MATH 465 NUMBER THEORY, SPRING TERM 2025, SOLUTIONS 3

1. Show that if $ad - bc = \pm 1$, then (a + b, c + d) = 1. We have $(a + b, c + d)|(a + b)d - b(c + d) = ad - bc = \pm 1$.

2. Suppose that $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Prove that there are integers a, b such that (a, b) = m and [a, b] = n if and only if m|n.

First suppose that m|n. Then choose a = m, b = n. Then (a, b) = m(1, b/m) = m and [a, b] = ab/(a, b) = mn/m = n. Now suppose that there are a, b with (a, b) = m and [a, b] = n. Then there are $u, v \in \mathbb{N}$ such that a = um, b = vm. Hence $muv = \frac{mumv}{m} = \frac{ab}{(a,b)} = [a, b] = n$.

3. Find (1819, 3587), and obtain the complete solution in integers x and y to 1819x + 3587y = (1819, 3587).

Thus 17 = (16801, 2024) = (71)1819 + (-36)3587 = (71 + 211t)1819 + (-36 - 107t)3587 for any $t \in \mathbb{Z}$.

4. Let $\{F_n : n = 1, 2, ...\}$ be the Fibonacci sequence defined by $F_1 = 1$, $F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$ and let

$$\theta = \frac{1 + \sqrt{5}}{2} = 1.6180339887498948482045868343656\dots$$

(i) Prove that

$$F_n = \frac{\theta^n - (-\theta)^{-n}}{\sqrt{5}}.$$

(ii) Suppose that a and b are positive integers with b < a and we adopt the notation used in the description of Euclid's algorithm. Prove that for $k = 0, 1, \ldots, s - 1$ we have $F_k \leq r_{s-1-k}$ and

$$s \le 1 + \frac{\log 2b\sqrt{5}}{\log \theta}.$$

This shows that Euclid's algorithm runs in time at most linear in the bit size of $\min(a, b)$.

(i) θ and $\phi = -1/\theta = (1 - \sqrt{5})/2$ are both solutions to $x^2 - x - 1 = 0$ and hence to $x^{n+1} = x^n + x^{n-1}$. Moreover (i) holds for n = 0 and 1 and hence by induction for all n. (ii) $r_{s-1} \ge 1 \ge 0 = F_0$ and $r_{s-2} \ge 1 = F_1$. Suppose that $2 \le k \le s - 1$ and $F_j \le r_{s-1-j}$ holds for $0 \le j \le k - 1$. Then $r_{s-1-k} = r_{s-1-(k-1)}q_{s-k+1} + r_{s-1-(k-2)} \ge r_{s-1-(k-1)} + r_{s-1-(k-2)} \ge F_{k-1} + F_{k-2}$, so by induction on k, $r_{s-1-k} \ge F_k$. Let k = s - 1. Then $F_{s-1} \le r_0 = b$ and the desired inequality follows by taking logs and applying the formula for F_{s-1} .