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® The concept of continuity is fundamental to much of
mathematics. We start with continuity at a point.
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every £ € R satisfies Iimé f(x) = ().
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Then by the combination theorem applied many times it
follows that P is continuous at £.
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In other words every polynomial is continuous at every real
number x.
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The concept of continuity is fundamental to much of
mathematics. We start with continuity at a point.
Definition 8.1 Suppose a < { < b and f : (a, b) — R.
Then we say f is continuous at { when f(x) — f(&) as
x — £. Otherwise it is discontinuous at &.

Example 8.1. Suppose that ¢y, c1,...,cm € R, £ € R and

P(x)=c+cax+ - cmx" (x € R).

It is an easy exercise to show that f : R +— R : x — x, for
every £ € R satisfies Iimé f(x) = ().
X—

Then by the combination theorem applied many times it
follows that P is continuous at £.

In other words every polynomial is continuous at every real
number x.

More generally, it follows from the combination theorem
that every rational function g(—);)) is continuous at every

real number & for which Q(§) # 0.
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Continuity at e Example 8.2. The function f : [—1, %] — R defined by
a Point
1 1
x+5 —5<x<0
f(x) = % 2= L

is discontinuous at 0, but the function g : [—%, %] =R
defined by

is continuous at 0.
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Suppose that a < & and f : (a,&] — R.

Then we say that f is continuous from below, or from
the left, at £ when f(x) — f(§) as x — £—. Otherwise
we say that f is discontinuous from the left at &.

Suppose that £ < b and f : [, b) — R.
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It is also important, especially when dealing with intervals,

e < to deal with one sided continuity.
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Continuity at
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® Then we say that f is continuous from below, or from
the left, at £ when f(x) — f(§) as x — £—. Otherwise
we say that f is discontinuous from the left at &.
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we say that f is discontinuous from the right at &.
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e < to deal with one sided continuity.
¢ Definition 8.2. Continuity from the Left or Right.
Continuity at
2 Point Suppose that a < & and f : (a,&] — R.

® Then we say that f is continuous from below, or from
the left, at £ when f(x) — f(§) as x — £—. Otherwise
we say that f is discontinuous from the left at &.

® Suppose that ¢ < b and f : [¢,b) — R.

® Then we say that f is continuous from above, or from
the right, at { when f(x) — f(§) as x — £+. Otherwise
we say that f is discontinuous from the right at &.

e Example 8.3. In Example 8.2. the function

w4+l _
f(x)z{ T2
2

IA i
X IA
A X

0,
x—5 0

ISTAN

is discontinuous from the left at 0, but continuous from
the right at 0.



Continuity ® For continuity at a point we can apply Chapter 7.

Ve Theorem 1 (Comb. Theorem for Pointwise Continuity)

Continuity at Suppose that a < £ < b, f,g : (a,b) — R, and f(x) and g(x)
e font are continuous at &, and that \, ;1 € R. Then

(i) M (x) + pg(x) is continuous at &,

(ii) f(x)g(x) is continuous at &,

ey f(x)
(iii)if g(§) # 0, then 200

Theorem 2 (Comb. Theorem for Left and Right Continuity)

is continuous at &.

Suppose that a < &, f, g : (a,€] — R, and f(x) and g(x) are
continuous from below at &, and that \,u € R. Then
(i) Mf(x) + pg(x) is continuous from below at &,
(ii) f(x)g(x) is continuous from below at &,

s f(x)
iii)if g(&£) # 0, then
(i)t (¢) o

There are corresponding statements for continuity from above
when f and g are defined on [€, b).

is continuous from below at &.
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® The following is also useful.

Theorem 3

Suppose a < b, £ € (a,b). Then f : (a, b) — R is continuous
at £ if and only if for every sequence (x,) in (a, b) satisfying
lim,_ x, = & we have

lim f(xp) = f(£).

n—oo
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at £ if and only if for every sequence (x,) in (a, b) satisfying
lim,_ x, = & we have
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® “Only if.” Let € > 0. Choose § > 0 so that whenever
|x —¢&| < 6 and x € (a, b) we have |f(x) — f(§)| <e.
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® The following is also useful.

Theorem 3

Suppose a < b, £ € (a,b). Then f : (a, b) — R is continuous
at £ if and only if for every sequence (x,) in (a, b) satisfying
lim,_ x, = & we have

lim f(xp) = f(£).

n—oo

® “Only if.” Let € > 0. Choose § > 0 so that whenever
|x —¢&| < 6 and x € (a, b) we have |f(x) — f(§)| <e.

® Then choose N so that when n > N we have |x, — &| < 4.
Hence |f(x,) — f(&)| < e.
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® Theorem 3. Suppose a < b, £ € (a, b). Then
f:(a,b) — R is continuous at £ if and only if for every
sequence (xp) in (a, b) satisfying lim,_, x, = £ we have
limp_00 F(xn) = F(£).
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f:(a,b) — R is continuous at £ if and only if for every
R sequence (x,) in (a, b) satisfying lim,_, x, = & we have

limp_00 F(xn) = F(£).
e “If.” Suppose f is not continuous at £ but every sequence
(xn) in (a, b) converging to ¢ satisfies

(1) lim f(x) = £(0)
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f:(a,b) — R is continuous at £ if and only if for every
R sequence (x,) in (a, b) satisfying lim,_, x, = & we have
limp_00 F(xn) = F(£).
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® The “non-continuity” means that there is some ¢g > 0
such that for every § > 0 there is an x € (a, b) with
|x —&| <0 and |f(x) — f(&)] > eo.
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Theorem 3. Suppose a < b, £ € (a, b). Then

f:(a,b) — R is continuous at £ if and only if for every
sequence (xp) in (a, b) satisfying lim,_, x, = £ we have
limp_00 F(xn) = F(£).

“If.” Suppose f is not continuous at £ but every sequence
(xn) in (a, b) converging to ¢ satisfies

(1) lim f(x) = £(0)

The “non-continuity” means that there is some g > 0
such that for every § > 0 there is an x € (a, b) with

|x —&| <0 and |f(x) — f(&)] > eo.

Take § = 1/n. Then by the assertion just above there is x,
so that [x — &| < L. Take x, = x. Now

|f(xn) — F(&)| > €0, but (x,) is converging to £ and so
contradicts (1) above.
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® An interesting application. Example 8.4. Let
exp(x) : x — R be the function defined in (6.8). Then
(i) exp(x) is continuous at 0, and
(ii) for every real £, exp(x) is continuous at &.
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® An interesting application. Example 8.4. Let
exp(x) : x — R be the function defined in (6.8). Then
(i) exp(x) is continuous at 0, and
(ii) for every real £, exp(x) is continuous at &.

® Proof. (i) Suppose that |x| < 1. Then
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lexp(x) — 1| < zzln! < 221‘)4
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— ® An interesting application. Example 8.4. Let
Vavehan exp(x) : x — R be the function defined in (6.8). Then
otinufisy o7 (i) exp(x) is continuous at 0, and

a Point

(ii) for every real £, exp(x) is continuous at &.
® Proof. (i) Suppose that |x| < 1. Then

oo ‘X|n e.9]

n

lexp(x) — 1| < zzln! < 221‘)4
n= n=

i
1— x|

® Let € > 0 and choose § = 15-. Thus, when |x| < § we
have
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® An interesting application. Example 8.4. Let

exp(x) : x — R be the function defined in (6.8). Then
(i) exp(x) is continuous at 0, and
(ii) for every real £, exp(x) is continuous at &.

® Proof. (i) Suppose that |x| < 1. Then

o0 ‘X|n o0

n

lexp(x) — 1] < Zl < Zl x]
n—= n—=

I
1— x|
® Let € > 0 and choose § = 15-. Thus, when |x| < § we
have 5
|exp(x) — 1| < m =E&.

e (i) We have exp(¢ + h) = exp(&) exp(h) — exp(&) as

h — 0 by (i), i.e. exp(x) — exp(§) as x — &.
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® But continuity on an interval is fundamental to most of
the functions we meet in practice.

e Definition 8.3. Suppose that a < b, | is the open
interval (a, b) and f : | — R. Then f is continuous on |
when it is continuous at every point £ € .
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an Interval
® But continuity on an interval is fundamental to most of
the functions we meet in practice.

e Definition 8.3. Suppose that a < b, | is the open
interval (a, b) and f : | — R. Then f is continuous on |
when it is continuous at every point £ € .

® Suppose instead that | is the closed interval [a, b] and
f:1— R. Then f is continuous on | when it is
continuous at every point { € (a, b), continuous from the
right at a and continuous from the left at b.
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Continuity on an Interval

Continuity at an individual point on its own is not
particularly useful!

But continuity on an interval is fundamental to most of
the functions we meet in practice.

Definition 8.3. Suppose that a < b, | is the open
interval (a, b) and f : | — R. Then f is continuous on |
when it is continuous at every point £ € .

Suppose instead that | is the closed interval [a, b] and
f:1— R. Then f is continuous on | when it is
continuous at every point { € (a, b), continuous from the
right at a and continuous from the left at b.

When f is continuous at every & € R then we say that f is
continuous on R.



e Example 8.5. The function f: (0,1) —»R: f(x) =1 is
continuous on (0,1) even though f is unbounded.
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continuous on (0,1) even though f is unbounded.

e Example 8.6. Let ¢y, c1,...,¢, € R and
P:R—=R:P(x)=c+cx+--+cyx". Then P is
continuous on R.
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5 (el e Example 8.5. The function f : (0,1) — R: f(x) =1 is
continuous on (0,1) even though f is unbounded.

e Example 8.6. Let ¢y, c1,...,¢, € R and
P:R—=R:P(x)=c+cx+--+cyx". Then P is
continuous on R.

e Example 8.7 The functions exp(x), cos(x) and sin(x) are
continuous on R.
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at a point.

conimiyon T heorem 4 (Combination Theorem for Continuity on an
an Interval Interval)

Suppose that a < b and | = (a, b) or[a,b], f,g: | — R, and
f(x) and g(x) are continuous on |. Suppose further that
A €R. Then

(i) Mf(x) + pg(x) is continuous on I,
(ii) f(x)g(x) is continuous on I,
(iii)if g(x) # 0 for x € |, then

is continuous on |.
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e Continuity on a closed interval is more constraining than
continuity on an open interval, but comes with benefits.
® Example 8.5 can be contrasted with the following.

Theorem 5

Suppose that a < b and f : [a, b] — R is continuous on |a, b].
Then f is bounded.



Continuity e Continuity on a closed interval is more constraining than
Robert C. continuity on an open interval, but comes with benefits.

Vaughan . .
: ® Example 8.5 can be contrasted with the following.

Theorem 5

Continuity on

an Interval Suppose that a < b and f : [a, b] — R is continuous on [a, b].
Then f is bounded.

® Proof. Suppose that f([a, b]) is unbounded above. (If
instead unbounded below replace f by —f.) Then given
any n € N there is an x, € [a, b] such that f(x,) > n.
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e Continuity on a closed interval is more constraining than
continuity on an open interval, but comes with benefits.
® Example 8.5 can be contrasted with the following.

Theorem 5
Suppose that a < b and f : [a, b] — R is continuous on [a, b].
Then f is bounded.

® Proof. Suppose that f([a, b]) is unbounded above. (If
instead unbounded below replace f by —f.) Then given
any n € N there is an x, € [a, b] such that f(x,) > n.

® But a < x, < b, so (x,) is bounded and by Bolzano
Weierstrass it has a convergent subsequence (xm,).
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an Interval Suppose that a < b and f : [a, b] — R is continuous on [a, b].
Then f is bounded.

® Proof. Suppose that f([a, b]) is unbounded above. (If
instead unbounded below replace f by —f.) Then given
any n € N there is an x, € [a, b] such that f(x,) > n.

® But a < x, < b, so (x,) is bounded and by Bolzano
Weierstrass it has a convergent subsequence (xm,).

® Let / =limp_00 Xm,. Then a < ¢ < b, and since function
f is continuous at ¢ there is a 6 > 0 so that when
|Xm, — €] < § we have |f(xm,) — f(£)] <1.
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Then f is bounded.

® Proof. Suppose that f([a, b]) is unbounded above. (If
instead unbounded below replace f by —f.) Then given
any n € N there is an x, € [a, b] such that f(x,) > n.

® But a < x, < b, so (x,) is bounded and by Bolzano
Weierstrass it has a convergent subsequence (xm,).

® Let / =limp_00 Xm,. Then a < ¢ < b, and since function
f is continuous at ¢ there is a 6 > 0 so that when
|Xm, — €] < § we have |f(xm,) — f(£)] <1.
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Robert C. continuity on an open interval, but comes with benefits.
Vaughan . .

: ® Example 8.5 can be contrasted with the following.

Theorem 5

Continuity on

an Interval Suppose that a < b and f : [a, b] — R is continuous on [a, b].
Then f is bounded.

® Proof. Suppose that f([a, b]) is unbounded above. (If
instead unbounded below replace f by —f.) Then given
any n € N there is an x, € [a, b] such that f(x,) > n.

® But a < x, < b, so (x,) is bounded and by Bolzano
Weierstrass it has a convergent subsequence (xm,).

® Let / =limp_00 Xm,. Then a < ¢ < b, and since function
f is continuous at ¢ there is a 6 > 0 so that when
|Xm, — €] < § we have |f(xm,) — f(£)] <1.

® By the triangle inequality, forall n € N, n < m, <

f(xm,) = (F(xm,) = £) + £ < [f(xm,) — €] + €] < 1+ €]

contradicting the Archimedean property_of N.
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® This leads to the following remarkable and very useful
result.

Theorem 6
Suppose that a < b and f is continuous on [a, b]. Then f

attains its bounds. In other words there are n, ¢ € [a, b] such
that f(n) = inf f([a, b]) and f(&) = sup f([a, b]).
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® This leads to the following remarkable and very useful
result.

Theorem 6
Suppose that a < b and f is continuous on [a, b]. Then f

attains its bounds. In other words there are n, ¢ € [a, b] such
that f(n) = inf f([a, b]) and f(&) = sup f([a, b]).

® Proof. It suffices to establish the second equality since the
first then follows by replacing f by —f.
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® This leads to the following remarkable and very useful
result.

Theorem 6

Suppose that a < b and f is continuous on [a, b]. Then f
attains its bounds. In other words there are n, ¢ € [a, b] such
that f(n) = inf f([a, b]) and f(&) = sup f([a, b]).

® Proof. It suffices to establish the second equality since the
first then follows by replacing f by —f.

® We argue by contradiction. Let A = sup f([a, b]) and
suppose that f(x) < A for every x € [a, b].
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® This leads to the following remarkable and very useful
result.

Theorem 6

Suppose that a < b and f is continuous on [a, b]. Then f
attains its bounds. In other words there are n, ¢ € [a, b] such
that f(n) = inf f([a, b]) and f(&) = sup f([a, b]).

® Proof. It suffices to establish the second equality since the
first then follows by replacing f by —f.

® We argue by contradiction. Let A = sup f([a, b]) and
suppose that f(x) < A for every x € [a, b].

L4 Let g(X) = A%f(x)



Continuity ® This leads to the following remarkable and very useful
Robert C. reSU|t.

Vaughan
Theorem 6

Suppose that a < b and f is continuous on [a, b]. Then f
Continuity on attains its bounds. In other words there are n, ¢ € [a, b] such
that f(n) = inf f([a, b]) and f(&) = sup f([a, b]).

® Proof. It suffices to establish the second equality since the
first then follows by replacing f by —f.
® We argue by contradiction. Let A = sup f([a, b]) and

suppose that f(x) < A for every x € [a, b].

L4 Let g(X) = A%f(x)

® Then by the combination theorem for continuity on an
interval it follows that g is continuous on [a, b] and so by
the previous theorem it is bounded on /.
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® This leads to the following remarkable and very useful

result.

Theorem 6

Suppose that a < b and f is continuous on [a, b]. Then f
attains its bounds. In other words there are n, ¢ € [a, b] such
that f(n) = inf f([a, b]) and f(&) = sup f([a, b]).

Proof. It suffices to establish the second equality since the
first then follows by replacing f by —f.
We argue by contradiction. Let A = sup f([a, b]) and

suppose that f(x) < A for every x € [a, b].

Let g(X) = A%f(x)

Then by the combination theorem for continuity on an
interval it follows that g is continuous on [a, b] and so by
the previous theorem it is bounded on /.

Thus there is a B > 0 such that for every x € | we have

/\—}(x) =g(x) < B.
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® This leads to the following remarkable and very useful

result.

Theorem 6

Suppose that a < b and f is continuous on [a, b]. Then f
attains its bounds. In other words there are n, ¢ € [a, b] such
that f(n) = inf f([a, b]) and f(&) = sup f([a, b]).

Proof. It suffices to establish the second equality since the
first then follows by replacing f by —f.

We argue by contradiction. Let A = sup f([a, b]) and
suppose that f(x) < A for every x € [a, b].

et g() = 7y .

Then by the combination theorem for continuity on an
interval it follows that g is continuous on [a, b] and so by
the previous theorem it is bounded on /.

Thus there is a B > 0 such that for every x € | we have
= g(X) <B.

Hence 0 < £ < A — f(x) and so f(x) < A — % which
contradicts the definition of A.
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Intermediate
Value
Theorem

® WWe now come to a theorem which is used all the time in
applications. It is especially important in that it underpins
all zero finding techniques for continuous functions.

Theorem 7 (The Intermediate Value Theorem)

Suppose that a < b, f : [a, b] — R is continuous on [a, b] and
inf f([a, b]) < A <supf([a,b]).
Then there is a £ € [a, b] such that

(&) =\
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® WWe now come to a theorem which is used all the time in
applications. It is especially important in that it underpins
all zero finding techniques for continuous functions.

Theorem 7 (The Intermediate Value Theorem)
Suppose that a < b, f : [a, b] — R is continuous on [a, b] and
inf f([a, b]) < A <supf([a,b]).

Then there is a £ € [a, b] such that

(&) =\

® Remark. This theorem says in effect that, when f is
continuous on a closed interval [a, b], the set f([a, b]) is
also an interval.
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® Theorem 7. Suppose that a < b, f : [a,b] — R is
continuous on [a, b] and inf f([a, b]) < X\ <sup f([a, b]).
Then there is a £ € [a, b] such that f(§) = \.
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FEIE ® Theorem 7. Suppose that a < b, f : [a,b] — R is
continuous on [a, b] and inf f([a, b]) < X\ <sup f([a, b]).
Then there is a £ € [a, b] such that f(§) = \.

® Proof. We construct two sequences (a,) and (b) such
e that

Intermediate

Yalue (1) (an) is increasing and a < a, < b,
(2) ( ,,> is decreasmg and a < b, < b,
(3)0< = 4=2,
(4) (f(a ) )( (bn) —A) <0.
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® Theorem 7. Suppose that a < b, f : [a,b] — R is
continuous on [a, b] and inf f([a, b]) < X\ <sup f([a, b]).
Then there is a £ € [a, b] such that f(§) = \.

® Proof. We construct two sequences (a,) and (b) such

that

(1) (an) is increasing and a < a, < b,

(2) (bp) is decreasing and a < b, < b,

(3) 0 < by —a, = 22,

(4) (f(an) = A)(f(bn) = A) < 0.

® By Theorem 6 there are u, v € [a, b] so that
f(u) = inf f([a, b]), f(v) =supf([a, b]).
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® Theorem 7. Suppose that a < b, f : [a,b] — R is
continuous on [a, b] and inf f([a, b]) < X\ <sup f([a, b]).
Then there is a £ € [a, b] such that f(§) = \.

® Proof. We construct two sequences (a,) and (b) such
that

(1) (an) is increasing and a < a, < b,

(2) (bp) is decreasing and a < b, < b,
(3) 0 < by —a, = 22,
(4) (f(an) = A)(f(bn) = A) < 0.

® By Theorem 6 there are u, v € [a, b] so that
f(u) =inf f([a, b]), f(v) = sup f([a, b]).

® Hence (f(u) — A))(f(v) —A) <0.
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® Theorem 7. Suppose that a < b, f : [a,b] — R is

continuous on [a, b] and inf f([a, b]) < X\ <sup f([a, b]).
Then there is a £ € [a, b] such that f(§) = \.

Proof. We construct two sequences (a,) and (b,) such
that

(1) (an) is increasing and a < a, < b,

(2) (bp) is decreasing and a < b, < b,

(3) 0< bn —dan = b21n_jly

(4) (f(an) = A)(f(bn) = A) < 0.

By Theorem 6 there are u, v € [a, b] so that

f(u) = inf f([a, b]), f(v) =supf([a, b]).

Hence (f(u) — A\))(f(v) —A) <O0.

Let a3 = min{u, v}, by = max{u, v}. Then (3), (4) hold
with n =1,
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are constructing two sequences (a,) and (b,) such that
(an) is increasing and a < a, < b,

(bp) is decreasing and a < b, < b,

0< by,—ap= 22
(

on—1 1

f(an) — A)(f(bn) — A\) <0 and have this with n =1
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We are constructing two sequences (a,) and (b,) such that
(1) (an) is increasing and a < a, < b,

(2) (b,) is decreasing and a < b, < b,

(3) 0< bn —adn = b21,:5{1,

(4) (f(an) — A)(f(bn) — A) <0 and have this with n =1
Given a, and b, satisfying (3), (4), choose ¢, = 215bn.
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® We are constructing two sequences (a,) and (b,) such that
(1) (an) is increasing and a < a, < b,
(2) (b,) is decreasing and a < b, < b,
(3) b—a

O bn —dn = on—1 1

(4) (f(an) — A)(f(bn) — A) <0 and have this with n =1

* Given a, and b, satisfying (3), (4), choose c, = 2rFbn.

® The inequality (4) says that at least one of the two factors
f(an) — A and f(b,) — A 'is 0, or they are both non-zero

and have opposite signs.
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We are constructing two sequences (a,) and (b,) such that
(1) (an) is increasing and a < a, < b,

(2) (b,) is decreasing and a < b, < b,

(3) 0< bn —adn = b21,:5{1,

(4) (f(an) — A)(f(bn) — A) <0 and have this with n =1
Given a, and b, satisfying (3), (4), choose ¢, = 215bn.

The inequality (4) says that at least one of the two factors
f(an) — A and f(b,) — A 'is 0, or they are both non-zero
and have opposite signs.

If f(an) — Xis O let ap41 = ap, bpt1 = G-
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We are constructing two sequences (a,) and (b,) such that
(1) (an) is increasing and a < a, < b,

(2) (b,) is decreasing and a < b, < b,

(3) 0< bn —adn = b21,:5{1,

(4) (f(an) — A)(f(bn) — A) <0 and have this with n =1
Given a, and b, satisfying (3), (4), choose ¢, = 215bn.

The inequality (4) says that at least one of the two factors
f(an) — A and f(b,) — A 'is 0, or they are both non-zero
and have opposite signs.

If f(an) — Nis O let apy1 = an, bpy1 = cp.

If f(an) — A is non-0 but f(¢c,) — A =0 let ap+1 = cp,
bpt1 = bp.
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We are constructing two sequences (a,) and (b,) such that
(1) (an) is increasing and a < a, < b,

(2) (b,) is decreasing and a < b, < b,

(3) 0< bn —adn = b21,:5{1,

(4) (f(an) — A)(f(bn) — A) <0 and have this with n =1

Given a, and b, satisfying (3), (4), choose ¢, =
The inequality (4) says that at least one of the two factors
f(an) — A and f(b,) — A 'is 0, or they are both non-zero
and have opposite signs.

If f(an) — Nis O let apy1 = an, bpy1 = cp.

If f(an) — A is non-0 but f(¢c,) — A =0 let ap+1 = cp,
bn+1 = bp.

If f(an) — A and f(c,) — A are both non-zero and they
have opposite signs, then we take ap+1 = an, bpt1 = .
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We are constructing two sequences (a,) and (b,) such that
(1) (an) is increasing and a < a, < b,

(2) (b,) is decreasing and a < b, < b,

(3) 0< bn —adn = b21,:5{1,

(4) (f(an) — A)(f(bn) — A) <0 and have this with n =1

Given a, and b, satisfying (3), (4), choose ¢, =
The inequality (4) says that at least one of the two factors
f(an) — A and f(b,) — A 'is 0, or they are both non-zero
and have opposite signs.

If f(an) — Nis O let apy1 = an, bpy1 = cp.

If f(an) — A is non-0 but f(¢c,) — A =0 let ap+1 = cp,
bpt1 = bp.

If f(an) — A and f(c,) — A are both non-zero and they
have opposite signs, then we take ap+1 = an, bpt1 = .

If f(an) — A and f(cp) — A are both non-zero and they
have the same sign, then we take a,+1 = ¢n, bpr1 = bp.
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We are constructing two sequences (a,) and (b,) such that
(1) (an) is increasing and a < a, < b,

(2) (b,) is decreasing and a < b, < b,

(3) 0< bn —adn = b21,:5{1,

(4) (f(an) — A)(f(bn) — A) <0 and have this with n =1

Given a, and b, satisfying (3), (4), choose ¢, =
The inequality (4) says that at least one of the two factors
f(an) — A and f(b,) — A 'is 0, or they are both non-zero
and have opposite signs.

If f(an) — Nis O let apy1 = an, bpy1 = cp.

If f(an) — A is non-0 but f(¢c,) — A =0 let ap+1 = cp,
bn+1 = bp.

If f(an) — A and f(c,) — A are both non-zero and they
have opposite signs, then we take ap+1 = an, bpt1 = .

If f(an) — A and f(cp) — A are both non-zero and they
have the same sign, then we take a,+1 = ¢n, bpr1 = bp.
In any case we have (1), (2), (3), (4) with n replaced by
n+1.
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® We have constructed two sequences (a,) and (b,) such

that
(1)
(2)
(3)
(4)

n) is increasing and a < a, < b,

(a

( ,,> is decreasmg and a < b, < b,
0 — b1 al
(

on—1 1

f(an) - )(f(bn) —A)<0
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® We have constructed two sequences (a,) and (b,) such
that
(1) (an) is increasing and a < a, < b,
(2) (bp) is decreasmg and a < b, < b,
(3) 0 < by —an = %%,
(4) (f(an) - )( (bn) =A) <0

e By (1), (2), the monotonic convergence theorem and (3)
the sequences (a,) and (b,) converge to a common value,

say &.
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® We have constructed two sequences (a,) and (b,) such
that
(1) (an) is increasing and a < a, < b,
(2) (bp) is decreasmg and a < b, < b,
(3) 0 < by — a, = 22721,
(4) (f(an) - )( (bn) =A) <0
e By (1), (2), the monotonic convergence theorem and (3)
the sequences (a,) and (b,) converge to a common value,
say &.
® Thus, by Theorem 8.3.,
lim f(a,) = lim f(b,) = (&)

n—o0 n—o00



Continuity ® We have constructed two sequences (a,) and (b,) such
Robert C. that
v (1) (ap) is increasing and a < a, < b,

(2) (bp) is decreasmg and a < b, < b,

(3) 0 < by — ap = %=,
(4) (f(an) — )(@H—A)SO
- ® By (1), (2), the monotonic convergence theorem and (3)
Vale the sequences (a,) and (b,) converge to a common value,
say &.

® Thus, by Theorem 8.3.,
Jim,flan) = fim #(6) = £(6)

® Hence, by Theorem 4.6 and (4)
(f(&) = A?<o.



Continuity ® We have constructed two sequences (a,) and (b,) such
Robert C. that
v (1) (ap) is increasing and a < a, < b,
(2) (bp) is decreasmg and a < b, < b,
(3) 0 < by —a, = 22,
(8) (Fan) — NPy — ) < 0
- ® By (1), (2), the monotonic convergence theorem and (3)
Vale the sequences (a,) and (b,) converge to a common value,
say &.
® Thus, by Theorem 8.3.,
lim f(a,) = lim f(b,) = (&)

n—o0 n—o00
® Hence, by Theorem 4.6 and (4)
(f(&) = A?<o.

® Therefore
(€)=

as required.



The image of exp is RT

® Proof. This follows at once from Theorem 8.7 and our

earlier observation (Theorem 6.13) that exp(x) takes on
arbitrarily small and large positive values.

«O> «Fr «=>»

«E)»
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Corollary 8
The image of exp is R™

® Proof. This follows at once from Theorem 8.7 and our
earlier observation (Theorem 6.13) that exp(x) takes on
arbitrarily small and large positive values.

® Here are some examples connected with the last few
theorems.
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The image of exp is R™

® Proof. This follows at once from Theorem 8.7 and our

- earlier observation (Theorem 6.13) that exp(x) takes on

Intermediate arbitrarily small and large positive values.

Value

[hecer ® Here are some examples connected with the last few
theorems.

o Example 8.8. Let f(x) = x> — x be defined on
| = [ 5 4] Then

nf () = —3, £ (1) = -1,

supf(l)=3,f(-3) =2,
SRS EERICHES



o Example 8.9. Prove that the cubic equation
x3 —=3x2+1=0 has 3 real roots.

«O> «Fr «=>»

«E)»

DA
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e Example 8.9. Prove that the cubic equation
x3 —3x24+1 =0 has 3 real roots.

® Proof. For brevity write f(x) = x> — 3x2 + 1.
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e Example 8.9. Prove that the cubic equation
x3 —3x24+1 =0 has 3 real roots.

® Proof. For brevity write f(x) = x> — 3x2 + 1.
® Then

f(-1)=-3,f(0)=1, f(1) = -1, f3) =1

and f is continuous on each of the intervals [-1,0], [0, 1],
[1,3].



Continuity e Example 8.9. Prove that the cubic equation

el @ x3 —3x2+1 =0 has 3 real roots.
Vaughan
: ® Proof. For brevity write f(x) = x> — 3x2 + 1.
® Then

f(-1)=-3,f(0)=1, f(1) = -1, f3) =1

Intermediate and f is continuous on each of the intervals [—1,0], [0, 1],

Value

Theorem [17 3]
® Hence there are &1, &, &3 so that

—1<6 <0< <I<E<3

and

f(&1) = (&) = f(&) = 0.
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Example 8.9. Prove that the cubic equation
x3 —3x24+1 =0 has 3 real roots.

Proof. For brevity write f(x) = x3 — 3x? + 1.
Then

f(-1)=-3,f(0) =1, f(1) = -1, f(3) =1

and f is continuous on each of the intervals [-1,0], [0, 1],
[1,3].
Hence there are &1, &5, &3 so that

—1<6 <0< <I<E<3

and

f(&) = (&) =f(&3) = 0.
Example 8.10 Prove that the curve y = x? intersect the
curve y = x3 — 2x? 4+ 1 in three places.
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Example 8.9. Prove that the cubic equation
x3 —3x24+1 =0 has 3 real roots.

Proof. For brevity write f(x) = x3 — 3x? + 1.
Then

f(-1)=-3,f(0)=1,f(1)=-1,f3)=1
and f is continuous on each of the intervals [-1,0], [0, 1],

[1,3].
Hence there are &1, &5, &3 so that

—1<6 <0< <I<E<3

and

f(&) = (&) =f(&3) = 0.
Example 8.10 Prove that the curve y = x? intersect the
curve y = x3 — 2x? 4+ 1 in three places.

Proof. At a point of intersection x2=x3-2x2+1, so
that x3 —3x24+1=0.
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Example 8.9. Prove that the cubic equation
x3 —3x24+1 =0 has 3 real roots.

Proof. For brevity write f(x) = x3 — 3x? + 1.
Then

f(-1)=-3,f(0)=1,f(1)=-1,f3)=1
and f is continuous on each of the intervals [-1,0], [0, 1],

[1,3].
Hence there are &1, &5, &3 so that

—1<6 <0< <I<E<3

and

f(&) = f(&) = f(&) =0.
Example 8.10 Prove that the curve y = x? intersect the
curve y = x3 — 2x? 4+ 1 in three places.
Proof. At a point of intersection x> = x3 — 2x2 + 1, so
that x3 —3x2 +1=0.
Hence see previous example.
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Robere © e Example 8.11. Suppose that f is continuous on [0, 1] and
f(0) = f(1). Prove that thereis a £ € [0, 1] so that

F(§) = F(§+1/2).

The This says that there are always two diametrically opposite

Intermediate

Value points on the equator which have the same temperature.

Theorem
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e Example 8.11. Suppose that f is continuous on [0, 1] and
f(0) = f(1). Prove that thereis a £ € [0, 1] so that

F(§) = F(§+1/2).

This says that there are always two diametrically opposite
points on the equator which have the same temperature.

® Proof. Let g(x) = f(x) — f(x+1/2). Then g is
continuous on [0,1/2].
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e Example 8.11. Suppose that f is continuous on [0, 1] and
f(0) = f(1). Prove that thereis a £ € [0, 1] so that

F(§) = F(§+1/2).

This says that there are always two diametrically opposite
points on the equator which have the same temperature.
® Proof. Let g(x) = f(x) — f(x+1/2). Then g is
continuous on [0,1/2].
e If f(0) = f(1/2), then we are done.
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Example 8.11. Suppose that f is continuous on [0,1] and
f(0) = f(1). Prove that thereis a £ € [0, 1] so that

F(§) = F(§+1/2).

This says that there are always two diametrically opposite
points on the equator which have the same temperature.
Proof. Let g(x) = f(x) — f(x+1/2). Then g is
continuous on [0,1/2].

If £(0) = f(1/2), then we are done.

Suppose f(0) # f(1/2). Then g(0) = £(0) — f(1/2) and
g(1/2) = f(1/2) — f(1) = £(1/2) = £(0) =

—(f(0) — £(1/2)).
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Example 8.11. Suppose that f is continuous on [0,1] and
f(0) = f(1). Prove that thereis a £ € [0, 1] so that

F(§) = F(§+1/2).

This says that there are always two diametrically opposite
points on the equator which have the same temperature.
Proof. Let g(x) = f(x) — f(x+1/2). Then g is
continuous on [0,1/2].

If £(0) = f(1/2), then we are done.

Suppose f(0) # f(1/2). Then g(0) = £(0) — f(1/2) and
g(1/2) = £(1/2) — f(1) = £(1/2) - £(0) =

—(f(0) - £(1/2)).

Hence g changes sign on [0,1/2]. Thus, by the
Intermediate Value Theorem there is a £ € (0,1/2) such
that g(£) = 0 and we are done once more.
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® \We can now say something more about sin and cos

Theorem 9

The function cos changes sign on the interval [0,2]. We define
5 to be the smallest positive zero of cos. Then cos and sin are
periodic with period 27, sin(0) = sin(w) = 0, and

sinZ = 1,sin 3F = —1, cos(x) = sin (§ — x) .

N



Continuity

Robert C.
Vaughan

The
Intermediate
Value
Theorem

® \We can now say something more about sin and cos

Theorem 9

The function cos changes sign on the interval [0,2]. We define
5 to be the smallest positive zero of cos. Then cos and sin are
periodic with period 27, sin(0) = sin(w) = 0, and

—x).

sin 5 = 1,sin 32“ = —1, cos(x) = sin (

NTE

® Proof By the definition of cos, (6.10), cos(0) =1 and

22 24 e 24k—2 5
cos(2)_1—g—|— ;2@/‘—2)!0_@"(1)“)

<l1-2+4+2%2=-1
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® \We can now say something more about sin and cos

Theorem 9

The function cos changes sign on the interval [0,2]. We define
5 to be the smallest positive zero of cos. Then cos and sin are
periodic with period 27, sin(0) = sin(w) = 0, and

—x).

sin 5 = 1,sin 32“ = —1, cos(x) = sin (

NTE

® Proof By the definition of cos, (6.10), cos(0) =1 and

22 24 e 24k—2 5
cos(2)_1—§—|— ;@k—@!(l_(“k”‘”‘)

<l1-2+4+2%2=-1

® Hence, by the IVT, Theorem 7, there is an x € (0, 2) with
cos(x) = 0. Let winf{x : x > 0,cos(x) = 0}.
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® \We can now say something more about sin and cos

Theorem 9

The function cos changes sign on the interval [0,2]. We define
5 to be the smallest positive zero of cos. Then cos and sin are
periodic with period 27, sin(0) = sin(w) = 0, and

—x).

sin 5 = 1,sin 32“ = —1, cos(x) = sin (

NTE

® Proof By the definition of cos, (6.10), cos(0) =1 and

22 24 e 24k—2 5
cos(2)_1—§—|— ;@k—@!(l_(“k”‘”‘)

<l1-2+4+2%2=-1

® Hence, by the IVT, Theorem 7, there is an x € (0, 2) with
cos(x) = 0. Let winf{x : x > 0,cos(x) = 0}.
® By continuity, cos(zww) = 0 and, as cos(0) =1, @ > 0.
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® \We can now say something more about sin and cos

Theorem 9

The function cos changes sign on the interval [0,2]. We define
5 to be the smallest positive zero of cos. Then cos and sin are
periodic with period 27, sin(0) = sin(w) = 0, and

—x).

sin 5 = 1,sin 32“ = —1, cos(x) = sin (

NTE

Proof By the definition of cos, (6.10), cos(0) = 1 and

22 24 e 24k—2 5
cos(2)_1—§—|— ;@k—@!(l_(“k”‘”‘)

<l1-2+4+2%2=-1

Hence, by the IVT, Theorem 7, there is an x € (0,2) with
cos(x) = 0. Let winf{x : x > 0,cos(x) = 0}.
By continuity, cos(w) = 0 and, as cos(0) =1, w > 0.

Define 7 = 2w.
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The
Intermediate X4k+1 X4k+3
Value _
[heorem (4k +1)!  (4k +3)!

X4k+1 X2
T (4k+1)! (1 - (4k+2)(4k+3)) > 0.
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® For any non-negative integer k, when 0 < x < 2 we have

X4k+1 X4k+3

(4k + 1)1~ (4k + 3)!

X4k+1 X2
RCE (1 - (4k+2)(4k+3)) > 0.

® Hence, by the definition of sin, (6.9), we have sin(w) > 0.
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By the addition formulae Exercise 6.5.1, we have

sin(m

(
cos(m
cos(2m
sin(2m
sin(x + 27
cos(x + 2w
—1 = cos(w
sin(w
sin(w
cos(—x

sin(—x

)
)
)
)=
)=
)=

)=

)
)

)
)

2sin(w) cos(w) =0

2(cos(w))? — 1= —1,
1-—
2si

2(sin(7))? =1,
() cos(r) =0,
sin(x) cos(27) 4 cos(x) sin(27) = sin(x),
cos(x) cos(27) — sin(x) sin(27) = cos(x),
1 —2sin*(w),
L,
L

cos(x),

= —sin(x).



® Thus

sin(ww — x) = sin(w) cos(—x) + cos(w) sin(—x)
= cos(x),
sin(3w) = sin(w + )
= cos(—m)
= cos(7)
=-1

«O>» «Fr «Z» «E>» = Q>
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® Consider a real valued function defined on some domain
D e R, f: D+ R. Then the definition of continuity,
Definition 8.1 is a pointwise definition, even in the special
case of an interval, Definition 8.3.
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® Consider a real valued function defined on some domain

D e R, f: D+ R. Then the definition of continuity,
Definition 8.1 is a pointwise definition, even in the special
case of an interval, Definition 8.3.

This runs into the problem in applications that, given

£ €D and € > 0, the choice of § can depend on ¢ and &.
Example 8.12. Let f: (0,1) = R: f(x) — L.

Suppose 0 < e < &. Given § € (0,1) we need to find § > 0
so that when 0 < |x —&| < & we have |f(x) — f(§)| <e,

that is

1 1<
- — = 15
x &

or equivalently |€ — x| < ex¢ < e€(x — &) + €.
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® Consider a real valued function defined on some domain

D e R, f: D+ R. Then the definition of continuity,
Definition 8.1 is a pointwise definition, even in the special
case of an interval, Definition 8.3.

This runs into the problem in applications that, given

£ €D and € > 0, the choice of § can depend on ¢ and &.
Example 8.12. Let f: (0,1) = R: f(x) — L.

Suppose 0 < e < &. Given § € (0,1) we need to find § > 0
so that when 0 < |x —&| < & we have |f(x) — f(§)| <e,

that is

1 1
- —Zl<e

x &

or equivalently |€ — x| < ex¢ < e€(x — &) + €.

This has to hold for every x with { — 6 < x < £+ 6 and so
taking x arbitrarily close to x — d we must have

§ < —e&d+e€? and so 6 < &Y
- 14+ &€
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® Consider a real valued function defined on some domain

D e R, f: D+ R. Then the definition of continuity,
Definition 8.1 is a pointwise definition, even in the special
case of an interval, Definition 8.3.

This runs into the problem in applications that, given

£ €D and € > 0, the choice of § can depend on ¢ and &.
Example 8.12. Let f: (0,1) = R: f(x) — L.

Suppose 0 < e < &. Given § € (0,1) we need to find § > 0
so that when 0 < |x —&| < & we have |f(x) — f(§)| <e,

that is

1 1<
- —=|<e
x &

or equivalently |€ — x| < ex¢ < e€(x — &) + €.
This has to hold for every x with { — 6 < x < £+ 6 and so
taking x arbitrarily close to x — d we must have

§ < —e&d+e€? and so 6 < &Y
- 14+ &€

® Now & cannot be taken to be independent of &, for taking

& arbitrarily close to 0 would contradict § > 0.
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e ® \When we have a situation in which it is possible to find a
universal ¢ it is usual to associate the word uniform with it.
® Definition 8.4. Suppose that S CR and f : S — R has
the property that for every € > 0 there is a § > 0 such
that whenever x,y € S and |x — y| < 0 we have
Uniform ‘f(x) - f()’)’ <e
Continuity

then we say that f is uniformly continuous on S.
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® \When we have a situation in which it is possible to find a
universal ¢ it is usual to associate the word uniform with it.

® Definition 8.4. Suppose that S CR and f : S — R has
the property that for every € > 0 there is a § > 0 such
that whenever x,y € S and |x — y| < 0 we have

[F() =)l <e

then we say that f is uniformly continuous on S.

® An equivalent statement is that for every € > Q there is
0 > 0 such that

Uniform
Continuity

sup{|f(x) —f(y)| : x,y € Sand [x —y| <} <e.
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When we have a situation in which it is possible to find a
universal ¢ it is usual to associate the word uniform with it.
Definition 8.4. Suppose that S CR and f : S — R has
the property that for every € > 0 there is a § > 0 such
that whenever x,y € S and |x — y| < 0 we have

[F() =)l <e

then we say that f is uniformly continuous on S.
An equivalent statement is that for every ¢ > 0 there is
0 > 0 such that

sup{|f(x) —f(y)| : x,y € Sand [x —y| <} <e.

An equivalent statement is that for every € > 0 there is a
0 > 0 such that

sup{|f(x) — f(y)| : x,y € S and|x — y| < 6} <e.



® The following contrasts open and closed intervals.
Suppose that a < b, f : [a,b] — R and f is continuous on
[a, b]. Then f is uniformly continuous on [a, b].
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® The following contrasts open and closed intervals.

Theorem 10

Suppose that a < b, f : [a,b] — R and f is continuous on
[a, b]. Then f is uniformly continuous on [a, b].

Uniforen ® Proof. Suppose that f is not uniformly continuous on
Continuity [a, b]. Then there is an g > 0 so that for every n € N
there are x,, y, € [a, b] with 0 < |x, — yn| < 1 but
£ (xn) = fyn)| = c0.
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® The following contrasts open and closed intervals.

Theorem 10

Suppose that a < b, f : [a,b] — R and f is continuous on
[a, b]. Then f is uniformly continuous on [a, b].

Uniform ® Proof. Suppose that f is not uniformly continuous on
S [a, b]. Then there is an g9 > 0 so that for every n € N
there are x,, y, € [a, b] with 0 < |x, — yn| < 1 but
[ (xn) = F(yn)| = €0.
® (x,) is in [a, b] and so by B-W it has a convergent sub
sequence (Xm,). Then (ym,) has a convergent subsequence
(V) Moreover s, — Yo, | <~ = 0 as n = .

n
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® The following contrasts open and closed intervals.

Theorem 10

Suppose that a < b, f : [a,b] — R and f is continuous on
[a, b]. Then f is uniformly continuous on [a, b].

Uniform ® Proof. Suppose that f is not uniformly continuous on
S [a, b]. Then there is an g9 > 0 so that for every n € N
there are x,, y, € [a, b] with 0 < |x, — yn| < 1 but
[ (xn) = F(yn)| = €0.
® (x,) is in [a, b] and so by B-W it has a convergent sub
sequence (Xm,). Then (ym,) has a convergent subsequence
(V) Moreover s, — Yo, | <~ = 0 as n = .

® They have a common limit, ¢ € [a, b] so by the continuity
of f at £ and Theorem 8.3 0 = lim,_; |f(Xm, ) — f(ym, )l
> ¢ which gives the required contradiction.
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