MATH 421 COMPLEX ANALYSIS, FALL TERM 2004, PRACTICE FINAL EXAM SOLUTIONS

1. Set of points equidistant from $-i$ and $3 i$, so the straight line thro' i parallel to the real axis. (ii) Circle centre $17 / 15$, radius $8 / 15$.
2. Show that $R \backslash\{z\}$ is open and polygonally connected. Let $a \in R \backslash\{z\}$. Then $a \in R$ and $a \neq z$. Hence there is a disc $D(a ; \delta)$ in R with $0<\delta<|z-a|$ and this disc is also in $R \backslash\{z\}$. Now let $a, b \in R \backslash\{z\}$ with $a \neq b$. Then $a, b \in R$ and there is a polygon $\left[w_{0}, \ldots, w_{k}\right]$ in R with $w_{0}=a, w_{k}=b$. If z not on this polygon then we are done. If it is consider a square with its centre at z and of sufficiently small side length that it is in R and intersects the polygon and use the sides of the square to detour around z.
3. $u=e^{-y} \cos x, v=-e^{-y} \sin x$. Thus $u_{x}=-e^{-y} \sin x, v_{y}=e^{y} \sin x, u_{y}=$ $-e^{-y} \cos x, v_{x}=-e^{-y} \cos x,-e^{-y} \sin x=e^{-y} \sin x, \sin x=0,-e^{-y} \cos x=$ $e^{-y} \cos x, \cos x=0$. But $\cos ^{2} x+\sin ^{2} x=1$.
4. Let $F(z)=\exp (z+1 / z)$. Then F is differentiable on \mathcal{C} and $F^{\prime}(z)=(1-$ $\left.z^{-2}\right) \exp (z+1 / z)$ and so F acts as a primitive for the integrand on \mathcal{C}. Hence the integral is $F(1)-F(-1)=e^{2}-e^{-2}=2 \sinh 2$.
5. (i) $\mathbb{C} \backslash\{i,-i\}$. (ii) The integrand is $f(z)(z-i)^{-2}$ where $f(z)=(z+i)^{-2}$ is analytic on and inside \mathcal{C}. Hence, by the Cauchy integral formula, the integral is $2 \pi i f^{\prime}(i)=2 \pi i(-2)(2 i)^{-3}=\pi / 2$.
6. $e^{z}=e^{-1} e^{z+1}=\sum_{k=0}^{\infty} \frac{e^{-1}}{k!}(z+1)^{k}$, valid for all $z \in \mathbb{C}$. Hence $(z+1)^{-2} e^{z}=$ $\sum_{n=-2}^{\infty} \frac{e^{-1}}{(n+2)!}(z+1)^{n}$, valid for all $z \neq-1$. This, by the identity theorem for Laurent series this is the Laurent expansion about 0 and the residue at -1 is e^{-1}. 7. The integral is $\frac{1}{2} \Im \lim _{R \rightarrow \infty} I_{R}$ where $I_{R}=\int_{-R}^{R} f(z) d z$ where $f(z)=\frac{z e^{i z}}{z^{2}+4}$. We suppose R and T are large and positive and define L_{1}, L_{2} and L_{3} to be the line segments joining R to $R+i T, R+i T$ to $-R+i T$, and $-R+i T$ to $-R$. On L_{1} and $L_{3}, z= \pm R+i t,|f(z)| \leq 2 e^{-t} R^{-1}$. Thus $\left|\int_{L_{j}} f(z) d z\right| \leq 2 R^{-1} \int_{0}^{T} e^{-t} d t<2 R^{-1}$ $(j=1,3)$. On $L_{2}, z=x+i T$, so $|f(z)| \leq 2 T^{-1} e^{-T}$ and $\left|\int_{L_{2}} f(z) d z\right| \leq 4 R T^{-1} e^{-T}$. The residue of f at at $2 i$ is $\frac{2 i e^{-2}}{4 i}=\frac{1}{2} e^{-2}$. Hence, by the residue theorem, $I_{R}+$ $\int_{L_{1}+L_{2}+L_{3}} f(z) d z=\pi i e^{-2}$. Thus $\left|I_{R}-\pi i e^{-2}\right| \leq 4 R^{-1}+4 R T^{-1} e^{-T}$. This holds for all large T, so $\left|I_{R}-\pi i e^{-2}\right| \leq 4 R^{-1}$. Let $R \rightarrow \infty$. Then our integral is $\frac{1}{2} \pi e^{-2}$.
