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• Definition 7.1. A function f from a set A to a set B

f : A 7→ B : f (x) = y

is a rule which assigns to each x ∈ A a unique y ∈ B.

• The element y ∈ B is called the image of the element
x ∈ A and we write y = f (x).

• If we know a formula for f (x) we may alternatively write

x 7→ f (x).

• The set A is called the domain of f .
• For S ⊂ A we use the notation f (S) = {f (x); x ∈ S} and
we call f (S) the image of S under f .

• When S = A we call f (A) the image or range of f .
• The set B, which may have elements which are not in
f (A) is called the codomain of f . We can also think of
the function f as being the set of ordered pairs (x , y) in
which x and y are connected by the rule y = f (x).
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• When no element y of the codomain appears in more than
one ordered pair, then the function is called bijective,
which means that to each point in the image there is a
unique member of the domain, i.e. there is an inverse
function f −1(y) = x with the property that
f −1(f (x)) = x and f (f −1(y)) = y.

• Example 7.1. Let R be the domain and codomain of the
following function defined as the set of ordered pairs
(x , x2) with x ∈ R.

• Then each positive member y of the codomain occurs in
both (−√

y , y) and (
√
y , y), but no negative number

appears in the image.

• Of course this is the function f (x) = x2.
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• Example 7.2. The equation y2 = x with x ∈ R and
y ∈ R does not define a function from R to R because
given x > 0 there are two values of y for which this holds.

• However if we take A = {x : x ≥ 0}, B = {y : y ≥ 0},
then the equation y2 = x does define a function because
given x ∈ A there is only one corresponding y ∈ B.

• Of course this is the function f (x) =
√
x, where as usual

this denotes the non-negative square root.

• Definition 7.2. Suppose that the function f is defined on
a subset S of R and its codomain is R. Then we say that
f is bounded above by H when the image f (S) is
bounded above by H. Likewise we define bounded below
by h when the image is bounded below by h, and
bounded when it is both bounded above and below.
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• If f (S) is non-empty and bounded above, then by the
continuum property sup f (S) exists.

• Definition 7.3. When sup f (S) is non-empty and
bounded above, and there is a ξ ∈ S so that
f (ξ) = sup f (S), then we say that f has a maximum and
the maximum is attained at x = ξ.

• If there is no such ξ, then the maximum does not exist.

• Likewise when f (S) is bounded below we use the
corresponding term minimum for infima which are
attained.

• Example 7.3. The function f : (0, 1] 7→ R : f (x) = 1
x is

unbounded, but it is bounded below and inf f ((0, 1]) = 1,
so it has minimum 1 which is attained with x = 1.
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• An important class of functions are monotonic, which we
define analogously to that for monotonic sequences.

• Definition 7.4. 1. Suppose that A and B are subsets of
R and that f : A 7→ B. We say that f is increasing when
f (x1) ≤ f (x2) for every x1, x2 ∈ R with x1 ≤ x2, and it is
decreasing when f (x1) ≥ f (x2) for every such x1, x2.

• 2. When f (x1) < f (x2) for every pair x1, x2 with x1 < x2
we call it strictly increasing, and on the other hand when
f (x1) > f (x2) for every pair x1, x2 with x1 < x2 we call it
strictly decreasing.

• 3. Such functions are called monotonic in case 1. and
strictly monotonic in case 2.

• 4. With reference to the last paragraph of Definition 7.1.
it follows that every strictly monotonic function has an
inverse from its image.
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• Example 7.4. The function exp(x) defined by (6.9) is
strictly increasing.

• To see this note that when x1 < x2 we have

exp(x2) = exp(x1) exp(x2 − x1)

and

exp(x2 − x1) =
∞∑
n=0

(x2 − x1)
n

n!
> 1,

and moreover by Theorem 6.13 (iv) we have exp(x1) > 0.

• In view of 4. above it follows that exp has an inverse
function.
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• Definition 7.5. We define the function log(x), sometimes
written ln(x), to be the inverse function of exp(x).

• The domain of exp is R and we will show in Corollary 8.8
that its image is R+ = {x : x ∈ R and x > 0}, the set of
positive real numbers.

• Hence log(x) has domain R+ and image R. It also satisfies

log
(
exp(x)

)
= x and exp

(
log(y)

)
= y

for x ∈ R and y ∈ R+.

• Given u, v in the domain of log there will be x , y ∈ R so
that x = log u, y = log v and so u = exp(x), v = exp(y).
Thus uv = exp(x) exp(y) = exp(x + y) and

log(uv) = x + y = log(u) + log(v).

We can now use this to define, whenever a > 0,

ax : R 7→ R+ : x 7→ exp
(
x log(a)

)
.
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written ln(x), to be the inverse function of exp(x).

• The domain of exp is R and we will show in Corollary 8.8
that its image is R+ = {x : x ∈ R and x > 0}, the set of
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• For functions of a real variable, when we consider limits we
are fundamentally looking at a real variable getting closer
and closer to some real number ξ, rather than in the case
of sequences where the variable n is getting larger and
larger.

• Moreover when we consider x getting closer and closer to
ξ we need to be impartial as to the sign of x − ξ, that is
we want to look at both x < ξ and x > ξ.

• We also want to avoid making any assumptions about the
behaviour of f at ξ

• Thus in the first instance given a ξ we will restrict our
attention to functions whose domain contains the two
open intervals (a, ξ) and (ξ, b) where a < ξ < b.
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• Definition 7.6. Limit of a function. Suppose that
a < ξ < b, A ⊂ R and B ⊂ R, f : A 7→ B and
(a, ξ) ∪ (ξ, b) ∈ A.

• Then
lim
x→ξ

f (x) = ℓ,

or equivalently
f (x) → ℓ as x → ξ,

means that there is an ℓ ∈ R such that for every ε > 0
there is a δ > 0 so that whenever x ∈ A and

0 < |x − ξ| < δ

we have
|f (x)− ℓ| < ε.
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• Restatement: there is an ℓ ∈ R such that for every ε > 0
there is a δ > 0 so that whenever x ∈ A and

0 < |x − ξ| < δ

we have
|f (x)− ℓ| < ε.

• See how the definition has a similar structure to the
definition of limits for sequences.

• There is an ε in both which plays the rôle of measuring
how close we are to the limit, and instead of N we have a
δ which plays a similar rôle to N.

• We should expect that, just as for N, when we come to
find a suitable δ it depends on ε.

• We should also note the condition 0 < |x − ξ|. We want
to include the possibility that the limit ℓ differs from f (ξ)
if the latter should exist.
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• Example 7.5. Suppose that f : (0, 1) 7→ R is defined by

f (x) =

{
0 x ̸= 1

2 ,

1 x = 1
2 .

• Then we have

lim
x→ 1

2

f (x) = 0 ̸= f (1/2).

• To see this take δ = 1
2 in the definition.

• Then for 0 < |x − 1
2 | < δ, so that 0 < x < 1

2 or 1
2 < x < 1

we have
|f (x)− 0| = |0− 0| = 0 < ε.
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• Here is a more typical example.
Example 7.6. Let f : R 7→ R : f (x) = x2 and ξ ∈ R.
Then lim

x→ξ
f (x) = ξ2.

• Proof. We guess that ℓ = ξ2. Let ε > 0. Choose

δ = min

{
1,

ε

1 + 2|ξ|

}
.

• Then whenever 0 < |x − ξ| < δ, by the triangle inequality,

|f (x)− ξ2| = |x2 − ξ2|
= |x − ξ||x + ξ|
= |x − ξ||(x − ξ) + 2ξ|
≤ |x − ξ|(|x − ξ|+ 2|ξ|)
< δ(δ + 2|ξ|)

≤ ε

1 + 2|ξ|
(1 + 2|ξ|)

= ε.

• See how δ has to depend on ξ as well as ε.
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• Here is an example where the limit does not exist.
Example 7.7. Let f : (0, 2) 7→ R be defined by

f (x) =

{
0 (0 ≤ x ≤ 1),

1 (1 < x < 2).

Then limx→1 f (x) does not exist.

• Proof. We argue by contradiction. Suppose the limit
exists and equals ℓ.

• Choose ε = 1
3 and δ > 0 so that whenever |x − 1| < δ we

have |f (x)− ℓ| < ε = 1
3 .

• When 1− δ < x1 < 1 we have f (x1) = 0 and when
1 < x2 < 1 + δ we have f (x2) = 1.

• Hence, by the triangle inequality

1 = |f (x2)− f (x1)| = |(f (x2)− ℓ)− (f (x1)− ℓ)|
≤ |f (x2)− ℓ|+ |f (x2)− ℓ|

<
1

3
+

1

3
=

2

3
.
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• Example 7.8. Let f : R 7→ R : x 7→ x3 + x. Prove that
limx→2 f (x) = 10.

• Proof. Let ε > 0. Choose δ = min
{
1, ε

20

}
. Then

whenever |x − 2| < δ we have

|f (x)− 10| = |x3 + x − 10|
= |(x − 2)(x2 + 2x + 5)|
= |x − 2||(x − 2)2 + 6(x − 2) + 13|
≤ |x − 2|(|x − 2|2 + 6|x − 2|+ 13)

< δ(δ2 + 6δ + 13)

≤ ε

20
(12 + 6 + 13)

= ε.
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• As with sequences we will need to combine limits. The
proofs of the next two theorems follow in the same way as
those for sequences and are left as exercises.

Theorem 1 (Combination Theorem for Functions)

Suppose a < ξ < b, f , g : (a, ξ) ∪ (ξ, b) 7→ R, f (x) → ℓ and
g(x) → m as x → ξ, and λ, µ ∈ R. Then
(i) λf (x) + µg(x) → λℓ+ µm as x → ξ,
(ii) f (x)g(x) → ℓm as x → ξ,

(iii) and when m ̸= 0 we have
f (x)

g(x)
→ ℓ

m
as x → ξ.

Theorem 2 (Sandwich Theorem for Functions)

Suppose that a < ξ < b, f , g , h : (a, ξ) ∪ (ξ, b) 7→ R,

g(x) ≤ f (x) ≤ h(x) when x ∈ (a, ξ) ∪ (ξ, b),

g(x) → ℓ and h(x) → ℓ as x → ξ. Then f (x) → ℓ as x → ξ.
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• It can happen that sometimes we want to restrict our
attention to one of the cases x < ξ or x > ξ.

• Typically this happens when a function is only defined on
a closed interval [a, b] and we want to understand the
limiting behaviour at a and b.

• It can also happen with examples like f : [0, 2] 7→ R

f (x) =


0 (0 ≤ x < 1),

1 (x = 1),

2 (1 < x ≤ 2)

when ξ = 1.

• Thus we introduce a variant of our definition of limit.
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One Sided Limits

• Definition 7.7. Limit from above and below. Suppose
that A ⊂ R and B ⊂ R, f : A 7→ B, a < ξ and (a, ξ) ∈ A.
Then limx→ξ− f (x) = ℓ means that there is an ℓ ∈ R such
that for every ε > 0 there is a δ > 0 so that whenever
x ∈ A and ξ − δ < x < ξ we have |f (x)− ℓ| < ε and we
call ℓ the limit from below.

• There is a corresponding definition for limit from above.
Suppose that A ⊂ R and B ⊂ R, f : A 7→ B, ξ < b and
(ξ, b) ∈ A. Then limx→ξ+ f (x) = ℓ means that there is an
ℓ ∈ R such that for every ε > 0 there is a δ > 0 so that
whenever x ∈ A and ξ < x < ξ + δ we have |f (x)− ℓ| < ε
and we call ℓ the limit from above.
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• There is a corresponding definition for limit from above.
Suppose that A ⊂ R and B ⊂ R, f : A 7→ B, ξ < b and
(ξ, b) ∈ A. Then limx→ξ+ f (x) = ℓ means that there is an
ℓ ∈ R such that for every ε > 0 there is a δ > 0 so that
whenever x ∈ A and ξ < x < ξ + δ we have |f (x)− ℓ| < ε
and we call ℓ the limit from above.
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• Example 7.9. Suppose that f : [0,∞) 7→ R : f (x) =
√
x.

Then limx→0+ f (x) = 0.

• Proof. Let ε > 0. Choose δ = ε2. Then, whenever
0 < x < δ we have

|f (x)− 0| =
√
x <

√
δ = ε.

Note that limx→0 f (x) and limx→0− f (x) do not exist.

• As might be expected, if the limits from below and above
exist and agree, then the limit does exist.

Theorem 3

Suppose a < ξ < b and f : (a, b) 7→ R. Then limx→ξ f (x)
exists and converges to ℓ if and only if both the limits

lim
x→ξ−

f (x), lim
x→ξ+

f (x)

exist and converge to ℓ.

• The proof is immediate on comparing the definitions.
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