MATH 465 NUMBER THEORY, SPRING TERM 2025, SOLUTIONS 2

1. Prove that if $2^m + 1$ is an odd prime, then there is an $n \in \mathbb{N}$ such that $m = 2^n$. These are the Fermat primes. Fermat thought that all numbers of the form $2^{2^n} + 1$ are prime. Show that $641|2^{2^5} + 1$.

 $2^{16} = 65536 \equiv 154 \pmod{641}, 2^{32} \equiv 154^2 = 23716 \equiv 640 \pmod{641}$

2. Let $n_1, n_2, \ldots, n_s \in \mathbb{Z}$, not all 0. Define $\text{GCD}(n_1, n_2, \ldots, n_s)$ and prove that there exist integers x_1, x_2, \ldots, x_s such that $n_1x_1 + n_2x_2 + \cdots + n_sx_s = \text{GCD}(n_1, n_2, \ldots, n_s)$, and show that for every j we have $(n_1, \ldots, n_s)|n_j$ and that if $d|n_j$ for every j, then $d|(n_1, \ldots, n_j)$.

Define

 $\mathcal{D}(n_1,\ldots,n_s) = \{n_1x_1 + \cdots + n_sx_s : x_j \in \mathbb{Z}\}.$

Since there is an $n_j \neq 0$ we can choose $x_j = \pm 1$ and $x_i = 0$ for $i \neq j$, which shows that $\mathcal{D}(n_1, \ldots, n_s)$ has positive elements. Let $\text{GCD}(n_1, \ldots, n_s)$ denote the least positive element.

For any n_j , by the division algorithm there are q_j and r_j so that $n_j = (n_1, \ldots, n_s)q_j + r_j$ and $0 \le r_j < (n_1, \ldots, n_s)$. n_j and (n_1, \ldots, n_s) are in $\mathcal{D}(n_1, \ldots, n_s)$. Hence so is r_j . But the minimality of (n_1, \ldots, n_s) implies that $r_j = 0$ and so $(n_1, \ldots, n_s)|n_j$. On the other hand by definition there are x_1, \ldots, x_s so that $(n_1, \ldots, n_s) = x_1n_1 + \cdots + x_sn_s$. Thus if $d|n_j$ for every j then $d|x_1n_1 + \cdots + x_sn_s = (n_1, \ldots, n_s)$.

3. Let $a \in \mathbb{N}$ and $b \in \mathbb{Z}$. Prove that the equations (x, y) = a and xy = b can be solved simultaneously in integers x and y if and only if $a^2|b$.

If $a^2|b$, then take x = a, y = b/a. If (x, y) = a and xy = b, then we have x = au, y = av for some u, v in \mathbb{Z} . Hence $a^2uv = xy = b$.

4. Find integers x and y such that 16801x + 2024y = (16801, 2024).

$$16801 \quad 1 \quad 0$$

$$8 \quad 2024 \quad 0 \quad 1$$

$$3 \quad 609 \quad 1 \quad -8$$

$$3 \quad 197 \quad -3 \quad 25$$

$$10 \quad 18 \quad 10 \quad -83$$

$$1 \quad 17 \quad -103 \quad 855$$

$$1 \quad 113 \quad -938$$
Thus $(16801, 2024) = (113)16801 - (938)2024 = 1.$