Math 465 Number Theory I, Spring Term 2025, Solutions 5

1. Solve the simultaneous congruences

$$x \equiv 3 \pmod{6}$$
$$x \equiv 5 \pmod{35}$$
$$x \equiv 7 \pmod{143}$$
$$x \equiv 11 \pmod{323}$$

The general solution is given by $x \equiv 3m_1n_1 + 5m_2n_2 + 7m_3n_3 + 11m_4n_4 \pmod{m}$ where m = 6.35.143.323 = 9699690, $m_1 = m/6 = 1616615 \equiv 5 \pmod{6}$, $m_2 = m/35 = 277134 \equiv 4 \pmod{35}$, $m_3 = m/143 = 67830 \equiv 48 \pmod{143}$, $m_4 = m/323 = 30030 \equiv 314 \pmod{323}$, $m_1n_1 \equiv 1 \pmod{6}$, $m_2n_2 \equiv 1 \pmod{35}$, $m_3n_3 \equiv 1 \pmod{143}$, $m_4n_4 \equiv 1 \pmod{323}$. Thus $n_1 = 5$, $n_2 = 9$, $n_3 = 3$, $n_4 = 287$ and $x \equiv 3.1616615.5 + 5.277134.9 + 7.67830.3 + 11.30030.287 = 132949395 \equiv 6853425 \pmod{9699690}$.

2. Prove that if p is an odd prime and 0 < k < p, then (assuming 0! = 1) $(p-k)!(k-1)! \equiv (-1)^k \pmod{p}$.

By Wilson's theorem $-1 \equiv (p-1)! = (p-k)!(p-k+1)(p-k+2)\dots(p-k+(k-1))$ (mod p) and $(p-k+1)(p-k+2)\dots(p-k+(k-1)) \equiv (-k+1)(-k+2)\dots(-k+(k-1)) = (-1)^{k-1}(k-1)!$ (mod p).

3. (i) Let $m \in \mathbb{N}$. Prove that $(y-1)(y^{m-1}+y^{m-2}+\cdots+y+1) = y^m-1$. (ii) Let $n \in \mathbb{N}$. Prove that $(x^2+1)(x^2-1)(x^{4n-4}+x^{4n-8}+\cdots+x^4+1) = x^{4n}-1$. (iii) Let p be a prime number with $p \equiv 1 \pmod{4}$. Prove that $x^2 \equiv -1 \pmod{p}$ has exactly two solutions.

(i) We have $(y-1)(y^{m-1}+y^{m-2}+\cdots+y+1) = y^m+y^{m-1}+\cdots+y-y^{m-1}-y^{m-2}-\cdots-y-1 = y^m-1$. (ii) We have $x^4-1 = (x^2+1)(x^2-1)$. Take $y = x^4$ and m = n in (i). (iii) Let $n = \frac{p-1}{4}$. Then $x^{4n} - 1 = x^{p-1} - 1 \equiv 0 \pmod{p}$ whenever $x \not\equiv 0 \pmod{p}$, so $x^{4n} - 1 \equiv 0 \pmod{p}$ has at least p-1 = 4n solutions. By Lagrange's theorem $x^2+1 \equiv 0 \pmod{p}$, $x^2-1 \equiv 0 \pmod{p}$ and $x^{4n-4}+x^{4n-8}+\cdots+x^4+1 \equiv 0 \pmod{p}$ have at most 2, 2 and 4n-4 solutions respectively. But then, by (ii), $x^2+1 \equiv 0 \pmod{p}$ must have at least 4n - (4n-4) - 2 = 2 solutions.

An alternative solution of (iii) not using (ii) goes as follows. Let g be a primitive root modulo p. Then $g^{(p-1)/2} \not\equiv 1 \pmod{p}$ and $(g^{(p-1)/2})^2 = g^{p-1} \equiv 1 \pmod{p}$, so $g^{(p-1)/2} \equiv -1 \pmod{p}$. Thus $(\pm g^{(p-1)/4})^2 \equiv g^{(p-1)/2} \equiv -1 \pmod{p}$.

4. Prove that if a has order 3 modulo a prime p, then $1 + a + a^2 \equiv 0 \pmod{p}$, and 1 + a has order 6.

We have $a^3 \equiv 1 \pmod{p}$, but $a^3 - 1 = (a-1)(a^2 + a + 1)$ and $a \not\equiv 1 \pmod{p}$. Thus $p|a^2 + a + 1$. We also have $(1 + a)^2 = 1 + 2a + a^2 \equiv a \pmod{p}$. Hence $(1+a)^6 \equiv a^3 \equiv 1$, so 1+a has order dividing 6. But $a \not\equiv 0 \pmod{p}$, so from above 1 + a does not have order 1 or 2. Finally $(1 + a)^3 \equiv a(1 + a) \equiv -1 \pmod{p}$, so 1 + a does not have order 3.