MATH 465 NUMBER THEORY, SPRING TERM 2025, PROBLEMS 1

DIVISIBILITY AND FACTORISATION

Return by Wednesday 22nd January

- 1. Let $a, b, c \in \mathbb{Z}$. Prove each of the following.
 - (i) If a|b and b|c, then a|c.
 - (ii) If a|b, then ac|bc.
 - (iii) If ac|bc and $c \neq 0$, then a|b.
 - (iv) If a|b and a|c, then a|bx + cy for all $x, y \in \mathbb{Z}$.
- 2. Define the integer sequence $a_n, n \in \mathbb{N}$ by $a_1 = 1 = a_2 = 1$ and

$$a_{n+2} = 3a_{n+1} - a_n.$$

Prove that if $m|a_{n+1}$ and $m|a_n$ for some $n \in \mathbb{N}$, then m = 1.

- 3. Prove that for every $n \in \mathbb{Z}$ we have $3|n^3 n$.
- 4. (i) Show that if 4|m-1 and 4|n-1, then 4|mn-1.
 - (ii) Show that if $m, n \in \mathbb{N}$, and 4|mn+1, then either 4|m+1 or 4|n+1.
 - (iii) Show that if 4|n+1, then there is a prime number p with p|n and 4|p+1.
 - (iv) Show that there are infinitely many primes p such that 4|p+1.