MATH 465 NUMBER THEORY, SPRING TERM 2025, PRACTICE EXAM 2, MODEL SOLUTIONS

Note: Mid-term exam 2 will be at 1:25 on Wednesday 5th March in room 216 Thomas

1. Suppose that p, q and r are distinct primes. Prove that

$$p^{(q-1)(r-1)} + q^{(r-1)(p-1)} + r^{(p-1)(q-1)} \equiv 2 \pmod{pqr}.$$

By the Fermat-Euler theorem we have $q^{(r-1)(p-1)} = (q^{p-1})^{r-1} \equiv 1 \pmod{p}$ and likewise $r^{(p-1)(q-1)} \equiv 1 \pmod{p}$. Hence $p^{(q-1)(r-1)} + q^{(r-1)(p-1)} + r^{(p-1)(q-1)} \equiv 2 \pmod{p}$, and so also \pmod{q} and \pmod{r} .

2. Solve the simultaneous congruences $x \equiv 4 \pmod{19}, x \equiv 5 \pmod{31}$. Solve $31a \equiv 1 \pmod{19}$ and $19b \equiv 1 \pmod{31}$.

By Euclid's algorithm, 1 = 8.31 - 13.19, Thus $a = 8, b \equiv -13 \equiv 18 \pmod{31}$. 19.31 = 589. Hence $x \equiv 4.8.31 + 5.18.19 \equiv 346 \pmod{589}$

3. Show that 2 is a primitive root modulo 11 and draw up a table of indices to this base modulo 11. Hence, or otherwise, find all solutions to the following congruences, (i) $x^6 \equiv 7 \pmod{11}$, (ii) $x^{48} \equiv 9 \pmod{11}$, (iii) $x^7 \equiv 8 \pmod{11}$.

 $5 \ 6 \ 7$ 9 10 y 2^y $10 \ 9$

x $ind_2x \ 10 \ 1$

(i) This is equivalent to $6y \equiv 7 \pmod{10}$. Since $(6,10) = 2 \nmid 7$ there is no solution. (ii) $48y \equiv 6 \pmod{10}$, $24y \equiv 3 \pmod{5}$, $1 \leq y \leq 10$, $y \equiv 2 \pmod{5}$, $y \equiv 2 \text{ or } 7 \pmod{10}$, $x \equiv 4 \text{ or } 7 \pmod{11}$ (iii) $7y \equiv 3 \pmod{10}$, $y \equiv 9 \pmod{10}$, $x \equiv 6 \pmod{11}$.

4. Given that 4327 is prime, determine the number of solutions of the congruence $x^2 \equiv 2021 \pmod{4327}$.

$$\left(\frac{2021}{4327}\right)_L = \left(\frac{285}{2021}\right)_L = \left(\frac{26}{285}\right)_L = \left(\frac{2}{285}\right)_L \left(\frac{13}{285}\right)_L = -\left(\frac{-1}{13}\right)_L = -1$$
so no solutions.