MATH 421 COMPLEX ANALYSIS, FALL TERM 2004, PRACTICE EXAM 2 SOLUTIONS

The second exam is on Wednesday 10th November, at 9:05 in 109 Bouke.

- 1. (i) Show that f'(z) exists at no point of \mathbb{C} when (i) $f(x+iy) = x^2 y^2 x + i(2xy + y)$. $u_1 = 2x 1$, $v_2 = 2x + 1$, $u_1 v_2 = -2 \neq 0$. (ii) $f(z) = e^{\overline{z}}$. $e^{\overline{z}} = e^x(\cos y i\sin y)$. $u_1 = e^x\cos y$, $v_2 = -e^x\cos y$, $u_2 = -e^x\sin y$, $v_1 = -e^x\sin y$. $u_1 = v_2$ iff $2^x = \cos y = 0$ iff $\cos y = 0$. $u_2 = -v_1$ iff $2e^x\sin y = 0$ iff $\sin y = 0$. But $\sin^2 y + \cos^2 y = 1$, so $\cos y$ and $\sin y$ cannot be simultaneously 0.
- 2. Use the Cauchy-Riemann equations to show in each case that f(z) and f'(z) are entire. (i) $f(x+iy) = -2xy + i(x^2 y^2)$. $u_1 = v_2 = -2y$, $u_2 = -v_1 = -2x$, and all are continuous. Thus f'(x+iy) exists and equals -2y + 2ix. Now $u_1 = v_2 = 0$, $u_2 = -v_1 = -2$ and all are continuous. (ii) $f(x+iy) = \sinh x \cos y + i \cosh x \sin y$. $u_1 = v_2 = \cosh x \cos y$, $u_2 = -v_1 = -\sinh x \sin y$ and all are continuous. Hence $f'(x+iy) = \cosh x \cos y + i \sinh x \sin y$. Now $u_1 = v_2 = \sinh x \cos y$, $u_2 = -v_1 = -\cosh x \sin y$ and all are continuous.
- 3. In each case what is the largest domain of holomorphicity of the given function? (i) $f(z) = \frac{1}{z}$, (ii) $f(z) = \frac{1}{z^2+1}$, (iii) $f(z) = \log(z^2+1)$, where we take the branch of the logarithm with $-\pi < \Im \log w \le \pi$. (i) $\mathbb{C} \setminus \{0\}$. (ii) $\mathbb{C} \setminus \{-i, i\}$. (iii) $\mathbb{C} \setminus \{iy : y \ge 1 \text{ or } y \le -1\}$.
- 4. Let \mathcal{C} denote the path $\mathcal{C} = \{z(t) : 0 \le t \le 2\}$ where z(t) = t $(0 \le t \le 1)$, z(t) = 1 + i(t-1) $(1 \le t \le 2)$. Evaluate (i) $\int_{\mathcal{C}} z^3 dz$, (ii) $\int_{\mathcal{C}} e^z dz$. (i) $\int_{\mathcal{C}} z^3 dz = \int_0^1 t^3 dt + \int_1^2 (1 + i(t-1))^3 i dt = -1$. (ii) $\int_{\mathcal{C}} e^z dz = \int_0^1 e^t dt + \int_1^2 e^{1 + i(t-1)} i dt = e^{1 + i} 1$.