MATH 421 COMPLEX ANALYSIS, FALL TERM 2004, PRACTICE FINAL EXAM SOLUTIONS

1. Set of points equidistant from -i and 3i, so the straight line thro' i parallel to the real axis. (ii) Circle centre 17/15, radius 8/15.

2. Show that $R \setminus \{z\}$ is open and polygonally connected. Let $a \in R \setminus \{z\}$. Then $a \in R$ and $a \neq z$. Hence there is a disc $D(a; \delta)$ in R with $0 < \delta < |z - a|$ and this disc is also in $R \setminus \{z\}$. Now let $a, b \in R \setminus \{z\}$ with $a \neq b$. Then $a, b \in R$ and there is a polygon $[w_0, \ldots, w_k]$ in R with $w_0 = a$, $w_k = b$. If z not on this polygon then we are done. If it is consider a square with its centre at z and of sufficiently small side length that it is in R and intersects the polygon and use the sides of the square to detour around z.

3. $u = e^{-y} \cos x, v = -e^{-y} \sin x$. Thus $u_x = -e^{-y} \sin x, v_y = e^y \sin x, u_y = -e^{-y} \cos x, v_x = -e^{-y} \cos x, -e^{-y} \sin x = e^{-y} \sin x, \sin x = 0, -e^{-y} \cos x = e^{-y} \cos x, \cos x = 0$. But $\cos^2 x + \sin^2 x = 1$.

4. Let $F(z) = \exp(z + 1/z)$. Then F is differentiable on C and $F'(z) = (1 - z^{-2})\exp(z + 1/z)$ and so F acts as a primitive for the integrand on C. Hence the integral is $F(1) - F(-1) = e^2 - e^{-2} = 2\sinh 2$.

5. (i) $\mathbb{C}\setminus\{i,-i\}$. (ii) The integrand is $f(z)(z-i)^{-2}$ where $f(z) = (z+i)^{-2}$ is analytic on and inside \mathcal{C} . Hence, by the Cauchy integral formula, the integral is $2\pi i f'(i) = 2\pi i (-2)(2i)^{-3} = \pi/2$.

6. $e^z = e^{-1}e^{z+1} = \sum_{k=0}^{\infty} \frac{e^{-1}}{k!}(z+1)^k$, valid for all $z \in \mathbb{C}$. Hence $(z+1)^{-2}e^z = \sum_{n=-2}^{\infty} \frac{e^{-1}}{(n+2)!}(z+1)^n$, valid for all $z \neq -1$. This, by the identity theorem for Laurent series this is the Laurent expansion about 0 and the residue at -1 is e^{-1} . 7. The integral is $\frac{1}{2}\Im \lim_{R\to\infty} I_R$ where $I_R = \int_{-R}^R f(z)dz$ where $f(z) = \frac{ze^{iz}}{z^2+4}$. We suppose R and T are large and positive and define L_1 , L_2 and L_3 to be the line segments joining R to R+iT, R+iT to -R+iT, and -R+iT to -R. On L_1 and L_3 , $z = \pm R + it$, $|f(z)| \leq 2e^{-t}R^{-1}$. Thus $|\int_{L_j} f(z)dz| \leq 2R^{-1}\int_0^T e^{-t}dt < 2R^{-1}$ (j=1,3). On L_2 , z = x+iT, so $|f(z)| \leq 2T^{-1}e^{-T}$ and $|\int_{L_2} f(z)dz| \leq 4RT^{-1}e^{-T}$. The residue of f at at 2i is $\frac{2ie^{-2}}{4i} = \frac{1}{2}e^{-2}$. Hence, by the residue theorem, $I_R + \int_{L_1+L_2+L_3} f(z)dz = \pi ie^{-2}$. Thus $|I_R - \pi ie^{-2}| \leq 4R^{-1} + 4RT^{-1}e^{-T}$. This holds for all large T, so $|I_R - \pi ie^{-2}| \leq 4R^{-1}$. Let $R \to \infty$. Then our integral is $\frac{1}{2}\pi e^{-2}$.