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1. A number n ∈ N is squarefree when it has no repeated prime factors.
For X ∈ R, X ≥ 1 let Q(X) denote the number of squarefree numbers

not exceeding X. (i) Prove that
∑
m

m2|n

µ(m) =

{
1 when n is squarefree

0 otherwise.

(ii) Prove that Q(x) =
∑

m≤
√
x

µ(m)
⌊ x

m2

⌋
.

(iii) Prove that Q(X) =
6

π2
X + O

(√
X
)
. (You can assume that∑∞

m=1 µ(m)m−2 = 6/π2.)
(i)Let n2

1 be the largest square dividing n. Then m2|n iff m|n1. (ii)
Q(x) =

∑
n≤x

∑
m2|n µ(m) and interchange the order and replace n by

km2. (iii) In (ii) note that ⌊x/m2⌋ differs from x/m2 by at most 1 and
that |

∑
n>

√
x µ(m)m−2| ≤ x−1/2 +

∫∞√
x
t−2dt.

2. Assume the same notation as in question 1. (i) Prove that if n ∈ N,

then Q(n) ≥ n−
∑
p

⌊
n

p2

⌋
. (ii) Prove that

∑
p

1
p2

< 1
4
+
∑∞

k=1
1

(2k+1)2
<

1
4
+
∑∞

k=1
1

4k(k+1)
= 1

2
. (iii) Prove that Q(n) > n/2 for all n ∈ N. (iv)

Prove that every n > 1 is a sum of two squarefree numbers.
(i) If n is not squarefree, then it is divisible by the square of some

prime. Thus the number of non-squarefree numbers not exceeding n is
≤
∑

p⌊n/p2⌋. (ii) Every prime is either 2 or of the form 2k+1 (with k

omitting some values such as 4), so we have strict inequality. (iii) At
once from (i) and (ii). (iv) Pigeon hole principle. Associate a box with
each integer in [1, n − 1]. Put each squarefree number m in its box,
and put each n−m with m squarefree and 1 ≤ m ≤ n− 1 in its box.
The number of objects in boxes is 2Q(n− 1). By (iii) Q(n− 1) > n− 1
and so at least one box contains two objects m and n − m′. Hence
m = n−m′.

1



2 MATH 465 NUMBER THEORY, SPRING 2025, SOLUTIONS 13

3. Let f(n) denote the number of solutions of x3 + y3 = n in natural
numbers x, y. Show that

∑
n≤X f(n) = AX2/3 + O

(
X1/3

)
where A =∫ 1

0
(1− α3)1/3dα.
We are counting the number of integral lattice points x, y with X >

0, y > 0 and x3+ y3 ≤ X. This is the area of that region with an error
the length of the boundary, which is of length ≪ X1/3. The area is∫ X1/3

0

(X − t3)1/3dt = X2/3A

by the change of variable t = X1/3α. Alternatively write the sum as∑
x≤X1/3

⌊(X − x3)1/3⌋ =
∑

x≤X1/3

(X − x3)1/3 +O(X1/3)

and replace the sum by an integral using monotonicity. A third possi-
bility is to notice the difference in the number of lattice points between
when we count out to X1/3 −

√
2 and X1/3 +

√
2.

4. Let n ∈ N and p be a prime number, show that the largest t such

that pt|n! satisfies t =
∑∞

h=1

⌊
n
ph

⌋
.

The exact power tm to which p divides m is

tm =
∞∑
h=1
ph|m

1.

Hence

t =
n∑

m=1

tm =
n∑

m=1

∞∑
h=1
ph|m

1 =
∞∑
h=1

n∑
m=1
ph|m

1 =
∞∑
h=1

⌊
n

ph

⌋
.

An alternative proof is to observe that

n! = exp

(
n∑

m=1

logm

)

= exp

(
∞∑
k=1

Λ(k)
⌊n
k

⌋)

= exp

(∑
p,h

log p

⌊
n

ph

⌋)

=
∏
p

p
∑∞

h=1

⌊
n

ph

⌋
.


