Continuity

Robert C. Vaughan

April 15, 2024

Continuity at a Point

Robert C. Vaughan

- The concept of continuity is fundamental to much of mathematics. We start with continuity at a point.

Continuity at a Point

- The concept of continuity is fundamental to much of mathematics. We start with continuity at a point.
- Definition 8.1 Suppose $a<\xi<b$ and $f:(a, b) \mapsto \mathbb{R}$. Then we say f is continuous at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi$. Otherwise it is discontinuous at ξ.

Continuity at a Point

- The concept of continuity is fundamental to much of mathematics. We start with continuity at a point.
- Definition 8.1 Suppose $a<\xi<b$ and $f:(a, b) \mapsto \mathbb{R}$. Then we say f is continuous at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi$. Otherwise it is discontinuous at ξ.
- Example 8.1. Suppose that $c_{0}, c_{1}, \ldots, c_{m} \in \mathbb{R}, \xi \in \mathbb{R}$ and

$$
P(x)=c_{0}+c_{1} x+\cdots c_{m} x^{m}(x \in \mathbb{R})
$$

Continuity at a Point

- The concept of continuity is fundamental to much of mathematics. We start with continuity at a point.
- Definition 8.1 Suppose $a<\xi<b$ and $f:(a, b) \mapsto \mathbb{R}$. Then we say f is continuous at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi$. Otherwise it is discontinuous at ξ.
- Example 8.1. Suppose that $c_{0}, c_{1}, \ldots, c_{m} \in \mathbb{R}, \xi \in \mathbb{R}$ and

$$
P(x)=c_{0}+c_{1} x+\cdots c_{m} x^{m}(x \in \mathbb{R})
$$

- It is an easy exercise to show that $f: \mathbb{R} \mapsto \mathbb{R}: x \mapsto x$, for every $\xi \in \mathbb{R}$ satisfies $\lim _{x \rightarrow \xi} f(x)=f(\xi)$.

Continuity at a Point

- The concept of continuity is fundamental to much of mathematics. We start with continuity at a point.
- Definition 8.1 Suppose $a<\xi<b$ and $f:(a, b) \mapsto \mathbb{R}$. Then we say f is continuous at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi$. Otherwise it is discontinuous at ξ.
- Example 8.1. Suppose that $c_{0}, c_{1}, \ldots, c_{m} \in \mathbb{R}, \xi \in \mathbb{R}$ and

$$
P(x)=c_{0}+c_{1} x+\cdots c_{m} x^{m}(x \in \mathbb{R})
$$

- It is an easy exercise to show that $f: \mathbb{R} \mapsto \mathbb{R}: x \mapsto x$, for every $\xi \in \mathbb{R}$ satisfies $\lim _{x \rightarrow \xi} f(x)=f(\xi)$.
- Then by the combination theorem applied many times it follows that P is continuous at ξ.

Continuity at a Point

- The concept of continuity is fundamental to much of mathematics. We start with continuity at a point.
- Definition 8.1 Suppose $a<\xi<b$ and $f:(a, b) \mapsto \mathbb{R}$. Then we say f is continuous at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi$. Otherwise it is discontinuous at ξ.
- Example 8.1. Suppose that $c_{0}, c_{1}, \ldots, c_{m} \in \mathbb{R}, \xi \in \mathbb{R}$ and

$$
P(x)=c_{0}+c_{1} x+\cdots c_{m} x^{m}(x \in \mathbb{R})
$$

- It is an easy exercise to show that $f: \mathbb{R} \mapsto \mathbb{R}: x \mapsto x$, for every $\xi \in \mathbb{R}$ satisfies $\lim _{x \rightarrow \xi} f(x)=f(\xi)$.
- Then by the combination theorem applied many times it follows that P is continuous at ξ.
- In other words every polynomial is continuous at every real number x.

Continuity at a Point

- The concept of continuity is fundamental to much of mathematics. We start with continuity at a point.
- Definition 8.1 Suppose $a<\xi<b$ and $f:(a, b) \mapsto \mathbb{R}$. Then we say f is continuous at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi$. Otherwise it is discontinuous at ξ.
- Example 8.1. Suppose that $c_{0}, c_{1}, \ldots, c_{m} \in \mathbb{R}, \xi \in \mathbb{R}$ and

$$
P(x)=c_{0}+c_{1} x+\cdots c_{m} x^{m}(x \in \mathbb{R})
$$

- It is an easy exercise to show that $f: \mathbb{R} \mapsto \mathbb{R}: x \mapsto x$, for every $\xi \in \mathbb{R}$ satisfies $\lim _{x \rightarrow \xi} f(x)=f(\xi)$.
- Then by the combination theorem applied many times it follows that P is continuous at ξ.
- In other words every polynomial is continuous at every real number x.
- More generally, it follows from the combination theorem that every rational function $\frac{P(x)}{Q(x)}$ is continuous at every real number ξ for which $Q(\xi) \neq 0$.

$$
f(x)= \begin{cases}x+\frac{1}{2} & -\frac{1}{2} \leq x<0 \\ x-\frac{1}{2} & 0 \leq x \leq \frac{1}{2}\end{cases}
$$

is discontinuous at 0 , but the function $g:\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow \mathbb{R}$ defined by

$$
g(x)= \begin{cases}\left(x+\frac{1}{2}\right)^{2} & -\frac{1}{2} \leq x<0 \\ \left(x-\frac{1}{2}\right)^{2} & 0 \leq x \leq \frac{1}{2}\end{cases}
$$

is continuous at 0 .

- It is also important, especially when dealing with intervals, to deal with one sided continuity.
- It is also important, especially when dealing with intervals, to deal with one sided continuity.
- Definition 8.2. Continuity from the Left or Right. Suppose that $a<\xi$ and $f:(a, \xi] \mapsto \mathbb{R}$.
- It is also important, especially when dealing with intervals, to deal with one sided continuity.
- Definition 8.2. Continuity from the Left or Right. Suppose that $a<\xi$ and $f:(a, \xi] \mapsto \mathbb{R}$.
- Then we say that f is continuous from below, or from the left, at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi-$. Otherwise we say that f is discontinuous from the left at ξ.
- It is also important, especially when dealing with intervals, to deal with one sided continuity.
- Definition 8.2. Continuity from the Left or Right. Suppose that $a<\xi$ and $f:(a, \xi] \mapsto \mathbb{R}$.
- Then we say that f is continuous from below, or from the left, at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi-$. Otherwise we say that f is discontinuous from the left at ξ.
- Suppose that $\xi<b$ and $f:[\xi, b) \mapsto \mathbb{R}$.
- It is also important, especially when dealing with intervals, to deal with one sided continuity.
- Definition 8.2. Continuity from the Left or Right. Suppose that $a<\xi$ and $f:(a, \xi] \mapsto \mathbb{R}$.
- Then we say that f is continuous from below, or from the left, at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi-$. Otherwise we say that f is discontinuous from the left at ξ.
- Suppose that $\xi<b$ and $f:[\xi, b) \mapsto \mathbb{R}$.
- Then we say that f is continuous from above, or from the right, at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi+$. Otherwise we say that f is discontinuous from the right at ξ.
- It is also important, especially when dealing with intervals, to deal with one sided continuity.
- Definition 8.2. Continuity from the Left or Right. Suppose that $a<\xi$ and $f:(a, \xi] \mapsto \mathbb{R}$.
- Then we say that f is continuous from below, or from the left, at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi-$. Otherwise we say that f is discontinuous from the left at ξ.
- Suppose that $\xi<b$ and $f:[\xi, b) \mapsto \mathbb{R}$.
- Then we say that f is continuous from above, or from the right, at ξ when $f(x) \rightarrow f(\xi)$ as $x \rightarrow \xi+$. Otherwise we say that f is discontinuous from the right at ξ.
- Example 8.3. In Example 8.2. the function

$$
f(x)= \begin{cases}x+\frac{1}{2} & -\frac{1}{2} \leq x<0 \\ x-\frac{1}{2} & 0 \leq x \leq \frac{1}{2}\end{cases}
$$

is discontinuous from the left at 0 , but continuous from the right at 0 .

- For continuity at a point we can apply Chapter 7 .

Theorem 1 (Comb. Theorem for Pointwise Continuity)

Suppose that $a<\xi<b, f, g:(a, b) \mapsto \mathbb{R}$, and $f(x)$ and $g(x)$ are continuous at ξ, and that $\lambda, \mu \in \mathbb{R}$. Then
(i) $\lambda f(x)+\mu g(x)$ is continuous at ξ,
(ii) $f(x) g(x)$ is continuous at ξ, (iii) if $g(\xi) \neq 0$, then $\frac{f(x)}{g(x)}$ is continuous at ξ.

Theorem 2 (Comb. Theorem for Left and Right Continuity)
Suppose that $a<\xi, f, g:(a, \xi] \mapsto \mathbb{R}$, and $f(x)$ and $g(x)$ are continuous from below at ξ, and that $\lambda, \mu \in \mathbb{R}$. Then (i) $\lambda f(x)+\mu g(x)$ is continuous from below at ξ, (ii) $f(x) g(x)$ is continuous from below at ξ, (iii)if $g(\xi) \neq 0$, then $\frac{f(x)}{g(x)}$ is continuous from below at ξ. There are corresponding statements for continuity from above when f and g are defined on $[\xi, b)$.

Robert C. Vaughan

- The following is also useful.

Theorem 3

Suppose $a<b, \xi \in(a, b)$. Then $f:(a, b) \mapsto \mathbb{R}$ is continuous at ξ if and only if for every sequence $\left\langle x_{n}\right\rangle$ in (a, b) satisfying $\lim _{n \rightarrow} x_{n}=\xi$ we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(\xi) .
$$

- The following is also useful.

Theorem 3

Suppose $a<b, \xi \in(a, b)$. Then $f:(a, b) \mapsto \mathbb{R}$ is continuous at ξ if and only if for every sequence $\left\langle x_{n}\right\rangle$ in (a, b) satisfying $\lim _{n \rightarrow x_{n}}=\xi$ we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(\xi)
$$

- "Only if." Let $\varepsilon>0$. Choose $\delta>0$ so that whenever $|x-\xi|<\delta$ and $x \in(a, b)$ we have $|f(x)-f(\xi)|<\varepsilon$.
- The following is also useful.

Theorem 3

Suppose $a<b, \xi \in(a, b)$. Then $f:(a, b) \mapsto \mathbb{R}$ is continuous at ξ if and only if for every sequence $\left\langle x_{n}\right\rangle$ in (a, b) satisfying $\lim _{n \rightarrow x_{n}}=\xi$ we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(\xi)
$$

- "Only if." Let $\varepsilon>0$. Choose $\delta>0$ so that whenever $|x-\xi|<\delta$ and $x \in(a, b)$ we have $|f(x)-f(\xi)|<\varepsilon$.
- Then choose N so that when $n>N$ we have $\left|x_{n}-\xi\right|<\delta$. Hence $\left|f\left(x_{n}\right)-f(\xi)\right|<\varepsilon$.

Robert C. Vaughan

- Theorem 3. Suppose $a<b, \xi \in(a, b)$. Then $f:(a, b) \mapsto \mathbb{R}$ is continuous at ξ if and only if for every sequence $\left\langle x_{n}\right\rangle$ in (a, b) satisfying $\lim _{n \rightarrow x_{n}}=\xi$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(\xi)$.

Robert C. Vaughan

- Theorem 3. Suppose $a<b, \xi \in(a, b)$. Then $f:(a, b) \mapsto \mathbb{R}$ is continuous at ξ if and only if for every sequence $\left\langle x_{n}\right\rangle$ in (a, b) satisfying $\lim _{n \rightarrow x_{n}}=\xi$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(\xi)$.
- "If." Suppose f is not continuous at ξ but every sequence $\left\langle x_{n}\right\rangle$ in (a, b) converging to ξ satisfies

$$
\text { (1) } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(\xi) \text {. }
$$

- Theorem 3. Suppose $a<b, \xi \in(a, b)$. Then $f:(a, b) \mapsto \mathbb{R}$ is continuous at ξ if and only if for every sequence $\left\langle x_{n}\right\rangle$ in (a, b) satisfying $\lim _{n \rightarrow x_{n}}=\xi$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(\xi)$.
- "If." Suppose f is not continuous at ξ but every sequence $\left\langle x_{n}\right\rangle$ in (a, b) converging to ξ satisfies

$$
\text { (1) } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(\xi)
$$

- The "non-continuity" means that there is some $\varepsilon_{0}>0$ such that for every $\delta>0$ there is an $x \in(a, b)$ with $|x-\xi|<\delta$ and $|f(x)-f(\xi)| \geq \varepsilon_{0}$.
- Theorem 3. Suppose $a<b, \xi \in(a, b)$. Then $f:(a, b) \mapsto \mathbb{R}$ is continuous at ξ if and only if for every sequence $\left\langle x_{n}\right\rangle$ in (a, b) satisfying $\lim _{n \rightarrow x_{n}}=\xi$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(\xi)$.
- "If." Suppose f is not continuous at ξ but every sequence $\left\langle x_{n}\right\rangle$ in (a, b) converging to ξ satisfies

$$
\text { (1) } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(\xi)
$$

- The "non-continuity" means that there is some $\varepsilon_{0}>0$ such that for every $\delta>0$ there is an $x \in(a, b)$ with $|x-\xi|<\delta$ and $|f(x)-f(\xi)| \geq \varepsilon_{0}$.
- Take $\delta=1 / n$. Then by the assertion just above there is x, so that $|x-\xi|<\frac{1}{n}$. Take $x_{n}=x$. Now $\left|f\left(x_{n}\right)-f(\xi)\right| \geq \varepsilon_{0}$, but $\left\langle x_{n}\right\rangle$ is converging to ξ and so contradicts (1) above.

Continuity

Robert C. Vaughan

- An interesting application. Example 8.4. Let $\exp (x): x \mapsto \mathbb{R}$ be the function defined in (6.8). Then (i) $\exp (x)$ is continuous at 0 , and (ii) for every real $\xi, \exp (x)$ is continuous at ξ.
- An interesting application. Example 8.4. Let $\exp (x): x \mapsto \mathbb{R}$ be the function defined in (6.8). Then (i) $\exp (x)$ is continuous at 0 , and
(ii) for every real $\xi, \exp (x)$ is continuous at ξ.
- Proof. (i) Suppose that $|x|<1$. Then

$$
\begin{aligned}
|\exp (x)-1| & \leq \sum_{n=1}^{\infty} \frac{|x|^{n}}{n!} \leq \sum_{n=1}^{\infty}|x|^{n} \\
& =\frac{|x|}{1-|x|}
\end{aligned}
$$

- An interesting application. Example 8.4. Let $\exp (x): x \mapsto \mathbb{R}$ be the function defined in (6.8). Then (i) $\exp (x)$ is continuous at 0 , and
(ii) for every real $\xi, \exp (x)$ is continuous at ξ.
- Proof. (i) Suppose that $|x|<1$. Then

$$
\begin{aligned}
|\exp (x)-1| & \leq \sum_{n=1}^{\infty} \frac{|x|^{n}}{n!} \leq \sum_{n=1}^{\infty}|x|^{n} \\
& =\frac{|x|}{1-|x|}
\end{aligned}
$$

- Let $\varepsilon>0$ and choose $\delta=\frac{\varepsilon}{1+\varepsilon}$. Thus, when $|x|<\delta$ we have

$$
|\exp (x)-1|<\frac{\delta}{1-\delta}=\varepsilon
$$

- An interesting application. Example 8.4. Let $\exp (x): x \mapsto \mathbb{R}$ be the function defined in (6.8). Then (i) $\exp (x)$ is continuous at 0 , and
(ii) for every real $\xi, \exp (x)$ is continuous at ξ.
- Proof. (i) Suppose that $|x|<1$. Then

$$
\begin{aligned}
|\exp (x)-1| & \leq \sum_{n=1}^{\infty} \frac{|x|^{n}}{n!} \leq \sum_{n=1}^{\infty}|x|^{n} \\
& =\frac{|x|}{1-|x|}
\end{aligned}
$$

- Let $\varepsilon>0$ and choose $\delta=\frac{\varepsilon}{1+\varepsilon}$. Thus, when $|x|<\delta$ we have

$$
|\exp (x)-1|<\frac{\delta}{1-\delta}=\varepsilon
$$

- (ii) We have $\exp (\xi+h)=\exp (\xi) \exp (h) \rightarrow \exp (\xi)$ as $h \rightarrow 0$ by (i), i.e. $\exp (x) \rightarrow \exp (\xi)$ as $x \rightarrow \xi$.

Continuity on an Interval

Robert C. Vaughan

Continuity at a Point

Continuity on an Interval

- Continuity at an individual point on its own is not particularly useful!

Continuity on an Interval

- Continuity at an individual point on its own is not particularly useful!
- But continuity on an interval is fundamental to most of the functions we meet in practice.

Continuity on an Interval

- Continuity at an individual point on its own is not particularly useful!
- But continuity on an interval is fundamental to most of the functions we meet in practice.
- Definition 8.3. Suppose that $a<b$, I is the open interval (a, b) and $f: I \mapsto \mathbb{R}$. Then f is continuous on I when it is continuous at every point $\xi \in I$.

Continuity on an Interval

- Continuity at an individual point on its own is not particularly useful!
- But continuity on an interval is fundamental to most of the functions we meet in practice.
- Definition 8.3. Suppose that $a<b$, I is the open interval (a, b) and $f: I \mapsto \mathbb{R}$. Then f is continuous on I when it is continuous at every point $\xi \in I$.
- Suppose instead that I is the closed interval $[a, b]$ and $f: I \mapsto \mathbb{R}$. Then f is continuous on I when it is continuous at every point $\xi \in(a, b)$, continuous from the right at a and continuous from the left at b.

Continuity on an Interval

- Continuity at an individual point on its own is not particularly useful!
- But continuity on an interval is fundamental to most of the functions we meet in practice.
- Definition 8.3. Suppose that $a<b$, l is the open interval (a, b) and $f: I \mapsto \mathbb{R}$. Then f is continuous on I when it is continuous at every point $\xi \in I$.
- Suppose instead that I is the closed interval $[a, b]$ and $f: I \mapsto \mathbb{R}$. Then f is continuous on I when it is continuous at every point $\xi \in(a, b)$, continuous from the right at a and continuous from the left at b.
- When f is continuous at every $\xi \in \mathbb{R}$ then we say that f is continuous on \mathbb{R}.

Robert C. Vaughan

- Example 8.5. The function $f:(0,1) \mapsto \mathbb{R}: f(x)=\frac{1}{x}$ is continuous on $(0,1)$ even though f is unbounded.
- Example 8.5. The function $f:(0,1) \mapsto \mathbb{R}: f(x)=\frac{1}{x}$ is continuous on $(0,1)$ even though f is unbounded.
- Example 8.6. Let $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ and $P: \mathbb{R} \mapsto \mathbb{R}: P(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$. Then P is continuous on \mathbb{R}.
- Example 8.5. The function $f:(0,1) \mapsto \mathbb{R}: f(x)=\frac{1}{x}$ is continuous on $(0,1)$ even though f is unbounded.
- Example 8.6. Let $c_{0}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ and $P: \mathbb{R} \mapsto \mathbb{R}: P(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$. Then P is continuous on \mathbb{R}.
- Example 8.7 The functions $\exp (x), \cos (x)$ and $\sin (x)$ are continuous on \mathbb{R}.
- Now we can apply the combination theorem for continuity at a point.

Theorem 4 (Combination Theorem for Continuity on an Interval)

Suppose that $a<b$ and $I=(a, b)$ or $[a, b], f, g: I \mapsto \mathbb{R}$, and $f(x)$ and $g(x)$ are continuous on I. Suppose further that $\lambda, \mu \in \mathbb{R}$. Then
(i) $\lambda f(x)+\mu g(x)$ is continuous on I, (ii) $f(x) g(x)$ is continuous on I, (iii) if $g(x) \neq 0$ for $x \in I$, then

$$
\frac{f(x)}{g(x)}
$$

is continuous on 1 .

Continuity
Robert C. Vaughan

- Continuity on a closed interval is more constraining than continuity on an open interval, but comes with benefits.
- Continuity on a closed interval is more constraining than continuity on an open interval, but comes with benefits.
- Example 8.5 can be contrasted with the following.

Theorem 5

Suppose that $a<b$ and $f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$. Then f is bounded.

- Continuity on a closed interval is more constraining than continuity on an open interval, but comes with benefits.
- Example 8.5 can be contrasted with the following.

Theorem 5

Suppose that $a<b$ and $f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$. Then f is bounded.

- Proof. Suppose that $f([a, b])$ is unbounded above. (If instead unbounded below replace f by $-f$.) Then given any $n \in \mathbb{N}$ there is an $x_{n} \in[a, b]$ such that $f\left(x_{n}\right)>n$.
- Continuity on a closed interval is more constraining than continuity on an open interval, but comes with benefits.
- Example 8.5 can be contrasted with the following.

Theorem 5

Suppose that $a<b$ and $f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$. Then f is bounded.

- Proof. Suppose that $f([a, b])$ is unbounded above. (If instead unbounded below replace f by $-f$.) Then given any $n \in \mathbb{N}$ there is an $x_{n} \in[a, b]$ such that $f\left(x_{n}\right)>n$.
- But $a \leq x_{n} \leq b$, so $\left\langle x_{n}\right\rangle$ is bounded and by Bolzano Weierstrass it has a convergent subsequence $\left\langle x_{m_{n}}\right\rangle$.
- Continuity on a closed interval is more constraining than continuity on an open interval, but comes with benefits.
- Example 8.5 can be contrasted with the following.

Theorem 5

Suppose that $a<b$ and $f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$. Then f is bounded.

- Proof. Suppose that $f([a, b])$ is unbounded above. (If instead unbounded below replace f by $-f$.) Then given any $n \in \mathbb{N}$ there is an $x_{n} \in[a, b]$ such that $f\left(x_{n}\right)>n$.
- But $a \leq x_{n} \leq b$, so $\left\langle x_{n}\right\rangle$ is bounded and by Bolzano Weierstrass it has a convergent subsequence $\left\langle x_{m_{n}}\right\rangle$.
- Let $\ell=\lim _{n \rightarrow \infty} x_{m_{n}}$. Then $a \leq \ell \leq b$, and since function f is continuous at ℓ there is a $\delta>0$ so that when $\left|x_{m_{n}}-\ell\right|<\delta$ we have $\left|f\left(x_{m_{n}}\right)-f(\ell)\right|<1$.
- Continuity on a closed interval is more constraining than continuity on an open interval, but comes with benefits.
- Example 8.5 can be contrasted with the following.

Theorem 5

Suppose that $a<b$ and $f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$. Then f is bounded.

- Proof. Suppose that $f([a, b])$ is unbounded above. (If instead unbounded below replace f by $-f$.) Then given any $n \in \mathbb{N}$ there is an $x_{n} \in[a, b]$ such that $f\left(x_{n}\right)>n$.
- But $a \leq x_{n} \leq b$, so $\left\langle x_{n}\right\rangle$ is bounded and by Bolzano Weierstrass it has a convergent subsequence $\left\langle x_{m_{n}}\right\rangle$.
- Let $\ell=\lim _{n \rightarrow \infty} x_{m_{n}}$. Then $a \leq \ell \leq b$, and since function f is continuous at ℓ there is a $\delta>0$ so that when $\left|x_{m_{n}}-\ell\right|<\delta$ we have $\left|f\left(x_{m_{n}}\right)-f(\ell)\right|<1$.
- Continuity on a closed interval is more constraining than continuity on an open interval, but comes with benefits.
- Example 8.5 can be contrasted with the following.

Theorem 5

Suppose that $a<b$ and $f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$. Then f is bounded.

- Proof. Suppose that $f([a, b])$ is unbounded above. (If instead unbounded below replace f by $-f$.) Then given any $n \in \mathbb{N}$ there is an $x_{n} \in[a, b]$ such that $f\left(x_{n}\right)>n$.
- But $a \leq x_{n} \leq b$, so $\left\langle x_{n}\right\rangle$ is bounded and by Bolzano Weierstrass it has a convergent subsequence $\left\langle x_{m_{n}}\right\rangle$.
- Let $\ell=\lim _{n \rightarrow \infty} x_{m_{n}}$. Then $a \leq \ell \leq b$, and since function f is continuous at ℓ there is a $\delta>0$ so that when $\left|x_{m_{n}}-\ell\right|<\delta$ we have $\left|f\left(x_{m_{n}}\right)-f(\ell)\right|<1$.
- By the triangle inequality, for all $n \in \mathbb{N}, n \leq m_{n}<$

$$
f\left(x_{m_{n}}\right)=\left(f\left(x_{m_{n}}\right)-\ell\right)+\ell \leq\left|f\left(x_{m_{n}}\right)-\ell\right|+|\ell|<1+|\ell|
$$

contradicting the Archimedean property of \mathbb{N}.

- This leads to the following remarkable and very useful result.

Theorem 6

Suppose that $a<b$ and f is continuous on $[a, b]$. Then f attains its bounds. In other words there are $\eta, \xi \in[a, b]$ such that $f(\eta)=\inf f([a, b])$ and $f(\xi)=\sup f([a, b])$.

- This leads to the following remarkable and very useful result.

Theorem 6

Suppose that $a<b$ and f is continuous on $[a, b]$. Then f attains its bounds. In other words there are $\eta, \xi \in[a, b]$ such that $f(\eta)=\inf f([a, b])$ and $f(\xi)=\sup f([a, b])$.

- Proof. It suffices to establish the second equality since the first then follows by replacing f by $-f$.
- This leads to the following remarkable and very useful result.

Theorem 6

Suppose that $a<b$ and f is continuous on $[a, b]$. Then f attains its bounds. In other words there are $\eta, \xi \in[a, b]$ such that $f(\eta)=\inf f([a, b])$ and $f(\xi)=\sup f([a, b])$.

- Proof. It suffices to establish the second equality since the first then follows by replacing f by $-f$.
- We argue by contradiction. Let $\Lambda=\sup f([a, b])$ and suppose that $f(x)<\Lambda$ for every $x \in[a, b]$.
- This leads to the following remarkable and very useful result.

Theorem 6

Suppose that $a<b$ and f is continuous on $[a, b]$. Then f attains its bounds. In other words there are $\eta, \xi \in[a, b]$ such that $f(\eta)=\inf f([a, b])$ and $f(\xi)=\sup f([a, b])$.

- Proof. It suffices to establish the second equality since the first then follows by replacing f by $-f$.
- We argue by contradiction. Let $\Lambda=\sup f([a, b])$ and suppose that $f(x)<\Lambda$ for every $x \in[a, b]$.
- Let $g(x)=\frac{1}{\Lambda-f(x)}$.
- This leads to the following remarkable and very useful result.

Theorem 6

Suppose that $a<b$ and f is continuous on $[a, b]$. Then f attains its bounds. In other words there are $\eta, \xi \in[a, b]$ such that $f(\eta)=\inf f([a, b])$ and $f(\xi)=\sup f([a, b])$.

- Proof. It suffices to establish the second equality since the first then follows by replacing f by $-f$.
- We argue by contradiction. Let $\Lambda=\sup f([a, b])$ and suppose that $f(x)<\Lambda$ for every $x \in[a, b]$.
- Let $g(x)=\frac{1}{\Lambda-f(x)}$.
- Then by the combination theorem for continuity on an interval it follows that g is continuous on $[a, b]$ and so by the previous theorem it is bounded on I.
- This leads to the following remarkable and very useful result.

Theorem 6

Suppose that $a<b$ and f is continuous on $[a, b]$. Then f attains its bounds. In other words there are $\eta, \xi \in[a, b]$ such that $f(\eta)=\inf f([a, b])$ and $f(\xi)=\sup f([a, b])$.

- Proof. It suffices to establish the second equality since the first then follows by replacing f by $-f$.
- We argue by contradiction. Let $\Lambda=\sup f([a, b])$ and suppose that $f(x)<\Lambda$ for every $x \in[a, b]$.
- Let $g(x)=\frac{1}{\Lambda-f(x)}$.
- Then by the combination theorem for continuity on an interval it follows that g is continuous on $[a, b]$ and so by the previous theorem it is bounded on I.
- Thus there is a $B>0$ such that for every $x \in I$ we have $\frac{1}{\Lambda-f(x)}=g(x)<B$.
- This leads to the following remarkable and very useful result.

Theorem 6

Suppose that $a<b$ and f is continuous on $[a, b]$. Then f attains its bounds. In other words there are $\eta, \xi \in[a, b]$ such that $f(\eta)=\inf f([a, b])$ and $f(\xi)=\sup f([a, b])$.

- Proof. It suffices to establish the second equality since the first then follows by replacing f by $-f$.
- We argue by contradiction. Let $\Lambda=\sup f([a, b])$ and suppose that $f(x)<\Lambda$ for every $x \in[a, b]$.
- Let $g(x)=\frac{1}{\Lambda-f(x)}$.
- Then by the combination theorem for continuity on an interval it follows that g is continuous on $[a, b]$ and so by the previous theorem it is bounded on I.
- Thus there is a $B>0$ such that for every $x \in I$ we have $\frac{1}{\Lambda-f(x)}=g(x)<B$.
- Hence $0<\frac{1}{B}<\Lambda-f(x)$ and so $f(x)<\Lambda-\frac{1}{B}$ which contradicts the definition of Λ.
- We now come to a theorem which is used all the time in applications. It is especially important in that it underpins all zero finding techniques for continuous functions.

Theorem 7 (The Intermediate Value Theorem)

Suppose that $a<b, f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$ and

$$
\inf f([a, b]) \leq \lambda \leq \sup f([a, b])
$$

Then there is a $\xi \in[a, b]$ such that

$$
f(\xi)=\lambda
$$

- We now come to a theorem which is used all the time in applications. It is especially important in that it underpins all zero finding techniques for continuous functions.

Theorem 7 (The Intermediate Value Theorem)

Suppose that $a<b, f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$ and

$$
\inf f([a, b]) \leq \lambda \leq \sup f([a, b])
$$

Then there is a $\xi \in[a, b]$ such that

$$
f(\xi)=\lambda
$$

- Remark. This theorem says in effect that, when f is continuous on a closed interval $[a, b]$, the set $f([a, b])$ is also an interval.
- Theorem 7. Suppose that $a<b, f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$ and $\inf f([a, b]) \leq \lambda \leq \sup f([a, b])$. Then there is a $\xi \in[a, b]$ such that $f(\xi)=\lambda$.
- Theorem 7. Suppose that $a<b, f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$ and $\inf f([a, b]) \leq \lambda \leq \sup f([a, b])$. Then there is a $\xi \in[a, b]$ such that $f(\xi)=\lambda$.
- Proof. We construct two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that
(1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$,
(2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$,
(3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$.
- Theorem 7. Suppose that $a<b, f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$ and $\inf f([a, b]) \leq \lambda \leq \sup f([a, b])$. Then there is a $\xi \in[a, b]$ such that $f(\xi)=\lambda$.
- Proof. We construct two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that
(1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$,
(2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$,
(3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$.
- By Theorem 6 there are $u, v \in[a, b]$ so that $f(u)=\inf f([a, b]), f(v)=\sup f([a, b])$.
- Theorem 7. Suppose that $a<b, f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$ and $\inf f([a, b]) \leq \lambda \leq \sup f([a, b])$. Then there is a $\xi \in[a, b]$ such that $f(\xi)=\lambda$.
- Proof. We construct two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that
(1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$,
(2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$,
(3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$.
- By Theorem 6 there are $u, v \in[a, b]$ so that $f(u)=\inf f([a, b]), f(v)=\sup f([a, b])$.
- Hence $(f(u)-\lambda))(f(v)-\lambda) \leq 0$.
- Theorem 7. Suppose that $a<b, f:[a, b] \mapsto \mathbb{R}$ is continuous on $[a, b]$ and $\inf f([a, b]) \leq \lambda \leq \sup f([a, b])$. Then there is a $\xi \in[a, b]$ such that $f(\xi)=\lambda$.
- Proof. We construct two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that
(1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$,
(2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$,
(3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$.
- By Theorem 6 there are $u, v \in[a, b]$ so that $f(u)=\inf f([a, b]), f(v)=\sup f([a, b])$.
- Hence $(f(u)-\lambda))(f(v)-\lambda) \leq 0$.
- Let $a_{1}=\min \{u, v\}, b_{1}=\max \{u, v\}$. Then (3), (4) hold with $n=1$,
- We are constructing two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that (1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$, (2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$, (3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$ and have this with $n=1$
- We are constructing two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that (1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$, (2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$, (3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$ and have this with $n=1$

Ine
Intermediate Value Theorem

- Given a_{n} and b_{n} satisfying (3), (4), choose $c_{n}=\frac{a_{n}+b_{n}}{2}$.
- We are constructing two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that (1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$, (2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$, (3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$ and have this with $n=1$
- Given a_{n} and b_{n} satisfying (3), (4), choose $c_{n}=\frac{a_{n}+b_{n}}{2}$.
- The inequality (4) says that at least one of the two factors $f\left(a_{n}\right)-\lambda$ and $f\left(b_{n}\right)-\lambda$ is 0 , or they are both non-zero and have opposite signs.
- We are constructing two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that (1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$, (2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$, (3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$, (4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$ and have this with $n=1$
- Given a_{n} and b_{n} satisfying (3), (4), choose $c_{n}=\frac{a_{n}+b_{n}}{2}$.
- The inequality (4) says that at least one of the two factors $f\left(a_{n}\right)-\lambda$ and $f\left(b_{n}\right)-\lambda$ is 0 , or they are both non-zero and have opposite signs.
- If $f\left(a_{n}\right)-\lambda$ is 0 let $a_{n+1}=a_{n}, b_{n+1}=c_{n}$.
- We are constructing two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that (1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$, (2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$, (3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$ and have this with $n=1$
- Given a_{n} and b_{n} satisfying (3), (4), choose $c_{n}=\frac{a_{n}+b_{n}}{2}$.
- The inequality (4) says that at least one of the two factors $f\left(a_{n}\right)-\lambda$ and $f\left(b_{n}\right)-\lambda$ is 0 , or they are both non-zero and have opposite signs.
- If $f\left(a_{n}\right)-\lambda$ is 0 let $a_{n+1}=a_{n}, b_{n+1}=c_{n}$.
- If $f\left(a_{n}\right)-\lambda$ is non-0 but $f\left(c_{n}\right)-\lambda=0$ let $a_{n+1}=c_{n}$, $b_{n+1}=b_{n}$.
- We are constructing two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that
- Given a_{n} and b_{n} satisfying (3), (4), choose $c_{n}=\frac{a_{n}+b_{n}}{2}$.
- The inequality (4) says that at least one of the two factors $f\left(a_{n}\right)-\lambda$ and $f\left(b_{n}\right)-\lambda$ is 0 , or they are both non-zero and have opposite signs.
- If $f\left(a_{n}\right)-\lambda$ is 0 let $a_{n+1}=a_{n}, b_{n+1}=c_{n}$.
- If $f\left(a_{n}\right)-\lambda$ is non-0 but $f\left(c_{n}\right)-\lambda=0$ let $a_{n+1}=c_{n}$, $b_{n+1}=b_{n}$.
- If $f\left(a_{n}\right)-\lambda$ and $f\left(c_{n}\right)-\lambda$ are both non-zero and they have opposite signs, then we take $a_{n+1}=a_{n}, b_{n+1}=c_{n}$.
- We are constructing two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that
- Given a_{n} and b_{n} satisfying (3), (4), choose $c_{n}=\frac{a_{n}+b_{n}}{2}$.
- The inequality (4) says that at least one of the two factors $f\left(a_{n}\right)-\lambda$ and $f\left(b_{n}\right)-\lambda$ is 0 , or they are both non-zero and have opposite signs.
- If $f\left(a_{n}\right)-\lambda$ is 0 let $a_{n+1}=a_{n}, b_{n+1}=c_{n}$.
- If $f\left(a_{n}\right)-\lambda$ is non-0 but $f\left(c_{n}\right)-\lambda=0$ let $a_{n+1}=c_{n}$, $b_{n+1}=b_{n}$.
- If $f\left(a_{n}\right)-\lambda$ and $f\left(c_{n}\right)-\lambda$ are both non-zero and they have opposite signs, then we take $a_{n+1}=a_{n}, b_{n+1}=c_{n}$.
- If $f\left(a_{n}\right)-\lambda$ and $f\left(c_{n}\right)-\lambda$ are both non-zero and they have the same sign, then we take $a_{n+1}=c_{n}, b_{n+1}=b_{n}$.
- We are constructing two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that (1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$, (2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$, (3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$ and have this with $n=1$
- Given a_{n} and b_{n} satisfying (3), (4), choose $c_{n}=\frac{a_{n}+b_{n}}{2}$.
- The inequality (4) says that at least one of the two factors $f\left(a_{n}\right)-\lambda$ and $f\left(b_{n}\right)-\lambda$ is 0 , or they are both non-zero and have opposite signs.
- If $f\left(a_{n}\right)-\lambda$ is 0 let $a_{n+1}=a_{n}, b_{n+1}=c_{n}$.
- If $f\left(a_{n}\right)-\lambda$ is non-0 but $f\left(c_{n}\right)-\lambda=0$ let $a_{n+1}=c_{n}$, $b_{n+1}=b_{n}$.
- If $f\left(a_{n}\right)-\lambda$ and $f\left(c_{n}\right)-\lambda$ are both non-zero and they have opposite signs, then we take $a_{n+1}=a_{n}, b_{n+1}=c_{n}$.
- If $f\left(a_{n}\right)-\lambda$ and $f\left(c_{n}\right)-\lambda$ are both non-zero and they have the same sign, then we take $a_{n+1}=c_{n}, b_{n+1}=b_{n}$.
- In any case we have (1), (2), (3), (4) with n replaced by $n+1$.

Continuity
Robert C. Vaughan

Continuity at a Point

- We have constructed two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that
(1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$,
(2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$,
(3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$
- We have constructed two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that
(1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$,
(2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$,
(3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$
- By (1), (2), the monotonic convergence theorem and (3) the sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ converge to a common value, say ξ.
- We have constructed two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that
(1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$,
(2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$,
(3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$
- By (1), (2), the monotonic convergence theorem and (3) the sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ converge to a common value, say ξ.
- Thus, by Theorem 8.3.,

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=\lim _{n \rightarrow \infty} f\left(b_{n}\right)=f(\xi)
$$

- We have constructed two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that
(1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$,
(2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$,
(3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$
- By (1), (2), the monotonic convergence theorem and (3) the sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ converge to a common value, say ξ.
- Thus, by Theorem 8.3.,

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=\lim _{n \rightarrow \infty} f\left(b_{n}\right)=f(\xi)
$$

- Hence, by Theorem 4.6 and (4)

$$
(f(\xi)-\lambda)^{2} \leq 0
$$

- We have constructed two sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ such that
(1) $\left\langle a_{n}\right\rangle$ is increasing and $a \leq a_{n} \leq b$,
(2) $\left\langle b_{n}\right\rangle$ is decreasing and $a \leq b_{n} \leq b$,
(3) $0<b_{n}-a_{n}=\frac{b_{1}-a_{1}}{2^{n-1}}$,
(4) $\left(f\left(a_{n}\right)-\lambda\right)\left(f\left(b_{n}\right)-\lambda\right) \leq 0$
- By (1), (2), the monotonic convergence theorem and (3) the sequences $\left\langle a_{n}\right\rangle$ and $\left\langle b_{n}\right\rangle$ converge to a common value, say ξ.
- Thus, by Theorem 8.3.,

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=\lim _{n \rightarrow \infty} f\left(b_{n}\right)=f(\xi)
$$

- Hence, by Theorem 4.6 and (4)

$$
(f(\xi)-\lambda)^{2} \leq 0
$$

- Therefore

$$
f(\xi)=\lambda
$$

as required.

Corollary 8

The image of \exp is \mathbb{R}^{+}

- Proof. This follows at once from Theorem 8.7 and our earlier observation (Theorem 6.13) that $\exp (x)$ takes on arbitrarily small and large positive values.

Corollary 8

The image of \exp is \mathbb{R}^{+}

- Proof. This follows at once from Theorem 8.7 and our earlier observation (Theorem 6.13) that $\exp (x)$ takes on arbitrarily small and large positive values.
- Here are some examples connected with the last few theorems.

Corollary 8

The image of \exp is \mathbb{R}^{+}

- Proof. This follows at once from Theorem 8.7 and our earlier observation (Theorem 6.13) that $\exp (x)$ takes on arbitrarily small and large positive values.
- Here are some examples connected with the last few theorems.
- Example 8.8. Let $f(x)=x^{2}-x$ be defined on $I=\left[-\frac{1}{2}, \frac{3}{4}\right]$. Then

$$
\begin{aligned}
& \inf f(I)=-\frac{1}{4}, f\left(\frac{1}{2}\right)=-\frac{1}{4} \\
& \sup f(I)=\frac{3}{4}, f\left(-\frac{1}{2}\right)=\frac{3}{4} \\
& -\frac{1}{4}<\frac{5}{16}<\frac{3}{4}, f\left(-\frac{1}{4}\right)=\frac{5}{16}
\end{aligned}
$$

Continuity
Robert C. Vaughan

- Example 8.9. Prove that the cubic equation $x^{3}-3 x^{2}+1=0$ has 3 real roots.

Continuity
Robert C. Vaughan

- Example 8.9. Prove that the cubic equation $x^{3}-3 x^{2}+1=0$ has 3 real roots.
- Proof. For brevity write $f(x)=x^{3}-3 x^{2}+1$.
- Example 8.9. Prove that the cubic equation $x^{3}-3 x^{2}+1=0$ has 3 real roots.
- Proof. For brevity write $f(x)=x^{3}-3 x^{2}+1$.
- Then

$$
f(-1)=-3, f(0)=1, f(1)=-1, f(3)=1
$$

and f is continuous on each of the intervals $[-1,0],[0,1]$, [1, 3].

- Example 8.9. Prove that the cubic equation $x^{3}-3 x^{2}+1=0$ has 3 real roots.
- Proof. For brevity write $f(x)=x^{3}-3 x^{2}+1$.
- Then

$$
f(-1)=-3, f(0)=1, f(1)=-1, f(3)=1
$$

and f is continuous on each of the intervals $[-1,0],[0,1]$, [1, 3].

- Hence there are $\xi_{1}, \xi_{2}, \xi_{3}$ so that

$$
-1<\xi_{1}<0<\xi_{2}<1<\xi_{3}<3
$$

and

$$
f\left(\xi_{1}\right)=f\left(\xi_{2}\right)=f\left(\xi_{3}\right)=0
$$

- Example 8.9. Prove that the cubic equation $x^{3}-3 x^{2}+1=0$ has 3 real roots.
- Proof. For brevity write $f(x)=x^{3}-3 x^{2}+1$.
- Then

$$
f(-1)=-3, f(0)=1, f(1)=-1, f(3)=1
$$

and f is continuous on each of the intervals $[-1,0],[0,1]$, [1, 3].

- Hence there are $\xi_{1}, \xi_{2}, \xi_{3}$ so that

$$
-1<\xi_{1}<0<\xi_{2}<1<\xi_{3}<3
$$

and

$$
f\left(\xi_{1}\right)=f\left(\xi_{2}\right)=f\left(\xi_{3}\right)=0
$$

- Example 8.10 Prove that the curve $y=x^{2}$ intersect the curve $y=x^{3}-2 x^{2}+1$ in three places.
- Example 8.9. Prove that the cubic equation $x^{3}-3 x^{2}+1=0$ has 3 real roots.
- Proof. For brevity write $f(x)=x^{3}-3 x^{2}+1$.
- Then

$$
f(-1)=-3, f(0)=1, f(1)=-1, f(3)=1
$$

and f is continuous on each of the intervals $[-1,0],[0,1]$, [1, 3].

- Hence there are $\xi_{1}, \xi_{2}, \xi_{3}$ so that

$$
-1<\xi_{1}<0<\xi_{2}<1<\xi_{3}<3
$$

and

$$
f\left(\xi_{1}\right)=f\left(\xi_{2}\right)=f\left(\xi_{3}\right)=0
$$

- Example 8.10 Prove that the curve $y=x^{2}$ intersect the curve $y=x^{3}-2 x^{2}+1$ in three places.
- Proof. At a point of intersection $x^{2}=x^{3}-2 x^{2}+1$, so that $x^{3}-3 x^{2}+1=0$.
- Example 8.9. Prove that the cubic equation $x^{3}-3 x^{2}+1=0$ has 3 real roots.
- Proof. For brevity write $f(x)=x^{3}-3 x^{2}+1$.
- Then

$$
f(-1)=-3, f(0)=1, f(1)=-1, f(3)=1
$$

and f is continuous on each of the intervals $[-1,0],[0,1]$, [1, 3].

- Hence there are $\xi_{1}, \xi_{2}, \xi_{3}$ so that

$$
-1<\xi_{1}<0<\xi_{2}<1<\xi_{3}<3
$$

and

$$
f\left(\xi_{1}\right)=f\left(\xi_{2}\right)=f\left(\xi_{3}\right)=0
$$

- Example 8.10 Prove that the curve $y=x^{2}$ intersect the curve $y=x^{3}-2 x^{2}+1$ in three places.
- Proof. At a point of intersection $x^{2}=x^{3}-2 x^{2}+1$, so that $x^{3}-3 x^{2}+1=0$.
- Hence see previous example.

Robert C. Vaughan

- Example 8.11. Suppose that f is continuous on $[0,1]$ and $f(0)=f(1)$. Prove that there is a $\xi \in[0,1]$ so that

$$
f(\xi)=f(\xi+1 / 2)
$$

This says that there are always two diametrically opposite points on the equator which have the same temperature.

- Example 8.11. Suppose that f is continuous on $[0,1]$ and $f(0)=f(1)$. Prove that there is a $\xi \in[0,1]$ so that

$$
f(\xi)=f(\xi+1 / 2)
$$

This says that there are always two diametrically opposite points on the equator which have the same temperature.

- Proof. Let $g(x)=f(x)-f(x+1 / 2)$. Then g is continuous on [0, 1/2].
- Example 8.11. Suppose that f is continuous on $[0,1]$ and $f(0)=f(1)$. Prove that there is a $\xi \in[0,1]$ so that

$$
f(\xi)=f(\xi+1 / 2)
$$

This says that there are always two diametrically opposite points on the equator which have the same temperature.

- Proof. Let $g(x)=f(x)-f(x+1 / 2)$. Then g is continuous on $[0,1 / 2]$.
- If $f(0)=f(1 / 2)$, then we are done.
- Example 8.11. Suppose that f is continuous on $[0,1]$ and $f(0)=f(1)$. Prove that there is a $\xi \in[0,1]$ so that

$$
f(\xi)=f(\xi+1 / 2)
$$

This says that there are always two diametrically opposite points on the equator which have the same temperature.

- Proof. Let $g(x)=f(x)-f(x+1 / 2)$. Then g is continuous on $[0,1 / 2]$.
- If $f(0)=f(1 / 2)$, then we are done.
- Suppose $f(0) \neq f(1 / 2)$. Then $g(0)=f(0)-f(1 / 2)$ and $g(1 / 2)=f(1 / 2)-f(1)=f(1 / 2)-f(0)=$ $-(f(0)-f(1 / 2))$.
- Example 8.11. Suppose that f is continuous on $[0,1]$ and $f(0)=f(1)$. Prove that there is a $\xi \in[0,1]$ so that

$$
f(\xi)=f(\xi+1 / 2)
$$

This says that there are always two diametrically opposite points on the equator which have the same temperature.

- Proof. Let $g(x)=f(x)-f(x+1 / 2)$. Then g is continuous on $[0,1 / 2]$.
- If $f(0)=f(1 / 2)$, then we are done.
- Suppose $f(0) \neq f(1 / 2)$. Then $g(0)=f(0)-f(1 / 2)$ and $g(1 / 2)=f(1 / 2)-f(1)=f(1 / 2)-f(0)=$ $-(f(0)-f(1 / 2))$.
- Hence g changes sign on $[0,1 / 2]$. Thus, by the Intermediate Value Theorem there is a $\xi \in(0,1 / 2)$ such that $g(\xi)=0$ and we are done once more.
- We can now say something more about sin and cos

Theorem 9

The function cos changes sign on the interval [0, 2]. We define $\frac{\pi}{2}$ to be the smallest positive zero of cos. Then cos and sin are periodic with period $2 \pi, \sin (0)=\sin (\pi)=0$, and

$$
\sin \frac{\pi}{2}=1, \sin \frac{3 \pi}{2}=-1, \cos (x)=\sin \left(\frac{\pi}{2}-x\right) .
$$

- We can now say something more about sin and cos

Theorem 9

The function cos changes sign on the interval $[0,2]$. We define $\frac{\pi}{2}$ to be the smallest positive zero of cos. Then \cos and sin are periodic with period $2 \pi, \sin (0)=\sin (\pi)=0$, and

$$
\sin \frac{\pi}{2}=1, \sin \frac{3 \pi}{2}=-1, \cos (x)=\sin \left(\frac{\pi}{2}-x\right) .
$$

- Proof By the definition of cos, (6.10), $\cos (0)=1$ and

$$
\begin{aligned}
\cos (2) & =1-\frac{2^{2}}{2!}+\frac{2^{4}}{4!}-\sum_{k=2}^{\infty} \frac{2^{4 k-2}}{(4 k-2)!}\left(1-\frac{2^{2}}{(4 k-1) 4 k}\right) \\
& <1-2+\frac{2}{3}=-\frac{1}{3} .
\end{aligned}
$$

- We can now say something more about sin and cos

Theorem 9

The function cos changes sign on the interval $[0,2]$. We define $\frac{\pi}{2}$ to be the smallest positive zero of cos. Then cos and sin are periodic with period $2 \pi, \sin (0)=\sin (\pi)=0$, and

$$
\sin \frac{\pi}{2}=1, \sin \frac{3 \pi}{2}=-1, \cos (x)=\sin \left(\frac{\pi}{2}-x\right) .
$$

- Proof By the definition of $\cos ,(6.10), \cos (0)=1$ and

$$
\begin{aligned}
\cos (2) & =1-\frac{2^{2}}{2!}+\frac{2^{4}}{4!}-\sum_{k=2}^{\infty} \frac{2^{4 k-2}}{(4 k-2)!}\left(1-\frac{2^{2}}{(4 k-1) 4 k}\right) \\
& <1-2+\frac{2}{3}=-\frac{1}{3} .
\end{aligned}
$$

- Hence, by the IVT, Theorem 7, there is an $x \in(0,2)$ with $\cos (x)=0$. Let $\varpi \inf \{x: x>0, \cos (x)=0\}$.
- We can now say something more about sin and cos

Theorem 9

The function cos changes sign on the interval $[0,2]$. We define $\frac{\pi}{2}$ to be the smallest positive zero of cos. Then cos and sin are periodic with period $2 \pi, \sin (0)=\sin (\pi)=0$, and

$$
\sin \frac{\pi}{2}=1, \sin \frac{3 \pi}{2}=-1, \cos (x)=\sin \left(\frac{\pi}{2}-x\right) .
$$

- Proof By the definition of $\cos ,(6.10), \cos (0)=1$ and

$$
\begin{aligned}
\cos (2) & =1-\frac{2^{2}}{2!}+\frac{2^{4}}{4!}-\sum_{k=2}^{\infty} \frac{2^{4 k-2}}{(4 k-2)!}\left(1-\frac{2^{2}}{(4 k-1) 4 k}\right) \\
& <1-2+\frac{2}{3}=-\frac{1}{3} .
\end{aligned}
$$

- Hence, by the IVT, Theorem 7, there is an $x \in(0,2)$ with $\cos (x)=0$. Let $\varpi \inf \{x: x>0, \cos (x)=0\}$.
- By continuity, $\cos (\varpi)=0$ and, as $\cos (0)=1, \varpi>0$.
- We can now say something more about sin and cos

Theorem 9

The function cos changes sign on the interval $[0,2]$. We define $\frac{\pi}{2}$ to be the smallest positive zero of cos. Then cos and sin are periodic with period $2 \pi, \sin (0)=\sin (\pi)=0$, and

$$
\sin \frac{\pi}{2}=1, \sin \frac{3 \pi}{2}=-1, \cos (x)=\sin \left(\frac{\pi}{2}-x\right) .
$$

- Proof By the definition of $\cos ,(6.10), \cos (0)=1$ and

$$
\begin{aligned}
\cos (2) & =1-\frac{2^{2}}{2!}+\frac{2^{4}}{4!}-\sum_{k=2}^{\infty} \frac{2^{4 k-2}}{(4 k-2)!}\left(1-\frac{2^{2}}{(4 k-1) 4 k}\right) \\
& <1-2+\frac{2}{3}=-\frac{1}{3} .
\end{aligned}
$$

- Hence, by the IVT, Theorem 7, there is an $x \in(0,2)$ with $\cos (x)=0$. Let $\varpi \inf \{x: x>0, \cos (x)=0\}$.
- By continuity, $\cos (\varpi)=0$ and, as $\cos (0)=1, \varpi>0$.
- Define $\pi=2 \varpi$.
- For any non-negative integer k, when $0<x \leq 2$ we have

$$
\begin{aligned}
\frac{x^{4 k+1}}{(4 k+1)!} & -\frac{x^{4 k+3}}{(4 k+3)!} \\
& =\frac{x^{4 k+1}}{(4 k+1)!}\left(1-\frac{x^{2}}{(4 k+2)(4 k+3)}\right)>0
\end{aligned}
$$

- For any non-negative integer k, when $0<x \leq 2$ we have

$$
\begin{aligned}
\frac{x^{4 k+1}}{(4 k+1)!} & -\frac{x^{4 k+3}}{(4 k+3)!} \\
& =\frac{x^{4 k+1}}{(4 k+1)!}\left(1-\frac{x^{2}}{(4 k+2)(4 k+3)}\right)>0
\end{aligned}
$$

- Hence, by the definition of $\sin ,(6.9)$, we have $\sin (\varpi)>0$.
- By the addition formulæ Exercise 6.5.1, we have

$$
\begin{aligned}
\sin (\pi) & =2 \sin (\varpi) \cos (\varpi)=0 \\
\cos (\pi) & =2(\cos (\varpi))^{2}-1=-1, \\
\cos (2 \pi) & =1-2(\sin (\pi))^{2}=1, \\
\sin (2 \pi) & =2 \sin (\pi) \cos (\pi)=0, \\
\sin (x+2 \pi) & =\sin (x) \cos (2 \pi)+\cos (x) \sin (2 \pi)=\sin (x), \\
\cos (x+2 \pi) & =\cos (x) \cos (2 \pi)-\sin (x) \sin (2 \pi)=\cos (x), \\
-1=\cos (\pi) & =1-2 \sin ^{2}(\varpi), \\
\sin ^{2}(\varpi) & =1, \\
\sin (\varpi) & =1, \\
\cos (-x) & =\cos (x), \\
\sin (-x) & =-\sin (x) .
\end{aligned}
$$

- Thus

$$
\begin{aligned}
\sin (\varpi-x) & =\sin (\varpi) \cos (-x)+\cos (\varpi) \sin (-x) \\
& =\cos (x) \\
\sin (3 \varpi) & =\sin (\varpi+\pi) \\
& =\cos (-\pi) \\
& =\cos (\pi) \\
& =-1
\end{aligned}
$$

- Consider a real valued function defined on some domain $\mathcal{D} \in \mathbb{R}, f: \mathcal{D} \mapsto \mathbb{R}$. Then the definition of continuity, Definition 8.1 is a pointwise definition, even in the special case of an interval, Definition 8.3.
- Consider a real valued function defined on some domain $\mathcal{D} \in \mathbb{R}, f: \mathcal{D} \mapsto \mathbb{R}$. Then the definition of continuity, Definition 8.1 is a pointwise definition, even in the special case of an interval, Definition 8.3.
- This runs into the problem in applications that, given $\xi \in \mathcal{D}$ and $\varepsilon>0$, the choice of δ can depend on ε and ξ.
- Consider a real valued function defined on some domain $\mathcal{D} \in \mathbb{R}, f: \mathcal{D} \mapsto \mathbb{R}$. Then the definition of continuity, Definition 8.1 is a pointwise definition, even in the special case of an interval, Definition 8.3.
- This runs into the problem in applications that, given $\xi \in \mathcal{D}$ and $\varepsilon>0$, the choice of δ can depend on ε and ξ.
- Example 8.12. Let $f:(0,1) \mapsto \mathbb{R}: f(x) \mapsto \frac{1}{x}$.
- Consider a real valued function defined on some domain $\mathcal{D} \in \mathbb{R}, f: \mathcal{D} \mapsto \mathbb{R}$. Then the definition of continuity, Definition 8.1 is a pointwise definition, even in the special case of an interval, Definition 8.3.
- This runs into the problem in applications that, given $\xi \in \mathcal{D}$ and $\varepsilon>0$, the choice of δ can depend on ε and ξ.
- Example 8.12. Let $f:(0,1) \mapsto \mathbb{R}: f(x) \mapsto \frac{1}{x}$.
- Suppose $0<\varepsilon<\xi$. Given $\xi \in(0,1)$ we need to find $\delta>0$ so that when $0<|x-\xi|<\delta$ we have $|f(x)-f(\xi)|<\varepsilon$, that is

$$
\left|\frac{1}{x}-\frac{1}{\xi}\right|<\varepsilon
$$

or equivalently $|\xi-x|<\varepsilon x \xi<\varepsilon \xi(x-\xi)+\varepsilon \xi^{2}$.

- Consider a real valued function defined on some domain $\mathcal{D} \in \mathbb{R}, f: \mathcal{D} \mapsto \mathbb{R}$. Then the definition of continuity, Definition 8.1 is a pointwise definition, even in the special case of an interval, Definition 8.3.
- This runs into the problem in applications that, given $\xi \in \mathcal{D}$ and $\varepsilon>0$, the choice of δ can depend on ε and ξ.
- Example 8.12. Let $f:(0,1) \mapsto \mathbb{R}: f(x) \mapsto \frac{1}{x}$.
- Suppose $0<\varepsilon<\xi$. Given $\xi \in(0,1)$ we need to find $\delta>0$ so that when $0<|x-\xi|<\delta$ we have $|f(x)-f(\xi)|<\varepsilon$, that is

$$
\left|\frac{1}{x}-\frac{1}{\xi}\right|<\varepsilon
$$

or equivalently $|\xi-x|<\varepsilon x \xi<\varepsilon \xi(x-\xi)+\varepsilon \xi^{2}$.

- This has to hold for every x with $\xi-\delta<x<\xi+\delta$ and so taking x arbitrarily close to $x-\delta$ we must have $\delta \leq-\varepsilon \xi \delta+\varepsilon \xi^{2}$ and so $\delta<\frac{\varepsilon \xi^{2}}{1+\varepsilon \xi}$.
- Consider a real valued function defined on some domain $\mathcal{D} \in \mathbb{R}, f: \mathcal{D} \mapsto \mathbb{R}$. Then the definition of continuity, Definition 8.1 is a pointwise definition, even in the special case of an interval, Definition 8.3.
- This runs into the problem in applications that, given $\xi \in \mathcal{D}$ and $\varepsilon>0$, the choice of δ can depend on ε and ξ.
- Example 8.12. Let $f:(0,1) \mapsto \mathbb{R}: f(x) \mapsto \frac{1}{x}$.
- Suppose $0<\varepsilon<\xi$. Given $\xi \in(0,1)$ we need to find $\delta>0$ so that when $0<|x-\xi|<\delta$ we have $|f(x)-f(\xi)|<\varepsilon$, that is

$$
\left|\frac{1}{x}-\frac{1}{\xi}\right|<\varepsilon
$$

or equivalently $|\xi-x|<\varepsilon x \xi<\varepsilon \xi(x-\xi)+\varepsilon \xi^{2}$.

- This has to hold for every x with $\xi-\delta<x<\xi+\delta$ and so taking x arbitrarily close to $x-\delta$ we must have

$$
\delta \leq-\varepsilon \xi \delta+\varepsilon \xi^{2} \text { and so } \delta<\frac{\varepsilon \xi^{2}}{1+\varepsilon \xi}
$$

- Now δ cannot be taken to be independent of ξ, for taking ξ arbitrarily close to 0 would contradict $\delta>0$.

Uniform Continuity

- When we have a situation in which it is possible to find a universal δ it is usual to associate the word uniform with it.
- Definition 8.4. Suppose that $\mathcal{S} \subset \mathbb{R}$ and $f: \mathcal{S} \mapsto \mathbb{R}$ has the property that for every $\varepsilon>0$ there is a $\delta>0$ such that whenever $x, y \in \mathcal{S}$ and $|x-y|<\delta$ we have

$$
|f(x)-f(y)|<\varepsilon
$$

then we say that f is uniformly continuous on \mathcal{S}.

Uniform Continuity

- When we have a situation in which it is possible to find a universal δ it is usual to associate the word uniform with it.
- Definition 8.4. Suppose that $\mathcal{S} \subset \mathbb{R}$ and $f: \mathcal{S} \mapsto \mathbb{R}$ has the property that for every $\varepsilon>0$ there is a $\delta>0$ such that whenever $x, y \in \mathcal{S}$ and $|x-y|<\delta$ we have

$$
|f(x)-f(y)|<\varepsilon
$$

then we say that f is uniformly continuous on \mathcal{S}.

- An equivalent statement is that for every $\varepsilon>0$ there is $\delta>0$ such that

$$
\sup \{|f(x)-f(y)|: x, y \in \mathcal{S} \text { and }|x-y|<\delta\}<\varepsilon
$$

Uniform Continuity

- When we have a situation in which it is possible to find a universal δ it is usual to associate the word uniform with it.
- Definition 8.4. Suppose that $\mathcal{S} \subset \mathbb{R}$ and $f: \mathcal{S} \mapsto \mathbb{R}$ has the property that for every $\varepsilon>0$ there is a $\delta>0$ such that whenever $x, y \in \mathcal{S}$ and $|x-y|<\delta$ we have

$$
|f(x)-f(y)|<\varepsilon
$$

then we say that f is uniformly continuous on \mathcal{S}.

- An equivalent statement is that for every $\varepsilon>0$ there is $\delta>0$ such that

$$
\sup \{|f(x)-f(y)|: x, y \in \mathcal{S} \text { and }|x-y|<\delta\}<\varepsilon
$$

- An equivalent statement is that for every $\varepsilon>0$ there is a $\delta>0$ such that

$$
\sup \{|f(x)-f(y)|: x, y \in \mathcal{S} \text { and }|x-y|<\delta\}<\varepsilon
$$

Uniform Continuity

- The following contrasts open and closed intervals.

Theorem 10

Suppose that $a<b, f:[a, b] \mapsto \mathbb{R}$ and f is continuous on
$[a, b]$. Then f is uniformly continuous on $[a, b]$.

Uniform Continuity

- The following contrasts open and closed intervals.

Theorem 10

Suppose that $a<b, f:[a, b] \mapsto \mathbb{R}$ and f is continuous on $[a, b]$. Then f is uniformly continuous on $[a, b]$.

- Proof. Suppose that f is not uniformly continuous on $[a, b]$. Then there is an $\varepsilon_{0}>0$ so that for every $n \in \mathbb{N}$ there are $x_{n}, y_{n} \in[a, b]$ with $0<\left|x_{n}-y_{n}\right|<\frac{1}{n}$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon_{0}$.

Uniform Continuity

- The following contrasts open and closed intervals.

Theorem 10

Suppose that $a<b, f:[a, b] \mapsto \mathbb{R}$ and f is continuous on $[a, b]$. Then f is uniformly continuous on $[a, b]$.

- Proof. Suppose that f is not uniformly continuous on $[a, b]$. Then there is an $\varepsilon_{0}>0$ so that for every $n \in \mathbb{N}$ there are $x_{n}, y_{n} \in[a, b]$ with $0<\left|x_{n}-y_{n}\right|<\frac{1}{n}$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon_{0}$.
- $\left\langle x_{n}\right\rangle$ is in $[a, b]$ and so by B-W it has a convergent sub sequence $\left\langle x_{m_{n}}\right\rangle$. Then $\left\langle y_{m_{n}}\right\rangle$ has a convergent subsequence $\left\langle y_{m_{k_{n}}}\right\rangle$. Moreover $\left|x_{m_{k_{n}}}-y_{m_{k_{n}}}\right|<\frac{1}{m_{k_{n}}} \rightarrow 0$ as $n \rightarrow \infty$.

Uniform Continuity

- The following contrasts open and closed intervals.

Theorem 10

Suppose that $a<b, f:[a, b] \mapsto \mathbb{R}$ and f is continuous on $[a, b]$. Then f is uniformly continuous on $[a, b]$.

- Proof. Suppose that f is not uniformly continuous on $[a, b]$. Then there is an $\varepsilon_{0}>0$ so that for every $n \in \mathbb{N}$ there are $x_{n}, y_{n} \in[a, b]$ with $0<\left|x_{n}-y_{n}\right|<\frac{1}{n}$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon_{0}$.
- $\left\langle x_{n}\right\rangle$ is in $[a, b]$ and so by B-W it has a convergent sub sequence $\left\langle x_{m_{n}}\right\rangle$. Then $\left\langle y_{m_{n}}\right\rangle$ has a convergent subsequence $\left\langle y_{m_{k_{n}}}\right\rangle$. Moreover $\left|x_{m_{k_{n}}}-y_{m_{k_{n}}}\right|<\frac{1}{m_{k_{n}}} \rightarrow 0$ as $n \rightarrow \infty$.
- They have a common limit, $\ell \in[a, b]$ so by the continuity of f at ℓ and Theorem $8.30=\lim _{n \rightarrow}\left|f\left(x_{m_{k_{n}}}\right)-f\left(y_{m_{k_{n}}}\right)\right|$
$\geq \varepsilon_{0}$ which gives the required contradiction.

