Math 465 Number Theory, Spring 2025, Solutions 10

1. (i) Prove that if $p \neq 2$, then $\left(\frac{-5}{p}\right)_L = 1$ iff $p \equiv 1, 3, 7$ or 9 (mod 20). (ii) List those $n \leq 25$ for which $x^2 + 5y^2 = n$ is soluble in integers x and y. Are there any primes of the form $p \equiv 1, 3, 7$ or 9 (mod 20) for which $x^2 + 5y^2 = p$ is insoluble in x and y? Which of them are represented by $2x^2 + 2xy + 3y^2$?

 $\left(\frac{-5}{p}\right)_L = (-1)^{\frac{p-1}{2}} \left(\frac{p}{5}\right)_L$ and both factors are +1 when $p \equiv 1 \pmod{4}$ and $p \equiv 1$ or 4 (mod 5), and both -1 when $p \equiv 3 \pmod{4}$ and $p \equiv 2$ or 3 (mod 5). (ii) 0, 1, 4, 5, 6, 9, 14, 16, 21, 24, 25. 3, 7, 23 are not represented, but are represented by $2x^2 + 2xy + 3y^2$, 3 with x, y = 0, 1, 7 with x, y = 1, 1, 23 with x, y = -1, 3.

2. Prove that the number $n = 2^k \left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor - 1$ cannot be represented by the sum of fewer than $2^k + \left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor - 2$ positive k-th powers.

We have $n < 3^k$ so $n = x2^k + y1^k$, whence $y = n - x2^k$. Thus $x + y = n - x(2^k - 1)$ and thus x + y will be minimal when x is maximal. Since $n = 2^k \left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor - 1 < 2^k \left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor$, the largest that x can be is $\left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor - 1$, and then $y = 2^k - 1$.

3. (i) Show $\sum_{\ell \mid (m,n)} \mu(\ell)$ is 1 when (m,n) = 1 and is 0 otherwise. (ii) Prove $\sum_{m=1,(m,n)=1}^{n} m = \frac{1}{2}n\phi(n)$ when n > 1. (iii) Let N(n,h) be the number of m with $1 \leq m \leq n$ and (m(m+h),n) = 1. Prove that $N(n,h) = n \sum_{\ell \mid n} \frac{\mu(\ell)}{\ell} \rho(\ell)$ where $\rho(\ell)$ is the number of m with $1 \leq m \leq \ell$ and $\ell \mid m(m+h)$. (iv) Prove that $\rho(\ell)$ is multiplicative. (v) Evaluate $\rho(p)$ and deduce that $N(n,h) = \phi(n) \prod_{p \mid n, p \nmid h} \frac{p-2}{p-1}$.

(i) This is immediate by Theorem 7.4. (ii) The sum in question is

$$\sum_{m=1}^{n} m \sum_{\ell \mid (n,m)} \mu(\ell) = \sum_{\ell \mid n} \mu(\ell) \sum_{m=1,\ell \mid m}^{n} m = \sum_{\ell \mid n} \mu(\ell) \ell \sum_{k=1}^{n/\ell} k = \sum_{\ell \mid n} \mu(\ell) \ell \frac{n}{2\ell} \left(\frac{n}{\ell} + 1\right) = 0$$

 $\frac{n^2}{2} \sum_{\ell \mid n} \frac{\mu(\ell)}{\ell} + \frac{n}{2} \sum_{\ell \mid n} \mu(\ell).$ Here the second sum is 0 by Theorem 7.4, and the first is $\frac{1}{2}n\phi(n)$ by Theorem 7.7. (iii) By (i) $N(n,h) = \sum_{m=1}^{n} \sum_{\ell \mid (m(m+h),n)} \mu(\ell) = \sum_{\ell \mid n} \mu(\ell) \sum_{m=1,\ell \mid m(m+h)}^{n} 1.$ The inner sum here is $(n/\ell)\rho(\ell).$ (iv) If $\ell = \ell_1 \ell_2$ with $(\ell_1, \ell_2) = 1$, then $m_1\ell_2 + m_2\ell_1$ runs over a complete set of residues modulo $\ell_1\ell_2$ as m_1 and m_2 do modulo ℓ_1 and ℓ_2 do respectively. (v) $\rho(p) = 1$ when $p \mid h$ since then $p \mid m(m+h)$ implies $p \mid m$. When $p \nmid h$, then there are two possibilities for m, namely $m \equiv 0$ and $m \equiv -h \pmod{p}$, so in this case $\rho(p) = 2$. Hence bu (iii) $N(n,h) = n \prod_{p \mid (n,h)} \frac{p-1}{p} \prod_{p \mid n, pnmidh} \frac{p-2}{p}$. The conclusion follows from Theorem 7.7.

4. Show that if n is a natural number, then $\prod_{m|n} m = n^{\frac{1}{2}d(n)}$. When m|n the mapping $m \leftrightarrow \frac{n}{m}$ is a bijection. Thus

$$\left(\prod_{m|n} m\right)^2 = \prod_{m|n} m \prod_{m|n} \frac{n}{m} = \prod_{m|n} n = n^{d(n)}$$