so an − bn|2an and
an − bn|2bn.

• Hence an − bn|2(an, bn) = 2(a, b)n = 2.

• We can suppose that a > b, whence
an − bn ≥ (b + 1)n − bn ≥ nbn−1 + · · ·+ 1 ≥ 3 by the
binomial theorem, which is impossible since an − bn|2.
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