Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Number Theory Chapter 1

Robert C. Vaughan

January 12, 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

• We are motivated at this stage by wanting to understand the basic operations of addition and multiplication. The basic concept concerning multiplication is that of divisibility.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic • We start with some definitions. We need some concept of divisibility and factorization.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

- We start with some definitions. We need some concept of divisibility and factorization.
- Given two integers *a* and *b* we say that *a* divides *b*, if there is a third integer *c* such that

ac = b

and we write

a|b.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

- We start with some definitions. We need some concept of divisibility and factorization.
- Given two integers *a* and *b* we say that *a* divides *b*, if there is a third integer *c* such that

$$ac = b$$

and we write

a|b.

• **Example.** If a|b and b|c, then a|c.

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

- We start with some definitions. We need some concept of divisibility and factorization.
- Given two integers *a* and *b* we say that *a* divides *b*, if there is a third integer *c* such that

$$ac = b$$

and we write

- **Example.** If a|b and b|c, then a|c.
- **Proof.** There are d and e so that b = ad and c = be. Hence a(de) = (ad)e = be = c and de is an integer.

Divisibility

The fundamenta theorem of arithmetic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- There are some facts which are useful.
- For any a we have 0a = 0.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- There are some facts which are useful.
- For any a we have 0a = 0.
- If ab = 1, then $a = \pm 1$ and $b = \pm 1$ (with the same sign in each case).

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- There are some facts which are useful.
- For any a we have 0a = 0.
- If ab = 1, then $a = \pm 1$ and $b = \pm 1$ (with the same sign in each case).
- If $a \neq 0$ and ac = ad, then c = d.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Definition 1

A member of \mathbb{N} greater than 1 which is only divisible by 1 and itself is called a prime number.

• We will use the letter *p* routinely to denote a prime number.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Definition 1

- We will use the letter *p* routinely to denote a prime number.
- Example. 127 is a prime number.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Definition 1

- We will use the letter *p* routinely to denote a prime number.
- **Example.** 127 is a prime number.
- **Proof.** How to prove this? Well obviously one only needs to check for divisors d with 1 < d < 127.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Definition 1

- We will use the letter *p* routinely to denote a prime number.
- **Example.** 127 is a prime number.
- **Proof.** How to prove this? Well obviously one only needs to check for divisors d with 1 < d < 127.
- Moreover if d|127, then there is an e = 127/d|127 and one of d, e is ≤ √127 so we only need to check out to 11.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Definition 1

- We will use the letter *p* routinely to denote a prime number.
- **Example.** 127 is a prime number.
- **Proof.** How to prove this? Well obviously one only needs to check for divisors d with 1 < d < 127.
- Moreover if d|127, then there is an e = 127/d|127 and one of d, e is ≤ √127 so we only need to check out to 11.
- Oh, and really we only need to check 2, 3, 5, 7, 11.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Definition 1

- We will use the letter *p* routinely to denote a prime number.
- **Example.** 127 is a prime number.
- **Proof.** How to prove this? Well obviously one only needs to check for divisors d with 1 < d < 127.
- Moreover if d|127, then there is an e = 127/d|127 and one of d, e is $\leq \sqrt{127}$ so we only need to check out to 11.
- Oh, and really we only need to check 2, 3, 5, 7, 11.
- Also 2 and 5 are clearly not divisors and 3 is easily checked, so only 7 and 11 need any checking, and 7 leaves the remainder 1, not 0, and 11 the remainder 6.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic • By the way, factorization and primality testing methods have important practical impact on some security systems.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- By the way, factorization and primality testing methods have important practical impact on some security systems.
- Factorization can be hard.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

- By the way, factorization and primality testing methods have important practical impact on some security systems.
- Factorization can be hard.
- Here is an example. Is

5954579759875958495749857985958598 4759457948579595794859456799501

prime or composite?

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

- By the way, factorization and primality testing methods have important practical impact on some security systems.
- Factorization can be hard.
- Here is an example. Is

5954579759875958495749857985958598 4759457948579595794859456799501

prime or composite?

• Can you find a way to check this which is certain? Being wrong could be expensive - an employer might be very upset if you get it wrong! The method needs to be provably correct.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

- By the way, factorization and primality testing methods have important practical impact on some security systems.
- Factorization can be hard.
- Here is an example. Is

5954579759875958495749857985958598 4759457948579595794859456799501

prime or composite?

- Can you find a way to check this which is certain? Being wrong could be expensive an employer might be very upset if you get it wrong! The method needs to be provably correct.
- How about a number with 1000 digits?

The fundamenta theorem of arithmetic

• Since we are dealing with simple proofs for facts about ℕ there is one proof method which is very important.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- Since we are dealing with simple proofs for facts about ℕ there is one proof method which is very important.
- This is the principle of induction.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- Since we are dealing with simple proofs for facts about ℕ there is one proof method which is very important.
- This is the principle of induction.
- It is actually embedded into the definition of \mathbb{N} .

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Axioms for the Natural Numbers

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ● ●

• The Peano axioms for \mathbb{N} .

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Axioms for the Natural Numbers

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

- The Peano axioms for \mathbb{N} .
- (i) 1 is a natural number.

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Axioms for the Natural Numbers

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

- The Peano axioms for \mathbb{N} .
- (i) 1 is a natural number.
- (ii) If *n* is a natural number, then so is n + 1, the successor of *n*.

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Axioms for the Natural Numbers

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The Peano axioms for \mathbb{N} .
- (i) 1 is a natural number.
- (ii) If n is a natural number, then so is n + 1, the successor of n.
- (iii) 1 is not the successor of any natural number.

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

Axioms for the Natural Numbers

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The Peano axioms for \mathbb{N} .
- (i) 1 is a natural number.
- (ii) If n is a natural number, then so is n + 1, the successor of n.
- (iii) 1 is not the successor of any natural number.
- (iv) If m + 1 = n + 1, then m = n.

Axioms for the Natural Numbers

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• The Peano axioms for \mathbb{N} .

- (i) 1 is a natural number.
- (ii) If *n* is a natural number, then so is *n* + 1, the successor of *n*.
- (iii) 1 is not the successor of any natural number.
- (iv) If m + 1 = n + 1, then m = n.
- (v) The Principle of Induction. If a statement is true of 1 and if the truth of that statement for a number implies its truth for the successor of that number, then the statement is true for every natural number.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

Axioms for the Natural Numbers

- The Peano axioms for \mathbb{N} .
- (i) 1 is a natural number.
- (ii) If *n* is a natural number, then so is *n* + 1, the successor of *n*.
- (iii) 1 is not the successor of any natural number.
- (iv) If m + 1 = n + 1, then m = n.
- (v) **The Principle of Induction.** If a statement is true of 1 and if the truth of that statement for a number implies its truth for the successor of that number, then the statement is true for every natural number.
- A statement which is provably equivalent is the **Well-ordering Principle** which says that any non-empty set of integers which is bounded below has a minimal element.

Robert C. Vaughan

Number

Theory Chapter 1

The integers

Divisibility

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic • **Theorem.** Every member of N is a product of prime numbers.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** Every member of N is a product of prime numbers.
- **Proof.** 1 is an "empty product" of primes, so the case n = 1 holds.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** Every member of N is a product of prime numbers.
- **Proof.** 1 is an "empty product" of primes, so the case n = 1 holds.
- Suppose that we have proved the result for every m with $m \leq n$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** Every member of N is a product of prime numbers.
- **Proof.** 1 is an "empty product" of primes, so the case n = 1 holds.
- Suppose that we have proved the result for every m with $m \leq n$.
- If n + 1 is prime we are done.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** Every member of N is a product of prime numbers.
- **Proof.** 1 is an "empty product" of primes, so the case n = 1 holds.
- Suppose that we have proved the result for every m with $m \leq n$.
- If n + 1 is prime we are done.
- Suppose n + 1 is not prime. Then there is an *a* with a|n + 1 and 1 < a < n + 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** Every member of N is a product of prime numbers.
- **Proof.** 1 is an "empty product" of primes, so the case n = 1 holds.
- Suppose that we have proved the result for every m with $m \leq n$.
- If n + 1 is prime we are done.
- Suppose n + 1 is not prime. Then there is an *a* with a|n+1 and 1 < a < n+1.
- Then also $1 < \frac{n+1}{a} < n+1$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** Every member of N is a product of prime numbers.
- **Proof.** 1 is an "empty product" of primes, so the case n = 1 holds.
- Suppose that we have proved the result for every m with $m \leq n$.
- If n + 1 is prime we are done.
- Suppose n + 1 is not prime. Then there is an a with a|n+1 and 1 < a < n+1.
- Then also $1 < \frac{n+1}{a} < n+1$.
- But then on the inductive hypothesis both a and ⁿ⁺¹/_a are products of primes.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Theory Chapter 1 Robert C. Vaughan

Number

The integers

Divisibility

The fundamental theorem of arithmetic • We can use this to prove the following. **Theorem.**[*Euclid*] There exist infinitely many primes.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- We can use this to prove the following. **Theorem.**[*Euclid*] There exist infinitely many primes.
- **Proof.** We argue by contradiction.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- We can use this to prove the following. **Theorem.**[*Euclid*] There exist infinitely many primes.
- Proof. We argue by contradiction.
- Suppose there are only a finite number of primes, say p_1, p_2, \ldots, p_n and let

$$m=p_1p_2\ldots p_n+1.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamenta theorem of arithmetic

- We can use this to prove the following. **Theorem.**[*Euclid*] There exist infinitely many primes.
- **Proof.** We argue by contradiction.
- Suppose there are only a finite number of primes, say p_1, p_2, \ldots, p_n and let

$$m=p_1p_2\ldots p_n+1.$$

• Since 2 is a prime we have m > 1.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- We can use this to prove the following. **Theorem.**[*Euclid*] There exist infinitely many primes.
- **Proof.** We argue by contradiction.
- Suppose there are only a finite number of primes, say p_1, p_2, \ldots, p_n and let

$$m=p_1p_2\ldots p_n+1.$$

- Since 2 is a prime we have m > 1.
- By the previous theorem it is a product of primes, and in particular there is a prime *p* dividing *m*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- We can use this to prove the following. **Theorem.**[*Euclid*] There exist infinitely many primes.
- **Proof.** We argue by contradiction.
- Suppose there are only a finite number of primes, say p_1, p_2, \ldots, p_n and let

$$m=p_1p_2\ldots p_n+1.$$

- Since 2 is a prime we have m > 1.
- By the previous theorem it is a product of primes, and in particular there is a prime *p* dividing *m*.
- But p is one of the primes p_1, p_2, \ldots, p_n so $p|m p_1p_2 \ldots p_n = 1$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- We can use this to prove the following. **Theorem.**[*Euclid*] There exist infinitely many primes.
- **Proof.** We argue by contradiction.
- Suppose there are only a finite number of primes, say p_1, p_2, \ldots, p_n and let

$$m=p_1p_2\ldots p_n+1.$$

- Since 2 is a prime we have m > 1.
- By the previous theorem it is a product of primes, and in particular there is a prime *p* dividing *m*.
- But p is one of the primes p_1, p_2, \ldots, p_n so $p|m p_1p_2 \ldots p_n = 1$.
- But 1 is not divisible by any prime. So our assumption was false.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamenta theorem of arithmetic • Here is an idea which we will use multiple times during some of our simple proofs.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- Here is an idea which we will use multiple times during some of our simple proofs.
- Example. Dirichlet's box principle

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- Here is an idea which we will use multiple times during some of our simple proofs.
- Example. Dirichlet's box principle
- Suppose that we have n boxes and a collection of n + 1 objects and we put the objects into boxes at random. Then one box will contain at least two objects.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- Here is an idea which we will use multiple times during some of our simple proofs.
- Example. Dirichlet's box principle
- Suppose that we have n boxes and a collection of n + 1 objects and we put the objects into boxes at random. Then one box will contain at least two objects.
- **Proof.** The case n = 1 is obvious (I hope).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- Here is an idea which we will use multiple times during some of our simple proofs.
- Example. Dirichlet's box principle
- Suppose that we have n boxes and a collection of n + 1 objects and we put the objects into boxes at random. Then one box will contain at least two objects.
- **Proof.** The case n = 1 is obvious (I hope).
- Suppose the *n*-th case is already proven and now we have n + 1 boxes and n + 2 objects.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- Here is an idea which we will use multiple times during some of our simple proofs.
- Example. Dirichlet's box principle
- Suppose that we have n boxes and a collection of n + 1 objects and we put the objects into boxes at random. Then one box will contain at least two objects.
- **Proof.** The case n = 1 is obvious (I hope).
- Suppose the *n*-th case is already proven and now we have n + 1 boxes and n + 2 objects.
- We argue by contradiction. Put the objects into the boxes at random and suppose that no box would have two objects in it.

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- Here is an idea which we will use multiple times during some of our simple proofs.
- Example. Dirichlet's box principle
- Suppose that we have n boxes and a collection of n + 1 objects and we put the objects into boxes at random. Then one box will contain at least two objects.
- **Proof.** The case n = 1 is obvious (I hope).
- Suppose the *n*-th case is already proven and now we have n + 1 boxes and n + 2 objects.
- We argue by contradiction. Put the objects into the boxes at random and suppose that no box would have two objects in it.
- However even so at least one box would have one object in it. Remove that box. Now we have placed n+1 objects in the n remaining boxes and we have a contradiction to the case already proven.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic • **Example.** The Fibonacci sequence is given by $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ (n = 2, 3, ...).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** The Fibonacci sequence is given by $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ (n = 2, 3, ...).
- Show that if $m, n \in \mathbb{N}$ satisfy $m|F_n$ and $m|F_{n+1}$, then m = 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** The Fibonacci sequence is given by $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ (n = 2, 3, ...).
- Show that if $m, n \in \mathbb{N}$ satisfy $m|F_n$ and $m|F_{n+1}$, then m = 1.
- We can use induction to give a proof.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** The Fibonacci sequence is given by $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ (n = 2, 3, ...).
- Show that if $m, n \in \mathbb{N}$ satisfy $m|F_n$ and $m|F_{n+1}$, then m = 1.
- We can use induction to give a proof.
- **Proof.** We know that if $m \in \mathbb{N}$ and m|1, then m = 1, so this establishes the base case n = 1.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** The Fibonacci sequence is given by $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ (n = 2, 3, ...).
- Show that if $m, n \in \mathbb{N}$ satisfy $m|F_n$ and $m|F_{n+1}$, then m = 1.
- We can use induction to give a proof.
- **Proof.** We know that if $m \in \mathbb{N}$ and m|1, then m = 1, so this establishes the base case n = 1.
- Suppose that we know that the *n*-th case holds and that $m \in \mathbb{N}$, $m|F_{n+2}$ and $m|F_{n+1}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** The Fibonacci sequence is given by $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ (n = 2, 3, ...).
- Show that if $m, n \in \mathbb{N}$ satisfy $m|F_n$ and $m|F_{n+1}$, then m = 1.
- We can use induction to give a proof.
- **Proof.** We know that if $m \in \mathbb{N}$ and m|1, then m = 1, so this establishes the base case n = 1.
- Suppose that we know that the *n*-th case holds and that $m \in \mathbb{N}$, $m|F_{n+2}$ and $m|F_{n+1}$.
- Then $F_n = F_{n+2} F_{n+1}$ and so $m|F_n$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** The Fibonacci sequence is given by $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ (n = 2, 3, ...).
- Show that if $m, n \in \mathbb{N}$ satisfy $m|F_n$ and $m|F_{n+1}$, then m = 1.
- We can use induction to give a proof.
- **Proof.** We know that if $m \in \mathbb{N}$ and m|1, then m = 1, so this establishes the base case n = 1.
- Suppose that we know that the *n*-th case holds and that $m \in \mathbb{N}$, $m|F_{n+2}$ and $m|F_{n+1}$.
- Then $F_n = F_{n+2} F_{n+1}$ and so $m|F_n$.
- Hence, by the inductive hypothesis m = 1.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= √Q (~

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamenta theorem of arithmetic

• **Example.** Show that n|(n-1)! for all composite n > 4.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** Show that n|(n-1)! for all composite n > 4.
- Here we can just use the divisibility properties.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** Show that n|(n-1)! for all composite n > 4.
- Here we can just use the divisibility properties.
- **Proof.** Since *n* is composite we have n = ab with $1 < a \le b < n$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Vaughan The integers

Number

Theory Chapter 1 Robert C.

Divisibility

- **Example.** Show that n|(n-1)! for all composite n > 4.
- Here we can just use the divisibility properties.
- **Proof.** Since *n* is composite we have n = ab with $1 < a \le b < n$.
- If $a \neq b$, then a and b occur as separate factors in (n-1)! = 1.2.3...(n-1) and we are done.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Vaughan The integers

Number

Theory Chapter 1 Robert C.

Divisibility

- **Example.** Show that n|(n-1)! for all composite n > 4.
- Here we can just use the divisibility properties.
- **Proof.** Since *n* is composite we have n = ab with $1 < a \le b < n$.
- If $a \neq b$, then a and b occur as separate factors in (n-1)! = 1.2.3...(n-1) and we are done.
- Thus we may suppose that $n = a^2$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Vaughan The integers

Number

Theory Chapter 1 Robert C.

Divisibility

- **Example.** Show that n|(n-1)! for all composite n > 4.
- Here we can just use the divisibility properties.
- **Proof.** Since *n* is composite we have n = ab with $1 < a \le b < n$.
- If $a \neq b$, then a and b occur as separate factors in (n-1)! = 1.2.3...(n-1) and we are done.
- Thus we may suppose that $n = a^2$.
- Since n > 4 we have a > 2. Thus 1 < a < 2a < a² = n, so a and 2a are separate factors of (n 1)!.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic • We now come to something very important

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theory Chapter 1 Robert C. Vaughan

Number

The integers

Divisibility

- We now come to something very important
- Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

$$a = dq + r, \quad 0 \le r < d.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic

- We now come to something very important
- Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

$$a = dq + r, \quad 0 \le r < d.$$

• The number q is called the quotient and r the remainder. By the way, it is exactly this which one uses when one performs long division.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- We now come to something very important
- Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

$$a = dq + r, \quad 0 \le r < d.$$

- The number q is called the quotient and r the remainder. By the way, it is exactly this which one uses when one performs long division.
- **Example.** Try dividing 19 into 192837465 by the method you were taught at grade school.

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

a = dq + r, $0 \le r < d$.

• Hence *r* < *d* as required.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

$$a = dq + r, \quad 0 \le r < d.$$

• Proof. We have two tasks, to existence & uniqueness.

• Hence *r* < *d* as required.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

$$a = dq + r, \quad 0 \le r < d.$$

- **Proof.** We have two tasks, to existence & uniqueness.
- *Existence*. Define $\mathcal{D} = \{a dx : x \in \mathbb{Z}\}.$

• Hence *r* < *d* as required.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

$$a = dq + r, \quad 0 \le r < d.$$

- **Proof.** We have two tasks, to existence & uniqueness.
- *Existence*. Define $\mathcal{D} = \{a dx : x \in \mathbb{Z}\}.$
- If $a \ge 0$, then $a d(-1) \in \mathcal{D}$ and a d(-1) = a + d > 0, and if a < 0, then a - d(a - 1) = (d - 1)(-a) + d > 0.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

a = dq + r, $0 \le r < d$.

- **Proof.** We have two tasks, to existence & uniqueness.
- *Existence*. Define $\mathcal{D} = \{a dx : x \in \mathbb{Z}\}.$
- If $a \ge 0$, then $a d(-1) \in \mathcal{D}$ and a d(-1) = a + d > 0, and if a < 0, then a - d(a - 1) = (d - 1)(-a) + d > 0.
- Hence \mathcal{D} contains positive integers.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

a = dq + r, $0 \le r < d$.

- **Proof.** We have two tasks, to existence & uniqueness.
- *Existence*. Define $\mathcal{D} = \{a dx : x \in \mathbb{Z}\}.$
- If $a \ge 0$, then $a d(-1) \in \mathcal{D}$ and a d(-1) = a + d > 0, and if a < 0, then a - d(a - 1) = (d - 1)(-a) + d > 0.
- Hence \mathcal{D} contains positive integers.
- Let $\mathcal{D}^* = \mathcal{D} \cap \mathbb{N}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

a = dq + r, $0 \le r < d$.

- **Proof.** We have two tasks, to existence & uniqueness.
- *Existence*. Define $\mathcal{D} = \{a dx : x \in \mathbb{Z}\}.$
- If $a \ge 0$, then $a d(-1) \in \mathcal{D}$ and a d(-1) = a + d > 0, and if a < 0, then a - d(a - 1) = (d - 1)(-a) + d > 0.
- Hence \mathcal{D} contains positive integers.
- Let $\mathcal{D}^* = \mathcal{D} \cap \mathbb{N}$.
- Then D* is bounded below and non-empty, so by the well-ordering principle it has a minimum.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

a = dq + r, $0 \le r < d$.

- **Proof.** We have two tasks, to existence & uniqueness.
- *Existence*. Define $\mathcal{D} = \{a dx : x \in \mathbb{Z}\}.$
- If $a \ge 0$, then $a d(-1) \in \mathcal{D}$ and a d(-1) = a + d > 0, and if a < 0, then a - d(a - 1) = (d - 1)(-a) + d > 0.
- Hence \mathcal{D} contains positive integers.
- Let $\mathcal{D}^* = \mathcal{D} \cap \mathbb{N}$.
- Then D* is bounded below and non-empty, so by the well-ordering principle it has a minimum.
- Let r denote this minimum, and let q be the corresponding value of x. Then a = dq + r, 0 ≤ r.

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

a = dq + r, $0 \le r < d$.

- **Proof.** We have two tasks, to existence & uniqueness.
- *Existence*. Define $\mathcal{D} = \{a dx : x \in \mathbb{Z}\}.$
- If $a \ge 0$, then $a d(-1) \in \mathcal{D}$ and a d(-1) = a + d > 0, and if a < 0, then a - d(a - 1) = (d - 1)(-a) + d > 0.
- Hence \mathcal{D} contains positive integers.
- Let $\mathcal{D}^* = \mathcal{D} \cap \mathbb{N}$.
- Then D* is bounded below and non-empty, so by the well-ordering principle it has a minimum.
- Let r denote this minimum, and let q be the corresponding value of x. Then a = dq + r, 0 ≤ r.
- If r ≥ d, then a = d(q + 1) + (r − d) is another solution, but r − d < r contradicting the minimality of r.
- Hence *r* < *d* as required.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

$$a = dq + r, \quad 0 \le r < d.$$

イロト 不得 トイヨト イヨト ニヨー

Sac

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

$$a = dq + r, \quad 0 \le r < d.$$

 \bullet $\mathit{Uniqueness.}$ Observe that if we have a second solution

$$a = dq' + r', \quad 0 \leq r' < d, \quad q' \neq q,$$

then

$$0 = a - a = (dq' + r') - (dq + r) = d(q' - q) + (r' - r).$$

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic Theorem. The division algorithm. Suppose that a ∈ Z and d ∈ N. Then there are unique q, r ∈ Z such that

$$a = dq + r, \quad 0 \le r < d.$$

• Uniqueness. Observe that if we have a second solution

$$a = dq' + r', \quad 0 \leq r' < d, \quad q' \neq q,$$

then

$$0 = a - a = (dq' + r') - (dq + r) = d(q' - q) + (r' - r).$$

Then we would have

$$d \leq d|q'-q| = |r'-r| < d$$

which is impossible.

• We will make frequent use of the division algorithm as well as the next theorem.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• **Theorem.** Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Robert C. Vaughan

The integers

Divisibility

The fundamental

theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• **Theorem.** Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Then $\mathcal{D}(a, b)$ has positive elements. Let (a, b) denote its least positive element. Then (a, b) has the properties (i) (a, b)|a, (ii) (a, b)|b, (iii) if c satisfies c|a and c|b, then c|(a, b).

• **Definition.** We call (a, b) the greatest common divisor of a and b, often abbreviated to gcd or GCD. The symbol (a, b) has many uses in mathematics, so to be clear one sometimes writes

$$gcd(a, b)$$
 or $GCD(a, b)$.

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sar

• **Theorem.** Given two integers a and b, not both 0, define

$$\mathcal{D}(a, b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

イロト 不得 トイヨト イヨト ニヨー

Sar

• **Theorem.** Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Then $\mathcal{D}(a, b)$ has positive elements. Let (a, b) denote its least positive element. Then (a, b) has the properties (i) (a, b)|a, (ii) (a, b)|b, (iii) if c satisfies c|a and c|b, then c|(a, b).

• Proof. Existence.

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

• **Theorem.** Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

- Proof. Existence.
- If a is positive, then so is a.1 + b.0. Likewise if b is positive. If a is negative, then a(-1) + b.0 is positive, and again likewise if b is negative. The only remaining case is a = b = 0 which is expressly excluded. Thus D(a, b) does indeed have positive elements. Thus (a, b) exists.

Robert C. Vaughan

The integers

Divisibility

The fundamental

theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• **Theorem.** Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Robert C. Vaughan

The integers

Divisibility

The fundamental

theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Theorem. Given two integers a and b, not both 0, define

 $\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$

Then $\mathcal{D}(a, b)$ has positive elements. Let (a, b) denote its least positive element. Then (a, b) has the properties (i) (a, b)|a, (ii) (a, b)|b, (iii) if c satisfies c|a and c|b, then c|(a, b).

Properties. Suppose (i) is false. By the division algorithm we have a = (a, b)q + r with 0 ≤ r < (a, b).

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Theorem. Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

- Properties. Suppose (i) is false. By the division algorithm we have a = (a, b)q + r with 0 ≤ r < (a, b).
- But the falsity of (i) means that 0 < r.

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Theorem. Given two integers a and b, not both 0, define

 $\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$

- Properties. Suppose (i) is false. By the division algorithm we have a = (a, b)q + r with 0 ≤ r < (a, b).
- But the falsity of (i) means that 0 < r.
- Thus r = a (a, b)q = a (ax + by)q for some integers x and y.

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Theorem. Given two integers a and b, not both 0, define

 $\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$

- Properties. Suppose (i) is false. By the division algorithm we have a = (a, b)q + r with 0 ≤ r < (a, b).
- But the falsity of (i) means that 0 < r.
- Thus r = a (a, b)q = a (ax + by)q for some integers x and y.
- Hence r = a(1 xq) + b(-yq).

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

• Theorem. Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

- Properties. Suppose (i) is false. By the division algorithm we have a = (a, b)q + r with 0 ≤ r < (a, b).
- But the falsity of (i) means that 0 < r.
- Thus r = a (a, b)q = a (ax + by)q for some integers x and y.
- Hence r = a(1 xq) + b(-yq).
- Since 0 < r < (a, b) this contradicts the minimality of (a, b).

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

• Theorem. Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

- Properties. Suppose (i) is false. By the division algorithm we have a = (a, b)q + r with 0 ≤ r < (a, b).
- But the falsity of (i) means that 0 < r.
- Thus r = a (a, b)q = a (ax + by)q for some integers x and y.
- Hence r = a(1 xq) + b(-yq).
- Since 0 < r < (a, b) this contradicts the minimality of (a, b).
- Likewise for (ii).

Robert C. Vaughan

The integers

Divisibility

The fundamental

theorem of arithmetic

The Greatest Common Divisor

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

• **Theorem.** Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Robert C. Vaughan

The integers

Divisibility

The fundamental

theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• **Theorem.** Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Then $\mathcal{D}(a, b)$ has positive elements. Let (a, b) denote its least positive element. Then (a, b) has the properties (i) (a, b)|a, (ii) (a, b)|b, (iii) if c satisfies c|a and c|b, then c|(a, b).

• *Properties.* (iii) if the integer *c* satisfies c|a and c|b, then a = cu and b = cv for some integers *u* and *v*.

Robert C. Vaughan

The integers

Divisibility

The fundamental

theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• **Theorem.** Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

- *Properties.* (iii) if the integer *c* satisfies c|a and c|b, then a = cu and b = cv for some integers *u* and *v*.
- and for some integers x and y we have (a, b) = ax + by.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic The Greatest Common Divisor

• **Theorem.** Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Then $\mathcal{D}(a, b)$ has positive elements. Let (a, b) denote its least positive element. Then (a, b) has the properties (i) (a, b)|a, (ii) (a, b)|b, (iii) if c satisfies c|a and c|b, then c|(a, b).

- *Properties.* (iii) if the integer *c* satisfies c|a and c|b, then a = cu and b = cv for some integers *u* and *v*.
- and for some integers x and y we have (a, b) = ax + by.
- Thus

$$(a, b) = ax + by = cux + cvy = c(ux + vy)$$

so (iii) holds.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへで

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

• The GCD has some interesting properties. Here are two.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The GCD has some interesting properties. Here are two.
- **Example.** We have $\left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right) = 1$.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

-

Sac

- The GCD has some interesting properties. Here are two.
- **Example.** We have $\left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right) = 1$.
- To see this observe that if $d = \left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right)$, then $d|\frac{a}{(a,b)}$ and $d|\frac{b}{(a,b)}$, and hence d(a,b)|a and d(a,b)|b.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

- The GCD has some interesting properties. Here are two.
- **Example.** We have $\left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right) = 1$.
- To see this observe that if $d = \left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right)$, then $d|\frac{a}{(a,b)}$ and $d|\frac{b}{(a,b)}$, and hence d(a,b)|a and d(a,b)|b.
- But then d(a, b)|(a, b) and so d|1, whence d = 1.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

イロト 不得 トイヨト イヨト ニヨー

Sac

- The GCD has some interesting properties. Here are two.
- **Example.** We have $\left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right) = 1$.
- To see this observe that if $d = \left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right)$, then $d|\frac{a}{(a,b)}$ and $d|\frac{b}{(a,b)}$, and hence d(a,b)|a and d(a,b)|b.
- But then d(a, b)|(a, b) and so d|1, whence d = 1.
- **Example.** Suppose that *a* and *b* are not both 0. Then for any integer *x* we have (a + bx, b) = (a, b).

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- The GCD has some interesting properties. Here are two.
- **Example.** We have $\left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right) = 1$.
- To see this observe that if $d = \left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right)$, then $d|\frac{a}{(a,b)}$ and $d|\frac{b}{(a,b)}$, and hence d(a,b)|a and d(a,b)|b.
- But then d(a, b)|(a, b) and so d|1, whence d = 1.
- **Example.** Suppose that *a* and *b* are not both 0. Then for any integer *x* we have (a + bx, b) = (a, b).
- Here is a proof. First of all (a, b)|a and (a, b)|b, so (a, b)|a + bx.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- The GCD has some interesting properties. Here are two.
- **Example.** We have $\left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right) = 1$.
- To see this observe that if $d = \left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right)$, then $d|\frac{a}{(a,b)}$ and $d|\frac{b}{(a,b)}$, and hence d(a,b)|a and d(a,b)|b.
- But then d(a, b)|(a, b) and so d|1, whence d = 1.
- **Example.** Suppose that *a* and *b* are not both 0. Then for any integer *x* we have (a + bx, b) = (a, b).
- Here is a proof. First of all (a, b)|a and (a, b)|b, so (a, b)|a + bx.
- Hence (*a*, *b*)|(*a* + *bx*, *b*).

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- The GCD has some interesting properties. Here are two.
- **Example.** We have $\left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right) = 1$.
- To see this observe that if $d = \left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right)$, then $d|\frac{a}{(a,b)}$ and $d|\frac{b}{(a,b)}$, and hence d(a,b)|a and d(a,b)|b.
- But then d(a, b)|(a, b) and so d|1, whence d = 1.
- **Example.** Suppose that *a* and *b* are not both 0. Then for any integer *x* we have (a + bx, b) = (a, b).
- Here is a proof. First of all (a, b)|a and (a, b)|b, so (a, b)|a + bx.
- Hence (*a*, *b*)|(*a* + *bx*, *b*).
- On the other hand (a + bx, b)|a + bx and (a + bx, b)|b so that (a + bx)|a + bx bx = a.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

- The GCD has some interesting properties. Here are two.
- **Example.** We have $\left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right) = 1$.
- To see this observe that if $d = \left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right)$, then $d|\frac{a}{(a,b)}$ and $d|\frac{b}{(a,b)}$, and hence d(a,b)|a and d(a,b)|b.
- But then d(a, b)|(a, b) and so d|1, whence d = 1.
- **Example.** Suppose that *a* and *b* are not both 0. Then for any integer *x* we have (a + bx, b) = (a, b).
- Here is a proof. First of all (a, b)|a and (a, b)|b, so (a, b)|a + bx.
- Hence (*a*, *b*)|(*a* + *bx*, *b*).
- On the other hand (a + bx, b)|a + bx and (a + bx, b)|b so that (a + bx)|a + bx bx = a.
- Hence (a + bx, b)|(a, b)|(a + bx, b) and so
 (a, b) = (a + bx, b).

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Here is another.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

- Here is another.
- **Example.** Suppose that (a, b) = 1 and ax = by.

The Greatest Common Divisor

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- Here is another.
- **Example.** Suppose that (a, b) = 1 and ax = by.
- Then there is a z such that x = bz, y = az.

The Greatest Common Divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

- Here is another.
- **Example.** Suppose that (a, b) = 1 and ax = by.
- Then there is a z such that x = bz, y = az.
- It suffices to show that b|x, for then the conclusion follows on taking z = x/b.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- Here is another.
- **Example.** Suppose that (a, b) = 1 and ax = by.
- Then there is a z such that x = bz, y = az.
- It suffices to show that b|x, for then the conclusion follows on taking z = x/b.
- To see this observe that there are u and v so that au + bv = (a, b) = 1. Hence x = aux + bvx = byu + bvx = b(yu + vx) and so b|x.

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Theorem. Given two integers a and b, not both 0, define

 $\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$

Then $\mathcal{D}(a, b)$ has positive elements. Let (a, b) denote its least positive element. Then (a, b) has the properties (i) (a, b)|a, (ii) (a, b)|b, (iii) if c satisfies c|a and c|b, then c|(a, b).

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Theorem. Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Then $\mathcal{D}(a, b)$ has positive elements. Let (a, b) denote its least positive element. Then (a, b) has the properties (i) (a, b)|a, (ii) (a, b)|b, (iii) if c satisfies c|a and c|b, then c|(a, b).

• From the above we immediately have the following

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Theorem. Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Then $\mathcal{D}(a, b)$ has positive elements. Let (a, b) denote its least positive element. Then (a, b) has the properties (i) (a, b)|a, (ii) (a, b)|b, (iii) if c satisfies c|a and c|b, then c|(a, b).

- From the above we immediately have the following
- **Corollary.** Suppose that *a* and *b* are integers not both 0. Then there are integers *x* and *y* such that

$$(a,b) = ax + by.$$

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Theorem. Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Then $\mathcal{D}(a, b)$ has positive elements. Let (a, b) denote its least positive element. Then (a, b) has the properties (i) (a, b)|a, (ii) (a, b)|b, (iii) if c satisfies c|a and c|b, then c|(a, b).

- From the above we immediately have the following
- **Corollary.** Suppose that *a* and *b* are integers not both 0. Then there are integers *x* and *y* such that

$$(a,b) = ax + by.$$

• Later we will look at a way of finding suitable x and y in examples.

Robert C. Vaughan

The integers

Divisibility

The

fundamental theorem of arithmetic

The Greatest Common Divisor

• Theorem. Given two integers a and b, not both 0, define

$$\mathcal{D}(a,b) = \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z}\}.$$

Then $\mathcal{D}(a, b)$ has positive elements. Let (a, b) denote its least positive element. Then (a, b) has the properties (i) (a, b)|a, (ii) (a, b)|b, (iii) if c satisfies c|a and c|b, then c|(a, b).

- From the above we immediately have the following
- **Corollary.** Suppose that *a* and *b* are integers not both 0. Then there are integers *x* and *y* such that

$$(a,b) = ax + by.$$

- Later we will look at a way of finding suitable x and y in examples.
- As it stands the theorem gives no simple constructive way of finding them. It is a pure existence proof.

The Greatest Common Divisor

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic • **Corollary.** Suppose that *a* and *b* are integers not both 0. Then there are integers *x* and *y* such that

$$(a,b) = ax + by.$$

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic • **Corollary.** Suppose that *a* and *b* are integers not both 0. Then there are integers *x* and *y* such that

$$(a,b) = ax + by.$$

• As a first application of the corollary we establish

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic • **Corollary.** Suppose that *a* and *b* are integers not both 0. Then there are integers *x* and *y* such that

(a,b) = ax + by.

- As a first application of the corollary we establish
- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.

Chapter 1 Robert C. Vaughan

Number

Theory

The integers

Divisibility

The fundamental theorem of arithmetic • **Corollary.** Suppose that *a* and *b* are integers not both 0. Then there are integers *x* and *y* such that

(a,b)=ax+by.

- As a first application of the corollary we establish
- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- You might think this is obvious, but

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic • Consider the set A of integers of the form 4k + 1.

An Example

イロト 人間ト イヨト イヨト

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- Consider the set A of integers of the form 4k + 1.
- If you multiply two together, e.g. $(4k_1 + 1)(4k_2 + 1) = 16k_1k_2 + 4k_2 + 4k_1 + 1 = 4(4k_1k_2 + k_1 + k_2) + 1$ you get another of the same kind.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- Consider the set A of integers of the form 4k + 1.
- If you multiply two together, e.g. $(4k_1 + 1)(4k_2 + 1) = 16k_1k_2 + 4k_2 + 4k_1 + 1 = 4(4k_1k_2 + k_1 + k_2) + 1$ you get another of the same kind.
- So \mathcal{A} has "closure" under multiplication.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- Consider the set A of integers of the form 4k + 1.
- If you multiply two together, e.g. $(4k_1 + 1)(4k_2 + 1) = 16k_1k_2 + 4k_2 + 4k_1 + 1 = 4(4k_1k_2 + k_1 + k_2) + 1$ you get another of the same kind.
- So \mathcal{A} has "closure" under multiplication.
- We can define a "prime" *p* in this system if it is only divisible by 1 and itself in the system.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

- Consider the set A of integers of the form 4k + 1.
- If you multiply two together, e.g. $(4k_1 + 1)(4k_2 + 1) = 16k_1k_2 + 4k_2 + 4k_1 + 1 = 4(4k_1k_2 + k_1 + k_2) + 1$ you get another of the same kind.
- So \mathcal{A} has "closure" under multiplication.
- We can define a "prime" *p* in this system if it is only divisible by 1 and itself in the system.
- Here is a list of "primes" in \mathcal{A} .

 $5, 9, 13, 17, 21, 29, 33, 37, 41, 49 \dots$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

- Consider the set A of integers of the form 4k + 1.
- If you multiply two together, e.g. $(4k_1 + 1)(4k_2 + 1) = 16k_1k_2 + 4k_2 + 4k_1 + 1 = 4(4k_1k_2 + k_1 + k_2) + 1$ you get another of the same kind.
- So \mathcal{A} has "closure" under multiplication.
- We can define a "prime" *p* in this system if it is only divisible by 1 and itself in the system.
- Here is a list of "primes" in \mathcal{A} .

 $5, 9, 13, 17, 21, 29, 33, 37, 41, 49 \dots$

• Thus 9, 21 and 49 are primes in ${\cal A}$ because 3 and 7 are not in ${\cal A}.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

- Consider the set A of integers of the form 4k + 1.
- If you multiply two together, e.g. $(4k_1 + 1)(4k_2 + 1) = 16k_1k_2 + 4k_2 + 4k_1 + 1 = 4(4k_1k_2 + k_1 + k_2) + 1$ you get another of the same kind.
- So \mathcal{A} has "closure" under multiplication.
- We can define a "prime" *p* in this system if it is only divisible by 1 and itself in the system.
- Here is a list of "primes" in \mathcal{A} .

 $5, 9, 13, 17, 21, 29, 33, 37, 41, 49 \dots$

- Thus 9, 21 and 49 are primes in ${\cal A}$ because 3 and 7 are not in ${\cal A}.$
- Now look at 441.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

- Consider the set A of integers of the form 4k + 1.
- If you multiply two together, e.g. $(4k_1 + 1)(4k_2 + 1) = 16k_1k_2 + 4k_2 + 4k_1 + 1 = 4(4k_1k_2 + k_1 + k_2) + 1$ you get another of the same kind.
- So \mathcal{A} has "closure" under multiplication.
- We can define a "prime" *p* in this system if it is only divisible by 1 and itself in the system.
- Here is a list of "primes" in \mathcal{A} .

 $5, 9, 13, 17, 21, 29, 33, 37, 41, 49 \dots$

- Thus 9, 21 and 49 are primes in \mathcal{A} because 3 and 7 are not in \mathcal{A} .
- Now look at 441.
- We have

$$441 = 9 \times 49 = 21^2$$
.

So, in \mathcal{A} factorisation is not unique!.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

- Consider the set A of integers of the form 4k + 1.
- If you multiply two together, e.g. $(4k_1 + 1)(4k_2 + 1) = 16k_1k_2 + 4k_2 + 4k_1 + 1 = 4(4k_1k_2 + k_1 + k_2) + 1$ you get another of the same kind.
- So \mathcal{A} has "closure" under multiplication.
- We can define a "prime" *p* in this system if it is only divisible by 1 and itself in the system.
- Here is a list of "primes" in \mathcal{A} .

 $5, 9, 13, 17, 21, 29, 33, 37, 41, 49 \dots$

- Thus 9, 21 and 49 are primes in \mathcal{A} because 3 and 7 are not in \mathcal{A} .
- Now look at 441.
- We have

$$441 = 9 \times 49 = 21^2$$
.

So, in ${\mathcal A}$ factorisation is not unique!.

• Moreover $9|21^2$ but $9 \nmid 21$.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic • What is the difference between $\mathbb Z$ and $\mathcal A?$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- What is the difference between $\mathbb Z$ and $\mathcal A?$
- Well ${\mathbb Z}$ has an additive structure and ${\mathcal A}$ does not.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

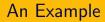
Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- What is the difference between \mathbb{Z} and \mathcal{A} ?
- Well ${\mathbb Z}$ has an additive structure and ${\mathcal A}$ does not.
- $\bullet\,$ Add two members of $\mathbb Z$ and you get another one.



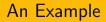
Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- What is the difference between \mathbb{Z} and \mathcal{A} ?
- Well ${\mathbb Z}$ has an additive structure and ${\mathcal A}$ does not.
- Add two members of $\ensuremath{\mathbb{Z}}$ and you get another one.
- Add two members of A and you get a number which leaves the remainder 2 on division by 4, so is not in A.



◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

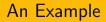
Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- What is the difference between \mathbb{Z} and \mathcal{A} ?
- Well ${\mathbb Z}$ has an additive structure and ${\mathcal A}$ does not.
- Add two members of $\ensuremath{\mathbb{Z}}$ and you get another one.
- Add two members of A and you get a number which leaves the remainder 2 on division by 4, so is not in A.
- Amazingly we have to use the additive structure to get something fundamental about the multiplicative structure.



Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- What is the difference between \mathbb{Z} and \mathcal{A} ?
- Well ${\mathbb Z}$ has an additive structure and ${\mathcal A}$ does not.
- Add two members of $\ensuremath{\mathbb{Z}}$ and you get another one.
- Add two members of A and you get a number which leaves the remainder 2 on division by 4, so is not in A.
- Amazingly we have to use the additive structure to get something fundamental about the multiplicative structure.
- This is of huge significance and underpins some of the most fundamental questions in mathematics.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic • **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- **Proof.** If *a* or *b* are 0, then the result is obvious.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- **Proof.** If a or b are 0, then the result is obvious.
- Thus we may suppose that $ab \neq 0$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- **Proof.** If a or b are 0, then the result is obvious.
- Thus we may suppose that $ab \neq 0$.
- Suppose that $p \nmid a$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- **Proof.** If a or b are 0, then the result is obvious.
- Thus we may suppose that $ab \neq 0$.
- Suppose that $p \nmid a$.
- We know from the previous theorem that there are x and y so that (a, p) = ax + py and that (a, p)|p and (a, p)|a.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- **Proof.** If a or b are 0, then the result is obvious.
- Thus we may suppose that $ab \neq 0$.
- Suppose that $p \nmid a$.
- We know from the previous theorem that there are x and y so that (a, p) = ax + py and that (a, p)|p and (a, p)|a.
- Since p is prime we must have (a, p) = 1 or p.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- **Proof.** If a or b are 0, then the result is obvious.
- Thus we may suppose that $ab \neq 0$.
- Suppose that $p \nmid a$.
- We know from the previous theorem that there are x and y so that (a, p) = ax + py and that (a, p)|p and (a, p)|a.
- Since p is prime we must have (a, p) = 1 or p.
- But we are supposing that p ∤ a so (a, p) ≠ p, i.e. (a, p) = 1.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- **Proof.** If a or b are 0, then the result is obvious.
- Thus we may suppose that $ab \neq 0$.
- Suppose that $p \nmid a$.
- We know from the previous theorem that there are x and y so that (a, p) = ax + py and that (a, p)|p and (a, p)|a.
- Since p is prime we must have (a, p) = 1 or p.
- But we are supposing that p ∤ a so (a, p) ≠ p, i.e.
 (a, p) = 1.
- Hence 1 = ax + py. But then

$$b = abx + pby$$

and since p|ab we have p|b as required.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic • **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- We can use this to establish the following.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- We can use this to establish the following.
- **Theorem.** Suppose that $p, p_1, p_2, ..., p_r$ are prime numbers and $p|p_1p_2...p_r$. Then $p = p_j$ for some j.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- We can use this to establish the following.
- Theorem. Suppose that p, p₁, p₂,..., p_r are prime numbers and p|p₁p₂...p_r. Then p = p_j for some j.
- **Proof.** We prove this by induction on *r*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- We can use this to establish the following.
- **Theorem.** Suppose that $p, p_1, p_2, ..., p_r$ are prime numbers and $p|p_1p_2...p_r$. Then $p = p_j$ for some j.
- **Proof.** We prove this by induction on *r*.
- The case r = 1 is immediate from the definition of prime.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- We can use this to establish the following.
- Theorem. Suppose that p, p₁, p₂,..., p_r are prime numbers and p|p₁p₂...p_r. Then p = p_j for some j.
- **Proof.** We prove this by induction on *r*.
- The case r = 1 is immediate from the definition of prime.
- Suppose we have established the *r*-th case and that we have p|p₁p₂...p_{r+1}.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- We can use this to establish the following.
- Theorem. Suppose that p, p₁, p₂,..., p_r are prime numbers and p|p₁p₂...p_r. Then p = p_j for some j.
- **Proof.** We prove this by induction on *r*.
- The case r = 1 is immediate from the definition of prime.
- Suppose we have established the *r*-th case and that we have p|p₁p₂...p_{r+1}.
- Then by the previous theorem we have $p|p_{r+1}$ or $p|p_1p_2 \dots p_r$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- We can use this to establish the following.
- Theorem. Suppose that p, p₁, p₂,..., p_r are prime numbers and p|p₁p₂...p_r. Then p = p_j for some j.
- **Proof.** We prove this by induction on *r*.
- The case r = 1 is immediate from the definition of prime.
- Suppose we have established the *r*-th case and that we have p|p₁p₂...p_{r+1}.
- Then by the previous theorem we have $p|p_{r+1}$ or $p|p_1p_2 \dots p_r$.
- In the first case we must have $p = p_{r+1}$.

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Theorem.** *Euclid.* Suppose that p is a prime number, and a and b are integers such that p|ab. Then either p|a or p|b.
- We can use this to establish the following.
- Theorem. Suppose that p, p₁, p₂,..., p_r are prime numbers and p|p₁p₂...p_r. Then p = p_j for some j.
- **Proof.** We prove this by induction on *r*.
- The case r = 1 is immediate from the definition of prime.
- Suppose we have established the *r*-th case and that we have p|p₁p₂...p_{r+1}.
- Then by the previous theorem we have $p|p_{r+1}$ or $p|p_1p_2 \dots p_r$.
- In the first case we must have $p = p_{r+1}$.
- In the second by the inductive hypothesis we must have $p = p_j$ for some j with $1 \le j \le r$.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

• **Theorem.** *The Fundamental Theorem of Arithmetic.* Factorization into prime numbers is unique apart from the order of the factors.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

- **Theorem.** *The Fundamental Theorem of Arithmetic.* Factorization into prime numbers is unique apart from the order of the factors.
- More precisely if a is a non-zero integer and $a \neq \pm 1$, then

$$a = (\pm 1)p_1p_2 \dots p_r$$

for some $r \ge 1$ and prime numbers p_1, \ldots, p_r , and r and the choice of sign is unique and the primes p_j are unique apart from their ordering.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Fundamental Theorem of Arithmetic

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

• **Theorem.** *The Fundamental Theorem of Arithmetic.* Factorization into prime numbers is unique.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Fundamental Theorem of Arithmetic

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- **Theorem.** *The Fundamental Theorem of Arithmetic.* Factorization into prime numbers is unique.
- Proof. We may certainly suppose that a > 0, and so a ≥ 2. We saw in the very first theorem that a will be a product of primes, say a = p₁p₂...p_r with r ≥ 1. We have to prove uniqueness, and we will induct on r.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Fundamental Theorem of Arithmetic

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- **Theorem.** *The Fundamental Theorem of Arithmetic.* Factorization into prime numbers is unique.
- Proof. We may certainly suppose that a > 0, and so a ≥ 2. We saw in the very first theorem that a will be a product of primes, say a = p₁p₂...p_r with r ≥ 1. We have to prove uniqueness, and we will induct on r.
- Suppose r = 1 and a is another product of primes $a = p'_1 \dots p'_s$ where $s \ge 1$.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Fundamental Theorem of Arithmetic

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- **Theorem.** *The Fundamental Theorem of Arithmetic.* Factorization into prime numbers is unique.
- Proof. We may certainly suppose that a > 0, and so a ≥ 2. We saw in the very first theorem that a will be a product of primes, say a = p₁p₂...p_r with r ≥ 1. We have to prove uniqueness, and we will induct on r.
- Suppose r = 1 and a is another product of primes $a = p'_1 \dots p'_s$ where $s \ge 1$.
- Then $p'_1|p_1$ and so $p'_1 = p_1$ and $p'_2 \dots p'_s = 1$, whence s = 1 also, and so establishes the base case r = 1.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Fundamental Theorem of Arithmetic

- **Theorem.** *The Fundamental Theorem of Arithmetic.* Factorization into prime numbers is unique.
- Proof. We may certainly suppose that a > 0, and so a ≥ 2. We saw in the very first theorem that a will be a product of primes, say a = p₁p₂...p_r with r ≥ 1. We have to prove uniqueness, and we will induct on r.
- Suppose r = 1 and a is another product of primes $a = p'_1 \dots p'_s$ where $s \ge 1$.
- Then $p'_1|p_1$ and so $p'_1 = p_1$ and $p'_2 \dots p'_s = 1$, whence s = 1 also, and so establishes the base case r = 1.
- Now suppose that the result holds for some r ≥ 1 and we have a product of r + 1 primes, and and as before

$$a = p_1 p_2 \dots p_{r+1} = p'_1 \dots p'_s.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

The Fundamental Theorem of Arithmetic

- **Theorem.** *The Fundamental Theorem of Arithmetic.* Factorization into prime numbers is unique.
- Proof. We may certainly suppose that a > 0, and so a ≥ 2. We saw in the very first theorem that a will be a product of primes, say a = p₁p₂...p_r with r ≥ 1. We have to prove uniqueness, and we will induct on r.
- Suppose r = 1 and a is another product of primes $a = p'_1 \dots p'_s$ where $s \ge 1$.
- Then $p'_1|p_1$ and so $p'_1 = p_1$ and $p'_2 \dots p'_s = 1$, whence s = 1 also, and so establishes the base case r = 1.
- Now suppose that the result holds for some r ≥ 1 and we have a product of r + 1 primes, and and as before

$$a=p_1p_2\ldots p_{r+1}=p_1'\ldots p_s'.$$

• Then by the previous theorem $p'_1 = p_j$ for some j and then $p'_2 \dots p'_s = p_1 p_2 \dots p_{r+1}/p_j$ and we can apply the inductive hypothesis to obtain the desired conclusion.

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic • There are various other properties of GCDs.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental

theorem of arithmetic

- There are various other properties of GCDs.
- Suppose $a, b \in \mathbb{N}$. Then we can write

$$a = p_1^{r_1} \dots p_k^{r_k}, \quad b = p_1^{s_1} \dots p_k^{s_k}$$

where the p_1, \ldots, p_k are the different primes in the factorization of *a* and *b* and we allow the possibility that the exponents r_i and s_i may be zero.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

- There are various other properties of GCDs.
- Suppose $a, b \in \mathbb{N}$. Then we can write

$$a = p_1^{r_1} \dots p_k^{r_k}, \quad b = p_1^{s_1} \dots p_k^{s_k}$$

where the $p_1, \ldots p_k$ are the different primes in the factorization of a and b and we allow the possibility that the exponents r_i and s_i may be zero.

• Then it can be checked easily that

$$(a,b)=p_1^{\min(r_1,s_1)}\dots p_k^{\min(r_k,s_k)}.$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

- There are various other properties of GCDs.
- Suppose $a, b \in \mathbb{N}$. Then we can write

$$a=p_1^{r_1}\ldots p_k^{r_k},\quad b=p_1^{s_1}\ldots p_k^{s_k}$$

where the p_1, \ldots, p_k are the different primes in the factorization of *a* and *b* and we allow the possibility that the exponents r_i and s_j may be zero.

• Then it can be checked easily that

$$(a,b)=p_1^{\min(r_1,s_1)}\dots p_k^{\min(r_k,s_k)}.$$

• **Definition.** We can also introduce here the *least common* multiple LCM $[a, b] = \frac{ab}{(a,b)}$ and this could also be defined by

$$[a,b] = p_1^{\max(r_1,s_1)} \dots p_k^{\max(r_k,s_k)}$$

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic

- There are various other properties of GCDs.
- Suppose $a, b \in \mathbb{N}$. Then we can write

$$a=p_1^{r_1}\ldots p_k^{r_k},\quad b=p_1^{s_1}\ldots p_k^{s_k}$$

where the $p_1, \ldots p_k$ are the different primes in the factorization of *a* and *b* and we allow the possibility that the exponents r_i and s_i may be zero.

• Then it can be checked easily that

$$(a,b)=p_1^{\min(r_1,s_1)}\dots p_k^{\min(r_k,s_k)}.$$

• **Definition.** We can also introduce here the *least common* multiple LCM $[a, b] = \frac{ab}{(a,b)}$ and this could also be defined by

$$[a,b] = p_1^{\max(r_1,s_1)} \dots p_k^{\max(r_k,s_k)}.$$

 It has the property of being the smallest positive number divisible by both a and b.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

The fundamental theorem of arithmetic • **Example.** Show that if *a* and *b* are positive integers and n > 1, then $a^n - b^n \nmid a^n + b^n$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** Show that if a and b are positive integers and n > 1, then $a^n b^n \nmid a^n + b^n$.
- **Proof.** We can suppose that (a, b) = 1, because if d = (a, b) and $a^n b^n | a^n + b^n$, then $(a/d)^n (b/d)^n | (a/d)^n + (b/d)^n$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** Show that if *a* and *b* are positive integers and n > 1, then $a^n b^n \nmid a^n + b^n$.
- **Proof.** We can suppose that (a, b) = 1, because if d = (a, b) and $a^n b^n | a^n + b^n$, then $(a/d)^n (b/d)^n | (a/d)^n + (b/d)^n$.
- Suppose on the contrary that $a^n b^n |a^n + b^n$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** Show that if *a* and *b* are positive integers and n > 1, then $a^n b^n \nmid a^n + b^n$.
- **Proof.** We can suppose that (a, b) = 1, because if d = (a, b) and $a^n b^n | a^n + b^n$, then $(a/d)^n (b/d)^n | (a/d)^n + (b/d)^n$.
- Suppose on the contrary that $a^n b^n |a^n + b^n$.
- Then $a^n b^n | a^n + b^n \pm (a^n b^n)$, so $a^n b^n | 2a^n$ and $a^n b^n | 2b^n$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** Show that if *a* and *b* are positive integers and n > 1, then $a^n b^n \nmid a^n + b^n$.
- **Proof.** We can suppose that (a, b) = 1, because if d = (a, b) and $a^n b^n | a^n + b^n$, then $(a/d)^n (b/d)^n | (a/d)^n + (b/d)^n$.
- Suppose on the contrary that $a^n b^n |a^n + b^n$.
- Then $a^n b^n | a^n + b^n \pm (a^n b^n)$, so $a^n b^n | 2a^n$ and $a^n b^n | 2b^n$.
- Hence $a^n b^n | 2(a^n, b^n) = 2(a, b)^n = 2$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Number Theory Chapter 1

Robert C. Vaughan

The integers

Divisibility

- **Example.** Show that if *a* and *b* are positive integers and n > 1, then $a^n b^n \nmid a^n + b^n$.
- **Proof.** We can suppose that (a, b) = 1, because if d = (a, b) and $a^n b^n | a^n + b^n$, then $(a/d)^n (b/d)^n | (a/d)^n + (b/d)^n$.
- Suppose on the contrary that $a^n b^n |a^n + b^n$.
- Then $a^n b^n | a^n + b^n \pm (a^n b^n)$, so $a^n b^n | 2a^n$ and $a^n b^n | 2b^n$.
- Hence $a^n b^n | 2(a^n, b^n) = 2(a, b)^n = 2$.
- We can suppose that a > b, whence aⁿ - bⁿ ≥ (b+1)ⁿ - bⁿ ≥ nbⁿ⁻¹ + · · · + 1 ≥ 3 by the binomial theorem, which is impossible since aⁿ - bⁿ|2.