MATH 465 NUMBER THEORY, SPRING TERM 2025, PRACTICE EXAM 3, SOLUTIONS

Note: Mid-term Exam 3 will be 1:25 on Wednesday 9th April in room 216 Thomas.

1. Evaluate the following Legendre symbols, showing your working (i) $\left(\frac{-1}{103}\right)_{I}$, (ii) $\left(\frac{2}{103}\right)_{I}$, (iii) $\left(\frac{7}{103}\right)_L$

(i) We have $\left(\frac{-1}{103}\right)_L = (-1)^{(102)/2} = -1$ by Euler's criterion. (ii) $\left(\frac{2}{103}\right)_L$. $103 \equiv 7 \pmod{8}$, so $(103^2 - 1)/8$ is even and $\left(\frac{2}{103}\right)_L = 1$. (iii) By the law of quadratic reciprocity $\left(\frac{7}{103}\right)_L = -\left(\frac{103}{7}\right)_L = -\left(\frac{103}{$ $-\left(\frac{5}{7}\right)_L = -\left(\frac{7}{5}\right)_L = -\left(\frac{2}{5}\right)_L = +1.$

2. Given that 4999 is prime, determine the number of solutions of the congruence $x^2 \equiv 2021$ (mod 4999).

$$\begin{pmatrix} 2021\\ 4999 \end{pmatrix}_L = \begin{pmatrix} 4999\\ 2021 \end{pmatrix}_J = \begin{pmatrix} 957\\ 2021 \end{pmatrix}_J = \begin{pmatrix} 2021\\ 957 \end{pmatrix}_J = \begin{pmatrix} 107\\ 957 \end{pmatrix}_J = \begin{pmatrix} 101\\ 107 \end{pmatrix}_J = \begin{pmatrix} 107\\ 101 \end{pmatrix}_J = \begin{pmatrix} 6\\ 101 \end{pmatrix}_J = \begin{pmatrix} 2\\ 101 \end{pmatrix}_L \begin{pmatrix} 3\\ 101 \end{pmatrix}_L = -\begin{pmatrix} 101\\ 3 \end{pmatrix}_L = -\begin{pmatrix} 2\\ 3 \end{pmatrix}_L = +1.$$
Hence the congruence has two solutions.

3. Suppose that $p \equiv 1 \pmod{6}$. (i) Prove that the congruence $z^2 \equiv -3 \pmod{p}$ is soluble in z. (ii) Prove that there is an *m* with m = 1, 2 or 3 such that $x^2 + 3y^2 = mp$ is soluble in integers *x* and y. (iii) Deduce that there are integers x and y such that $x^2 + 3y^2 = p$.

(i) We have $\left(\frac{-3}{p}\right)_L = (-1)^{(p-1)/2} \left(\frac{3}{p}\right)_L = (-1)^{2(p-1)/2} \left(\frac{p}{3}\right)_L = \left(\frac{1}{3}\right)_L = 1$. (ii) Choose a solution z to $z^2 \equiv -3 \pmod{p}$. Consider the $(1 + \lfloor \sqrt{p} \rfloor)^2 > p$ numbers x + zy with $0 \le x < \sqrt{p}, 0 \le y < \sqrt{p}$. Then at least one of the residue classes r modulo p contains at least two of these numbers, say $x_1 + zy_1, x_2 + zy_2$. Let $x = x_2 - x_1, y = y_2 - y_1$. Then $x + zy \equiv 0 \pmod{p}$ but $xy \not\equiv 0 \pmod{p}$ since the pairs x_1, y_1 and x_2, y_2 are different. Thus $x^2 + 3y^2 \equiv (-zy)^2 + 3y^2 = y^2(z^2 + 3) \equiv 0$ (mod p). Moreover $x^2 + 3y^2 < 4p$. Hence $x^2 + 3y^2 = mp$ with m = 1, 2 or 3. (iii) In (ii), if m = 3, then $3|x^2$ so 3|x, and then $3(x/3)^2 + y^2 = p$ and we are done. If m = 2, then x and y are both even or both odd. But they cannot both be even, since then 4|2p which is impossible. If both are odd, then $x^2 + 3y^2 \equiv 1 + 3 = 4 \pmod{8}$ and so we would again have 4|2p.

4. Prove that for every positive integer n, $\sum_{m|n} \mu(m)d(m) = (-1)^{\omega(n)}$ where $\omega(n)$ is the number of different prime factors of n.

 μ and d are multiplicative. Hence, so is $f(n) = \sum_{m|n} \mu(m) d(m) = (-1)^{\omega(n)}$. The for any prime p and positive integer k, $f(p^k) = 1 - d(p) = 1 - 2 = -1$.