Number Theory Chapter 0

Robert C. Vaughan

Introduction

Number Theory Chapter 0

Robert C. Vaughan

January 11, 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Number Theory Chapter 0

Robert C. Vaughan

Introduction

Introduction to Number Theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Number theory in its most basic form is the study of the set of *integers*

$$\mathbb{Z} = \{0,\pm 1,\pm 2,\ldots\}$$

and its important subset

$$\mathbb{N}=\{1,2,3,\ldots\},$$

the set of positive integers, sometimes called the *natural numbers*. They have all kinds of amazing and beautiful properties.

Introduction to Number Theory

Chapter 0 Robert C. Vaughan

Number

Theory

Introduction

• Number theory in its most basic form is the study of the set of *integers*

$$\mathbb{Z}=\{0,\pm 1,\pm 2,\ldots\}$$

and its important subset

$$\mathbb{N}=\{1,2,3,\ldots\},$$

the set of positive integers, sometimes called the *natural numbers*. They have all kinds of amazing and beautiful properties.

• There are many fundamental but unresolved questions. A simple example concerns the sequence of twin primes,

3, 5; 5, 7; 11, 13; 17, 19; 29, 31; 41, 43; 59, 61; 71, 73;

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

lr

Chapter 0 Robert C. Vaughan

Number

Theory

Introduction

• Number theory in its most basic form is the study of the set of *integers*

$$\mathbb{Z} = \{0,\pm 1,\pm 2,\ldots\}$$

and its important subset

$$\mathbb{N}=\{1,2,3,\ldots\},$$

the set of positive integers, sometimes called the *natural numbers*. They have all kinds of amazing and beautiful properties.

• There are many fundamental but unresolved questions. A simple example concerns the sequence of twin primes,

3, 5; 5, 7; 11, 13; 17, 19; 29, 31; 41, 43; 59, 61; 71, 73;

• There seem to be many such pairs of primes. Are there infinitely many? Perhaps, but we do not know how to prove it.

Introduction to Number Theory

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• This brings me to an important point.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Vaughan Introduction

Number

Theory Chapter 0 Robert C.

- This brings me to an important point.
- This is a *proofs* based course. The proofs will be mostly short and simple, but they are necessary, and as a general principle understanding the proof usually reveals the underlying structure which is the reason why the theorem is true.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Vaughan Introduction

Number

Theory Chapter 0 Robert C.

- This brings me to an important point.
- This is a *proofs* based course. The proofs will be mostly short and simple, but they are necessary, and as a general principle understanding the proof usually reveals the underlying structure which is the reason why the theorem is true.
- There is an instructive example due to J. E. Littlewood in 1912.

Littlewood

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theory Chapter 0 Robert C. Vaughan

Number

Introduction

 Let π(x) denote the number of prime numbers not exceeding x. Gauss had suggested that

$$\int_0^x \frac{dt}{\log t}$$

should be a good approximation to $\pi(x)$

$$\pi(x) \sim \operatorname{li}(x).$$

For all values of x for which $\pi(x)$ has been calculated it has been found that

$$\pi(x) < \mathsf{li}(x).$$

Littlewood

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Theory Chapter 0 Robert C. Vaughan

Number

Introduction

 Let π(x) denote the number of prime numbers not exceeding x. Gauss had suggested that

$$\int_0^x \frac{dt}{\log t}$$

should be a good approximation to $\pi(x)$

$$\pi(x) \sim \operatorname{li}(x).$$

For all values of x for which $\pi(x)$ has been calculated it has been found that

$$\pi(x) < \mathsf{li}(x).$$

• Here is a table of values which illustrates this for various values of x out to 10²².

Number	x	$\pi(x)$	li(x)	
Chapter 0	10 ⁴	1229	1245	
Robert C.	10 ⁵	9592	9628	
Vaughan	10 ⁶	78498	78626	
Introduction	10 ⁷	664579	664917	
	10 ⁸	5761455	5762208	
	10 ⁹	50847534	50849233	
	10 ¹⁰	455052511	455055613	
	10^{11}	4118054813	4118066399	
	10 ¹²	37607912018	37607950279	
	10 ¹³	346065536839	346065645809	
	10 ¹⁴	3204941750802	3204942065690	
	10 ¹⁵	29844570422669	29844571475286	
	10 ¹⁶	279238341033925	279238344248555	
	10 ¹⁷	2623557157654233	2623557165610820	
	10 ¹⁸	24739954287740860	24739954309690413	
	10 ¹⁹	234057667276344607	234057667376222382	
	10 ²⁰	2220819602560918840	2220819602783663483	
	10 ²¹	21127269486018731928	21127269486616126182	
	10 ²²	201467286689315906290	201467286691248261498	\mathcal{C}

Littlewood's theorem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Chapter 0 Robert C. Vaughan

Number

Theory

Introduction

• In fact this table has been extended out to at least 10^{27} . So is

 $\pi(x) < \mathsf{li}(x)$

always true?

Littlewood's theorem

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

Theory Chapter 0 Robert C. Vaughan

Number

Introduction

• In fact this table has been extended out to at least 10^{27} . So is

$$\pi(x) < \mathsf{li}(x)$$

always true?

• No! Littlewood in 1914 showed that there are infinitely many values of x for which

$$\pi(x) > \mathsf{li}(x)!$$

Littlewood's theorem

Number Theory Chapter 0

Robert C. Vaughan

Introduction

 In fact this table has been extended out to at least 10²⁷. So is

$$\pi(x) < \mathsf{li}(x)$$

always true?

• No! Littlewood in 1914 showed that there are infinitely many values of x for which

$$\pi(x) > \mathsf{li}(x)!$$

• We now believe that the first sign change occurs when

$$x \approx 1.387162 \times 10^{316} \tag{1.1}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

well beyond what can be calculated directly.

Introduction to Number Theory

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Chapter 0 Robert C. Vaughan

Number

Theory

Introduction

 For many years it was only known that the first sign change in π(x) – li(x) occurs for some x satisfying

$$x < 10^{10^{10^{964}}}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chapter 0 Robert C. Vaughan

Number

Theory

Introduction

• For many years it was only known that the first sign change in $\pi(x) - li(x)$ occurs for *some* x satisfying

$$x < 10^{10^{10^{964}}}$$

• The number on the right was computed by Skewes.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theory Chapter 0 Robert C. Vaughan

Number

Introduction

• For many years it was only known that the first sign change in $\pi(x) - li(x)$ occurs for *some* x satisfying

$$x < 10^{10^{10^{964}}}$$

- The number on the right was computed by Skewes.
- G. H. Hardy once wrote that this is probably the largest number which has ever had any *practical* (my emphasis) value! But still even now the only way of establishing this is by a proper mathematical proof.

Theory Chapter 0 Robert C.

Number

Vaughan

Introduction

 For many years it was only known that the first sign change in π(x) – li(x) occurs for some x satisfying

$$x < 10^{10^{10^{964}}}$$

- The number on the right was computed by Skewes.
- G. H. Hardy once wrote that this is probably the largest number which has ever had any *practical* (my emphasis) value! But still even now the only way of establishing this is by a proper mathematical proof.
- Let me turn back to that table, as it illustrates something else very interesting.

Number	x	$\pi(\mathbf{x})$	li(x)	
Theory Chapter 0	10 ⁴	1229	1245	
Robert C.	10 ⁵	9592	9628	
Vaughan	10 ⁶	78498	78626	
Introduction	10 ⁷	664579	664917	
	10 ⁸	5761455	5762208	
	10 ⁹	50847534	50849233	
	10 ¹⁰	455052511	455055613	
	10^{11}	4118054813	4118066399	
	10 ¹²	37607912018	37607950279	
	10 ¹³	346065536839	346065645809	
	10 ¹⁴	3204941750802	3204942065690	
	10 ¹⁵	29844570422669	29844571475286	
	10^{16}	279238341033925	279238344248555	
	10^{17}	2623557157654233	2623557165610820	
	10^{18}	24739954287740860	24739954309690413	
	10^{19}	234057667276344607	234057667376222382	
	10 ²⁰	2220819602560918840	2220819602783663483	
	10 ²¹	21127269486018731928	21127269486616126182	
	10 ²²	201467286689315906290	201467286691248261498	2 (°

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Chapter 0 Robert C. Vaughan

Number

Theory

Introduction

• So is it really true that for any $\theta > \frac{1}{2}$ and all large x we have

$$|\pi(x) - \mathsf{li}(x)| < x^{\theta}?$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Chapter 0 Robert C. Vaughan

Number

Theory

Introduction

• So is it really true that for any $\theta > \frac{1}{2}$ and all large x we have

$$|\pi(x) - \mathsf{li}(x)| < x^{\theta}?$$

• This is the famous Riemann Hypothesis, the most important unsolved problem in mathematics.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Chapter 0 Robert C. Vaughan

Number

Theory

Introduction

• So is it really true that for any $\theta > \frac{1}{2}$ and all large x we have

$$|\pi(x) - \mathsf{li}(x)| < x^{\theta}?$$

- This is the famous Riemann Hypothesis, the most important unsolved problem in mathematics.
- There is a million dollar prize for a proof, or a disproof. And probably an automatic professorship at the most prestigious universities for anyone who wins it.

Chapter 0 Robert C. Vaughan

Number

Theory

Introduction

• So is it really true that for any $\theta > \frac{1}{2}$ and all large x we have

 $|\pi(x) - \mathsf{li}(x)| < x^{\theta}?$

- This is the famous Riemann Hypothesis, the most important unsolved problem in mathematics.
- There is a million dollar prize for a proof, or a disproof. And probably an automatic professorship at the most prestigious universities for anyone who wins it.
- By the way, one might wonder if there is something random in the distribution of the primes. This is how random phenomena are supposed to behave.