Limits of Functions

Robert C. Vaughan

April 2, 2024

- Definition 7.1. A function f from a set \mathcal{A} to a set \mathcal{B}

$$
f: \mathcal{A} \mapsto \mathcal{B}: f(x)=y
$$

is a rule which assigns to each $x \in \mathcal{A}$ a unique $y \in \mathcal{B}$.

Functions

- Definition 7.1. A function f from a set \mathcal{A} to a set \mathcal{B}

$$
f: \mathcal{A} \mapsto \mathcal{B}: f(x)=y
$$

is a rule which assigns to each $x \in \mathcal{A}$ a unique $y \in \mathcal{B}$.

- The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write $y=f(x)$.

Functions

- Definition 7.1. A function f from a set \mathcal{A} to a set \mathcal{B}

$$
f: \mathcal{A} \mapsto \mathcal{B}: f(x)=y
$$

is a rule which assigns to each $x \in \mathcal{A}$ a unique $y \in \mathcal{B}$.

- The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write $y=f(x)$.
- If we know a formula for $f(x)$ we may alternatively write

$$
x \mapsto f(x)
$$

Functions

- Definition 7.1. A function f from a set \mathcal{A} to a set \mathcal{B}

$$
f: \mathcal{A} \mapsto \mathcal{B}: f(x)=y
$$

is a rule which assigns to each $x \in \mathcal{A}$ a unique $y \in \mathcal{B}$.

- The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write $y=f(x)$.
- If we know a formula for $f(x)$ we may alternatively write

$$
x \mapsto f(x)
$$

- The set \mathcal{A} is called the domain of f.

Functions

- Definition 7.1. A function f from a set \mathcal{A} to a set \mathcal{B}

$$
f: \mathcal{A} \mapsto \mathcal{B}: f(x)=y
$$

is a rule which assigns to each $x \in \mathcal{A}$ a unique $y \in \mathcal{B}$.

- The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write $y=f(x)$.
- If we know a formula for $f(x)$ we may alternatively write

$$
x \mapsto f(x)
$$

- The set \mathcal{A} is called the domain of f.
- For $\mathcal{S} \subset \mathcal{A}$ we use the notation $f(\mathcal{S})=\{f(x) ; x \in \mathcal{S}\}$ and we call $f(\mathcal{S})$ the image of \mathcal{S} under f.

Functions

- Definition 7.1. A function f from a set \mathcal{A} to a set \mathcal{B}

$$
f: \mathcal{A} \mapsto \mathcal{B}: f(x)=y
$$

is a rule which assigns to each $x \in \mathcal{A}$ a unique $y \in \mathcal{B}$.

- The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write $y=f(x)$.
- If we know a formula for $f(x)$ we may alternatively write

$$
x \mapsto f(x)
$$

- The set \mathcal{A} is called the domain of f.
- For $\mathcal{S} \subset \mathcal{A}$ we use the notation $f(\mathcal{S})=\{f(x) ; x \in \mathcal{S}\}$ and we call $f(\mathcal{S})$ the image of \mathcal{S} under f.
- When $\mathcal{S}=\mathcal{A}$ we call $f(\mathcal{A})$ the image or range of f.

Functions

- Definition 7.1. A function f from a set \mathcal{A} to a set \mathcal{B}

$$
f: \mathcal{A} \mapsto \mathcal{B}: f(x)=y
$$

is a rule which assigns to each $x \in \mathcal{A}$ a unique $y \in \mathcal{B}$.

- The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write $y=f(x)$.
- If we know a formula for $f(x)$ we may alternatively write

$$
x \mapsto f(x)
$$

- The set \mathcal{A} is called the domain of f.
- For $\mathcal{S} \subset \mathcal{A}$ we use the notation $f(\mathcal{S})=\{f(x) ; x \in \mathcal{S}\}$ and we call $f(\mathcal{S})$ the image of \mathcal{S} under f.
- When $\mathcal{S}=\mathcal{A}$ we call $f(\mathcal{A})$ the image or range of f.
- The set \mathcal{B}, which may have elements which are not in $f(\mathcal{A})$ is called the codomain of f. We can also think of the function f as being the set of ordered pairs (x, y) in which x and y are connected by the rule $y=f(x)$.
- When no element y of the codomain appears in more than one ordered pair, then the function is called bijective, which means that to each point in the image there is a unique member of the domain, i.e. there is an inverse function $f^{-1}(y)=x$ with the property that $f^{-1}(f(x))=x$ and $f\left(f^{-1}(y)\right)=y$.
- When no element y of the codomain appears in more than one ordered pair, then the function is called bijective, which means that to each point in the image there is a unique member of the domain, i.e. there is an inverse function $f^{-1}(y)=x$ with the property that $f^{-1}(f(x))=x$ and $f\left(f^{-1}(y)\right)=y$.
- Example 7.1. Let \mathbb{R} be the domain and codomain of the following function defined as the set of ordered pairs $\left(x, x^{2}\right)$ with $x \in \mathbb{R}$.
- When no element y of the codomain appears in more than one ordered pair, then the function is called bijective, which means that to each point in the image there is a unique member of the domain, i.e. there is an inverse function $f^{-1}(y)=x$ with the property that $f^{-1}(f(x))=x$ and $f\left(f^{-1}(y)\right)=y$.
- Example 7.1. Let \mathbb{R} be the domain and codomain of the following function defined as the set of ordered pairs $\left(x, x^{2}\right)$ with $x \in \mathbb{R}$.
- Then each positive member y of the codomain occurs in both $(-\sqrt{y}, y)$ and (\sqrt{y}, y), but no negative number appears in the image.
- When no element y of the codomain appears in more than one ordered pair, then the function is called bijective, which means that to each point in the image there is a unique member of the domain, i.e. there is an inverse function $f^{-1}(y)=x$ with the property that $f^{-1}(f(x))=x$ and $f\left(f^{-1}(y)\right)=y$.
- Example 7.1. Let \mathbb{R} be the domain and codomain of the following function defined as the set of ordered pairs $\left(x, x^{2}\right)$ with $x \in \mathbb{R}$.
- Then each positive member y of the codomain occurs in both $(-\sqrt{y}, y)$ and (\sqrt{y}, y), but no negative number appears in the image.
- Of course this is the function $f(x)=x^{2}$.

Limits of Functions

- Example 7.2. The equation $y^{2}=x$ with $x \in \mathbb{R}$ and $y \in \mathbb{R}$ does not define a function from \mathbb{R} to \mathbb{R} because given $x>0$ there are two values of y for which this holds.
- Example 7.2. The equation $y^{2}=x$ with $x \in \mathbb{R}$ and $y \in \mathbb{R}$ does not define a function from \mathbb{R} to \mathbb{R} because given $x>0$ there are two values of y for which this holds.
- However if we take $\mathcal{A}=\{x: x \geq 0\}, \mathcal{B}=\{y: y \geq 0\}$, then the equation $y^{2}=x$ does define a function because given $x \in \mathcal{A}$ there is only one corresponding $y \in \mathcal{B}$.
- Example 7.2. The equation $y^{2}=x$ with $x \in \mathbb{R}$ and $y \in \mathbb{R}$ does not define a function from \mathbb{R} to \mathbb{R} because given $x>0$ there are two values of y for which this holds.
- However if we take $\mathcal{A}=\{x: x \geq 0\}, \mathcal{B}=\{y: y \geq 0\}$, then the equation $y^{2}=x$ does define a function because given $x \in \mathcal{A}$ there is only one corresponding $y \in \mathcal{B}$.
- Of course this is the function $f(x)=\sqrt{x}$, where as usual this denotes the non-negative square root.
- Example 7.2. The equation $y^{2}=x$ with $x \in \mathbb{R}$ and $y \in \mathbb{R}$ does not define a function from \mathbb{R} to \mathbb{R} because given $x>0$ there are two values of y for which this holds.
- However if we take $\mathcal{A}=\{x: x \geq 0\}, \mathcal{B}=\{y: y \geq 0\}$, then the equation $y^{2}=x$ does define a function because given $x \in \mathcal{A}$ there is only one corresponding $y \in \mathcal{B}$.
- Of course this is the function $f(x)=\sqrt{x}$, where as usual this denotes the non-negative square root.
- Definition 7.2. Suppose that the function f is defined on a subset \mathcal{S} of \mathbb{R} and its codomain is \mathbb{R}. Then we say that f is bounded above by H when the image $f(\mathcal{S})$ is bounded above by H. Likewise we define bounded below by h when the image is bounded below by h, and bounded when it is both bounded above and below.

Limits of Functions

Robert C. Vaughan

- If $f(\mathcal{S})$ is non-empty and bounded above, then by the continuum property $\sup f(\mathcal{S})$ exists.
- If $f(\mathcal{S})$ is non-empty and bounded above, then by the continuum property $\sup f(\mathcal{S})$ exists.
- Definition 7.3. When $\sup f(\mathcal{S})$ is non-empty and bounded above, and there is a $\xi \in \mathcal{S}$ so that $f(\xi)=\sup f(\mathcal{S})$, then we say that f has a maximum and the maximum is attained at $x=\xi$.
- If $f(\mathcal{S})$ is non-empty and bounded above, then by the continuum property $\sup f(\mathcal{S})$ exists.
- Definition 7.3. When $\sup f(\mathcal{S})$ is non-empty and bounded above, and there is a $\xi \in \mathcal{S}$ so that $f(\xi)=\sup f(\mathcal{S})$, then we say that f has a maximum and the maximum is attained at $x=\xi$.
- If there is no such ξ, then the maximum does not exist.
- If $f(\mathcal{S})$ is non-empty and bounded above, then by the continuum property $\sup f(\mathcal{S})$ exists.
- Definition 7.3. When $\sup f(\mathcal{S})$ is non-empty and bounded above, and there is a $\xi \in \mathcal{S}$ so that $f(\xi)=\sup f(\mathcal{S})$, then we say that f has a maximum and the maximum is attained at $x=\xi$.
- If there is no such ξ, then the maximum does not exist.
- Likewise when $f(\mathcal{S})$ is bounded below we use the corresponding term minimum for infima which are attained.
- If $f(\mathcal{S})$ is non-empty and bounded above, then by the continuum property $\sup f(\mathcal{S})$ exists.
- Definition 7.3. When $\sup f(\mathcal{S})$ is non-empty and bounded above, and there is a $\xi \in \mathcal{S}$ so that $f(\xi)=\sup f(\mathcal{S})$, then we say that f has a maximum and the maximum is attained at $x=\xi$.
- If there is no such ξ, then the maximum does not exist.
- Likewise when $f(\mathcal{S})$ is bounded below we use the corresponding term minimum for infima which are attained.
- Example 7.3. The function $f:(0,1] \mapsto \mathbb{R}: f(x)=\frac{1}{x}$ is unbounded, but it is bounded below and $\inf f((0,1])=1$, so it has minimum 1 which is attained with $x=1$.

Limits of Functions

Robert C. Vaughan

- An important class of functions are monotonic, which we define analogously to that for monotonic sequences.
- An important class of functions are monotonic, which we define analogously to that for monotonic sequences.
- Definition 7.4. 1. Suppose that \mathcal{A} and \mathcal{B} are subsets of \mathbb{R} and that $f: \mathcal{A} \mapsto \mathcal{B}$. We say that f is increasing when $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ for every $x_{1}, x_{2} \in \mathbb{R}$ with $x_{1} \leq x_{2}$, and it is decreasing when $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ for every such x_{1}, x_{2}.
- An important class of functions are monotonic, which we define analogously to that for monotonic sequences.
- Definition 7.4. 1. Suppose that \mathcal{A} and \mathcal{B} are subsets of \mathbb{R} and that $f: \mathcal{A} \mapsto \mathcal{B}$. We say that f is increasing when $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ for every $x_{1}, x_{2} \in \mathbb{R}$ with $x_{1} \leq x_{2}$, and it is decreasing when $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ for every such x_{1}, x_{2}.
- 2. When $f\left(x_{1}\right)<f\left(x_{2}\right)$ for every pair x_{1}, x_{2} with $x_{1}<x_{2}$ we call it strictly increasing, and on the other hand when $f\left(x_{1}\right)>f\left(x_{2}\right)$ for every pair x_{1}, x_{2} with $x_{1}<x_{2}$ we call it strictly decreasing.
- An important class of functions are monotonic, which we define analogously to that for monotonic sequences.
- Definition 7.4. 1. Suppose that \mathcal{A} and \mathcal{B} are subsets of \mathbb{R} and that $f: \mathcal{A} \mapsto \mathcal{B}$. We say that f is increasing when $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ for every $x_{1}, x_{2} \in \mathbb{R}$ with $x_{1} \leq x_{2}$, and it is decreasing when $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ for every such x_{1}, x_{2}.
- 2. When $f\left(x_{1}\right)<f\left(x_{2}\right)$ for every pair x_{1}, x_{2} with $x_{1}<x_{2}$ we call it strictly increasing, and on the other hand when $f\left(x_{1}\right)>f\left(x_{2}\right)$ for every pair x_{1}, x_{2} with $x_{1}<x_{2}$ we call it strictly decreasing.
- 3. Such functions are called monotonic in case 1. and strictly monotonic in case 2 .
- An important class of functions are monotonic, which we define analogously to that for monotonic sequences.
- Definition 7.4. 1. Suppose that \mathcal{A} and \mathcal{B} are subsets of \mathbb{R} and that $f: \mathcal{A} \mapsto \mathcal{B}$. We say that f is increasing when $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ for every $x_{1}, x_{2} \in \mathbb{R}$ with $x_{1} \leq x_{2}$, and it is decreasing when $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ for every such x_{1}, x_{2}.
- 2. When $f\left(x_{1}\right)<f\left(x_{2}\right)$ for every pair x_{1}, x_{2} with $x_{1}<x_{2}$ we call it strictly increasing, and on the other hand when $f\left(x_{1}\right)>f\left(x_{2}\right)$ for every pair x_{1}, x_{2} with $x_{1}<x_{2}$ we call it strictly decreasing.
- 3. Such functions are called monotonic in case 1. and strictly monotonic in case 2.
- 4. With reference to the last paragraph of Definition 7.1. it follows that every strictly monotonic function has an inverse from its image.

Limits of Functions

- Example 7.4. The function $\exp (x)$ defined by (6.9) is strictly increasing.
- Example 7.4. The function $\exp (x)$ defined by (6.9) is strictly increasing.
- To see this note that when $x_{1}<x_{2}$ we have

$$
\exp \left(x_{2}\right)=\exp \left(x_{1}\right) \exp \left(x_{2}-x_{1}\right)
$$

and

$$
\exp \left(x_{2}-x_{1}\right)=\sum_{n=0}^{\infty} \frac{\left(x_{2}-x_{1}\right)^{n}}{n!}>1
$$

and moreover by Theorem 6.13 (iv) we have $\exp \left(x_{1}\right)>0$.

- Example 7.4. The function $\exp (x)$ defined by (6.9) is strictly increasing.
- To see this note that when $x_{1}<x_{2}$ we have

$$
\exp \left(x_{2}\right)=\exp \left(x_{1}\right) \exp \left(x_{2}-x_{1}\right)
$$

and

$$
\exp \left(x_{2}-x_{1}\right)=\sum_{n=0}^{\infty} \frac{\left(x_{2}-x_{1}\right)^{n}}{n!}>1
$$

and moreover by Theorem 6.13 (iv) we have $\exp \left(x_{1}\right)>0$.

- In view of 4. above it follows that exp has an inverse function.

Limits of Functions

Robert C. Vaughan

- Definition 7.5. We define the function $\log (x)$, sometimes written $\ln (x)$, to be the inverse function of $\exp (x)$.

Limits of Functions

- Definition 7.5. We define the function $\log (x)$, sometimes written $\ln (x)$, to be the inverse function of $\exp (x)$.
- The domain of \exp is \mathbb{R} and we will show in Corollary 8.8 that its image is $\mathbb{R}^{+}=\{x: x \in \mathbb{R}$ and $x>0\}$, the set of positive real numbers.
- Definition 7.5. We define the function $\log (x)$, sometimes written $\ln (x)$, to be the inverse function of $\exp (x)$.
- The domain of \exp is \mathbb{R} and we will show in Corollary 8.8 that its image is $\mathbb{R}^{+}=\{x: x \in \mathbb{R}$ and $x>0\}$, the set of positive real numbers.
- Hence $\log (x)$ has domain \mathbb{R}^{+}and image \mathbb{R}. It also satisfies

$$
\log (\exp (x))=x \text { and } \exp (\log (y))=y
$$

for $x \in \mathbb{R}$ and $y \in \mathbb{R}^{+}$.

- Definition 7.5. We define the function $\log (x)$, sometimes written $\ln (x)$, to be the inverse function of $\exp (x)$.
- The domain of \exp is \mathbb{R} and we will show in Corollary 8.8 that its image is $\mathbb{R}^{+}=\{x: x \in \mathbb{R}$ and $x>0\}$, the set of positive real numbers.
- Hence $\log (x)$ has domain \mathbb{R}^{+}and image \mathbb{R}. It also satisfies

$$
\log (\exp (x))=x \text { and } \exp (\log (y))=y
$$

for $x \in \mathbb{R}$ and $y \in \mathbb{R}^{+}$.

- Given u, v in the domain of \log there will be $x, y \in \mathbb{R}$ so that $x=\log u, y=\log v$ and so $u=\exp (x), v=\exp (y)$. Thus $u v=\exp (x) \exp (y)=\exp (x+y)$ and

$$
\log (u v)=x+y=\log (u)+\log (v)
$$

We can now use this to define, whenever $a>0$,

$$
a^{x}: \mathbb{R} \mapsto \mathbb{R}^{+}: x \mapsto \exp (x \log (a))
$$

Limits

- For functions of a real variable, when we consider limits we are fundamentally looking at a real variable getting closer and closer to some real number ξ, rather than in the case of sequences where the variable n is getting larger and larger.

Limits

- For functions of a real variable, when we consider limits we are fundamentally looking at a real variable getting closer and closer to some real number ξ, rather than in the case of sequences where the variable n is getting larger and larger.
- Moreover when we consider x getting closer and closer to ξ we need to be impartial as to the sign of $x-\xi$, that is we want to look at both $x<\xi$ and $x>\xi$.

Limits

- For functions of a real variable, when we consider limits we are fundamentally looking at a real variable getting closer and closer to some real number ξ, rather than in the case of sequences where the variable n is getting larger and larger.
- Moreover when we consider x getting closer and closer to ξ we need to be impartial as to the sign of $x-\xi$, that is we want to look at both $x<\xi$ and $x>\xi$.
- We also want to avoid making any assumptions about the behaviour of f at ξ
- For functions of a real variable, when we consider limits we are fundamentally looking at a real variable getting closer and closer to some real number ξ, rather than in the case of sequences where the variable n is getting larger and larger.
- Moreover when we consider x getting closer and closer to ξ we need to be impartial as to the sign of $x-\xi$, that is we want to look at both $x<\xi$ and $x>\xi$.
- We also want to avoid making any assumptions about the behaviour of f at ξ
- Thus in the first instance given a ξ we will restrict our attention to functions whose domain contains the two open intervals (a, ξ) and (ξ, b) where $a<\xi<b$.
- Definition 7.6. Limit of a function. Suppose that $a<\xi<b, \mathcal{A} \subset \mathbb{R}$ and $\mathcal{B} \subset \mathbb{R}, f: \mathcal{A} \mapsto \mathcal{B}$ and $(a, \xi) \cup(\xi, b) \in \mathcal{A}$.
- Definition 7.6. Limit of a function. Suppose that $a<\xi<b, \mathcal{A} \subset \mathbb{R}$ and $\mathcal{B} \subset \mathbb{R}, f: \mathcal{A} \mapsto \mathcal{B}$ and $(a, \xi) \cup(\xi, b) \in \mathcal{A}$.
- Then

$$
\lim _{x \rightarrow \xi} f(x)=\ell
$$

or equivalently

$$
f(x) \rightarrow \ell \text { as } x \rightarrow \xi
$$

means that there is an $\ell \in \mathbb{R}$ such that for every $\varepsilon>0$ there is a $\delta>0$ so that whenever $x \in \mathcal{A}$ and

$$
0<|x-\xi|<\delta
$$

we have

$$
|f(x)-\ell|<\varepsilon .
$$

Limits of Functions

Robert C. Vaughan

- Restatement: there is an $\ell \in \mathbb{R}$ such that for every $\varepsilon>0$ there is a $\delta>0$ so that whenever $x \in \mathcal{A}$ and

$$
0<|x-\xi|<\delta
$$

we have

$$
|f(x)-\ell|<\varepsilon .
$$

Limits of Functions

- Restatement: there is an $\ell \in \mathbb{R}$ such that for every $\varepsilon>0$ there is a $\delta>0$ so that whenever $x \in \mathcal{A}$ and

$$
0<|x-\xi|<\delta
$$

we have

$$
|f(x)-\ell|<\varepsilon
$$

- See how the definition has a similar structure to the definition of limits for sequences.
- Restatement: there is an $\ell \in \mathbb{R}$ such that for every $\varepsilon>0$ there is a $\delta>0$ so that whenever $x \in \mathcal{A}$ and

$$
0<|x-\xi|<\delta
$$

we have

$$
|f(x)-\ell|<\varepsilon
$$

- See how the definition has a similar structure to the definition of limits for sequences.
- There is an ε in both which plays the rôle of measuring how close we are to the limit, and instead of N we have a δ which plays a similar rôle to N.
- Restatement: there is an $\ell \in \mathbb{R}$ such that for every $\varepsilon>0$ there is a $\delta>0$ so that whenever $x \in \mathcal{A}$ and

$$
0<|x-\xi|<\delta
$$

we have

$$
|f(x)-\ell|<\varepsilon
$$

- See how the definition has a similar structure to the definition of limits for sequences.
- There is an ε in both which plays the rôle of measuring how close we are to the limit, and instead of N we have a δ which plays a similar rôle to N.
- We should expect that, just as for N, when we come to find a suitable δ it depends on ε.
- Restatement: there is an $\ell \in \mathbb{R}$ such that for every $\varepsilon>0$ there is a $\delta>0$ so that whenever $x \in \mathcal{A}$ and

$$
0<|x-\xi|<\delta
$$

we have

$$
|f(x)-\ell|<\varepsilon
$$

- See how the definition has a similar structure to the definition of limits for sequences.
- There is an ε in both which plays the rôle of measuring how close we are to the limit, and instead of N we have a δ which plays a similar rôle to N.
- We should expect that, just as for N, when we come to find a suitable δ it depends on ε.
- We should also note the condition $0<|x-\xi|$. We want to include the possibility that the limit ℓ differs from $f(\xi)$ if the latter should exist.
- Example 7.5. Suppose that $f:(0,1) \mapsto \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}0 & x \neq \frac{1}{2} \\ 1 & x=\frac{1}{2}\end{cases}
$$

Limits of Functions

- Example 7.5. Suppose that $f:(0,1) \mapsto \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}0 & x \neq \frac{1}{2} \\ 1 & x=\frac{1}{2}\end{cases}
$$

- Then we have

$$
\lim _{x \rightarrow \frac{1}{2}} f(x)=0 \neq f(1 / 2)
$$

Limits of Functions

- Example 7.5. Suppose that $f:(0,1) \mapsto \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}0 & x \neq \frac{1}{2} \\ 1 & x=\frac{1}{2}\end{cases}
$$

- Then we have

$$
\lim _{x \rightarrow \frac{1}{2}} f(x)=0 \neq f(1 / 2)
$$

- To see this take $\delta=\frac{1}{2}$ in the definition.
- Example 7.5. Suppose that $f:(0,1) \mapsto \mathbb{R}$ is defined by

$$
f(x)= \begin{cases}0 & x \neq \frac{1}{2} \\ 1 & x=\frac{1}{2}\end{cases}
$$

- Then we have

$$
\lim _{x \rightarrow \frac{1}{2}} f(x)=0 \neq f(1 / 2)
$$

- To see this take $\delta=\frac{1}{2}$ in the definition.
- Then for $0<\left|x-\frac{1}{2}\right|<\delta$, so that $0<x<\frac{1}{2}$ or $\frac{1}{2}<x<1$ we have

$$
|f(x)-0|=|0-0|=0<\varepsilon
$$

Limits of Functions

Robert C . Vaughan

- Here is a more typical example.

Example 7.6. Let $f: \mathbb{R} \mapsto \mathbb{R}: f(x)=x^{2}$ and $\xi \in \mathbb{R}$. Then $\lim _{x \rightarrow \xi} f(x)=\xi^{2}$.

Limits of Functions

Robert C. Vaughan

- Here is a more typical example.

Example 7.6. Let $f: \mathbb{R} \mapsto \mathbb{R}: f(x)=x^{2}$ and $\xi \in \mathbb{R}$. Then $\lim _{x \rightarrow \xi} f(x)=\xi^{2}$.

- Proof. We guess that $\ell=\xi^{2}$. Let $\varepsilon>0$. Choose

$$
\delta=\min \left\{1, \frac{\varepsilon}{1+2|\xi|}\right\} .
$$

Limits of Functions

- Here is a more typical example.

Example 7.6. Let $f: \mathbb{R} \mapsto \mathbb{R}: f(x)=x^{2}$ and $\xi \in \mathbb{R}$. Then $\lim _{x \rightarrow \xi} f(x)=\xi^{2}$.

- Proof. We guess that $\ell=\xi^{2}$. Let $\varepsilon>0$. Choose

$$
\delta=\min \left\{1, \frac{\varepsilon}{1+2|\xi|}\right\}
$$

- Then whenever $0<|x-\xi|<\delta$, by the triangle inequality,

$$
\begin{aligned}
\left|f(x)-\xi^{2}\right| & =\left|x^{2}-\xi^{2}\right| \\
& =|x-\xi||x+\xi| \\
& =|x-\xi||(x-\xi)+2 \xi| \\
& \leq|x-\xi|(|x-\xi|+2|\xi|) \\
& <\delta(\delta+2|\xi|) \\
& \leq \frac{\varepsilon}{1+2|\xi|}(1+2|\xi|) \\
& =\varepsilon
\end{aligned}
$$

Limits of Functions

- Here is a more typical example.

Example 7.6. Let $f: \mathbb{R} \mapsto \mathbb{R}: f(x)=x^{2}$ and $\xi \in \mathbb{R}$. Then $\lim _{x \rightarrow \xi} f(x)=\xi^{2}$.

- Proof. We guess that $\ell=\xi^{2}$. Let $\varepsilon>0$. Choose

$$
\delta=\min \left\{1, \frac{\varepsilon}{1+2|\xi|}\right\}
$$

- Then whenever $0<|x-\xi|<\delta$, by the triangle inequality,

$$
\begin{aligned}
\left|f(x)-\xi^{2}\right| & =\left|x^{2}-\xi^{2}\right| \\
& =|x-\xi||x+\xi| \\
& =|x-\xi||(x-\xi)+2 \xi| \\
& \leq|x-\xi|(|x-\xi|+2|\xi|) \\
& <\delta(\delta+2|\xi|) \\
& \leq \frac{\varepsilon}{1+2|\xi|}(1+2|\xi|) \\
& =\varepsilon
\end{aligned}
$$

- See how δ has to depend on ξ as well as ε.

Limits of Functions

- Here is an example where the limit does not exist. Example 7.7. Let $f:(0,2) \mapsto \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0 & (0 \leq x \leq 1) \\ 1 & (1<x<2)\end{cases}
$$

Then $\lim _{x \rightarrow 1} f(x)$ does not exist.

Limits of Functions

- Here is an example where the limit does not exist. Example 7.7. Let $f:(0,2) \mapsto \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0 & (0 \leq x \leq 1) \\ 1 & (1<x<2)\end{cases}
$$

Then $\lim _{x \rightarrow 1} f(x)$ does not exist.

- Proof. We argue by contradiction. Suppose the limit exists and equals ℓ.

Limits of Functions

- Here is an example where the limit does not exist. Example 7.7. Let $f:(0,2) \mapsto \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0 & (0 \leq x \leq 1) \\ 1 & (1<x<2)\end{cases}
$$

Then $\lim _{x \rightarrow 1} f(x)$ does not exist.

- Proof. We argue by contradiction. Suppose the limit exists and equals ℓ.
- Choose $\varepsilon=\frac{1}{3}$ and $\delta>0$ so that whenever $|x-1|<\delta$ we have $|f(x)-\ell|<\varepsilon=\frac{1}{3}$.

Limits of Functions

- Here is an example where the limit does not exist. Example 7.7. Let $f:(0,2) \mapsto \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0 & (0 \leq x \leq 1) \\ 1 & (1<x<2)\end{cases}
$$

Then $\lim _{x \rightarrow 1} f(x)$ does not exist.

- Proof. We argue by contradiction. Suppose the limit exists and equals ℓ.
- Choose $\varepsilon=\frac{1}{3}$ and $\delta>0$ so that whenever $|x-1|<\delta$ we have $|f(x)-\ell|<\varepsilon=\frac{1}{3}$.
- When $1-\delta<x_{1}<1$ we have $f\left(x_{1}\right)=0$ and when $1<x_{2}<1+\delta$ we have $f\left(x_{2}\right)=1$.
- Here is an example where the limit does not exist. Example 7.7. Let $f:(0,2) \mapsto \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}0 & (0 \leq x \leq 1) \\ 1 & (1<x<2)\end{cases}
$$

Then $\lim _{x \rightarrow 1} f(x)$ does not exist.

- Proof. We argue by contradiction. Suppose the limit exists and equals ℓ.
- Choose $\varepsilon=\frac{1}{3}$ and $\delta>0$ so that whenever $|x-1|<\delta$ we have $|f(x)-\ell|<\varepsilon=\frac{1}{3}$.
- When $1-\delta<x_{1}<1$ we have $f\left(x_{1}\right)=0$ and when $1<x_{2}<1+\delta$ we have $f\left(x_{2}\right)=1$.
- Hence, by the triangle inequality

$$
\begin{aligned}
1 & =\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|\left(f\left(x_{2}\right)-\ell\right)-\left(f\left(x_{1}\right)-\ell\right)\right| \\
& \leq\left|f\left(x_{2}\right)-\ell\right|+\left|f\left(x_{2}\right)-\ell\right| \\
& <\frac{1}{3}+\frac{1}{3}=\frac{2}{3} .
\end{aligned}
$$

Limits of Functions

Robert C. Vaughan

- Example 7.8. Let $f: \mathbb{R} \mapsto \mathbb{R}: x \mapsto x^{3}+x$. Prove that $\lim _{x \rightarrow 2} f(x)=10$.
- Example 7.8. Let $f: \mathbb{R} \mapsto \mathbb{R}: x \mapsto x^{3}+x$. Prove that $\lim _{x \rightarrow 2} f(x)=10$.
- Proof. Let $\varepsilon>0$. Choose $\delta=\min \left\{1, \frac{\varepsilon}{20}\right\}$. Then whenever $|x-2|<\delta$ we have

$$
\begin{aligned}
|f(x)-10| & =\left|x^{3}+x-10\right| \\
& =\left|(x-2)\left(x^{2}+2 x+5\right)\right| \\
& =|x-2|\left|(x-2)^{2}+6(x-2)+13\right| \\
& \leq|x-2|\left(|x-2|^{2}+6|x-2|+13\right) \\
& <\delta\left(\delta^{2}+6 \delta+13\right) \\
& \leq \frac{\varepsilon}{20}\left(1^{2}+6+13\right) \\
& =\varepsilon .
\end{aligned}
$$

- As with sequences we will need to combine limits. The proofs of the next two theorems follow in the same way as those for sequences and are left as exercises.

Theorem 1 (Combination Theorem for Functions)

Suppose $a<\xi<b, f, g:(a, \xi) \cup(\xi, b) \mapsto \mathbb{R}, f(x) \rightarrow \ell$ and $g(x) \rightarrow m$ as $x \rightarrow \xi$, and $\lambda, \mu \in \mathbb{R}$. Then
(i) $\lambda f(x)+\mu g(x) \rightarrow \lambda \ell+\mu m$ as $x \rightarrow \xi$,
(ii) $f(x) g(x) \rightarrow \ell m$ as $x \rightarrow \xi$,
(iii) and when $m \neq 0$ we have $\frac{f(x)}{g(x)} \rightarrow \frac{\ell}{m}$ as $x \rightarrow \xi$.

Theorem 2 (Sandwich Theorem for Functions)

Suppose that $a<\xi<b, f, g, h:(a, \xi) \cup(\xi, b) \mapsto \mathbb{R}$,

$$
g(x) \leq f(x) \leq h(x) \text { when } x \in(a, \xi) \cup(\xi, b)
$$

$$
g(x) \rightarrow \ell \text { and } h(x) \rightarrow \ell \text { as } x \rightarrow \xi . \text { Then } f(x) \rightarrow \ell \text { as } x \rightarrow \xi
$$

Limits of Functions

Robert C. Vaughan

- It can happen that sometimes we want to restrict our attention to one of the cases $x<\xi$ or $x>\xi$.
- It can happen that sometimes we want to restrict our attention to one of the cases $x<\xi$ or $x>\xi$.
- Typically this happens when a function is only defined on a closed interval $[a, b]$ and we want to understand the limiting behaviour at a and b.
- It can happen that sometimes we want to restrict our attention to one of the cases $x<\xi$ or $x>\xi$.
- Typically this happens when a function is only defined on a closed interval $[a, b]$ and we want to understand the limiting behaviour at a and b.
- It can also happen with examples like $f:[0,2] \mapsto \mathbb{R}$

$$
f(x)= \begin{cases}0 & (0 \leq x<1) \\ 1 & (x=1) \\ 2 & (1<x \leq 2)\end{cases}
$$

when $\xi=1$.

- Thus we introduce a variant of our definition of limit.

One Sided Limits

- Definition 7.7. Limit from above and below. Suppose that $\mathcal{A} \subset \mathbb{R}$ and $\mathcal{B} \subset \mathbb{R}, f: \mathcal{A} \mapsto \mathcal{B}, a<\xi$ and $(a, \xi) \in \mathcal{A}$. Then $\lim _{x \rightarrow \xi-} f(x)=\ell$ means that there is an $\ell \in \mathbb{R}$ such that for every $\varepsilon>0$ there is a $\delta>0$ so that whenever $x \in \mathcal{A}$ and $\xi-\delta<x<\xi$ we have $|f(x)-\ell|<\varepsilon$ and we call ℓ the limit from below.

One Sided Limits

- Definition 7.7. Limit from above and below. Suppose that $\mathcal{A} \subset \mathbb{R}$ and $\mathcal{B} \subset \mathbb{R}, f: \mathcal{A} \mapsto \mathcal{B}, a<\xi$ and $(a, \xi) \in \mathcal{A}$. Then $\lim _{x \rightarrow \xi-} f(x)=\ell$ means that there is an $\ell \in \mathbb{R}$ such that for every $\varepsilon>0$ there is a $\delta>0$ so that whenever $x \in \mathcal{A}$ and $\xi-\delta<x<\xi$ we have $|f(x)-\ell|<\varepsilon$ and we call ℓ the limit from below.
- There is a corresponding definition for limit from above. Suppose that $\mathcal{A} \subset \mathbb{R}$ and $\mathcal{B} \subset \mathbb{R}, f: \mathcal{A} \mapsto \mathcal{B}, \xi<b$ and $(\xi, b) \in \mathcal{A}$. Then $\lim _{x \rightarrow \xi+} f(x)=\ell$ means that there is an $\ell \in \mathbb{R}$ such that for every $\varepsilon>0$ there is a $\delta>0$ so that whenever $x \in \mathcal{A}$ and $\xi<x<\xi+\delta$ we have $|f(x)-\ell|<\varepsilon$ and we call ℓ the limit from above.

Limits of Functions

Robert C. Vaughan

- Example 7.9. Suppose that $f:[0, \infty) \mapsto \mathbb{R}: f(x)=\sqrt{x}$. Then $\lim _{x \rightarrow 0+} f(x)=0$.

Limits of Functions

- Example 7.9. Suppose that $f:[0, \infty) \mapsto \mathbb{R}: f(x)=\sqrt{x}$. Then $\lim _{x \rightarrow 0+} f(x)=0$.
- Proof. Let $\varepsilon>0$. Choose $\delta=\varepsilon^{2}$. Then, whenever $0<x<\delta$ we have

$$
|f(x)-0|=\sqrt{x}<\sqrt{\delta}=\varepsilon
$$

Note that $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0-} f(x)$ do not exist.

- Example 7.9. Suppose that $f:[0, \infty) \mapsto \mathbb{R}: f(x)=\sqrt{x}$. Then $\lim _{x \rightarrow 0+} f(x)=0$.
- Proof. Let $\varepsilon>0$. Choose $\delta=\varepsilon^{2}$. Then, whenever $0<x<\delta$ we have

$$
|f(x)-0|=\sqrt{x}<\sqrt{\delta}=\varepsilon
$$

Note that $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0-} f(x)$ do not exist.

- As might be expected, if the limits from below and above exist and agree, then the limit does exist.

Theorem 3

Suppose $a<\xi<b$ and $f:(a, b) \mapsto \mathbb{R}$. Then $\lim _{x \rightarrow \xi} f(x)$ exists and converges to ℓ if and only if both the limits

$$
\lim _{x \rightarrow \xi-} f(x), \lim _{x \rightarrow \xi+} f(x)
$$

exist and converge to ℓ.

- Example 7.9. Suppose that $f:[0, \infty) \mapsto \mathbb{R}: f(x)=\sqrt{x}$. Then $\lim _{x \rightarrow 0+} f(x)=0$.
- Proof. Let $\varepsilon>0$. Choose $\delta=\varepsilon^{2}$. Then, whenever $0<x<\delta$ we have

$$
|f(x)-0|=\sqrt{x}<\sqrt{\delta}=\varepsilon
$$

Note that $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0-} f(x)$ do not exist.

- As might be expected, if the limits from below and above exist and agree, then the limit does exist.

Theorem 3

Suppose $a<\xi<b$ and $f:(a, b) \mapsto \mathbb{R}$. Then $\lim _{x \rightarrow \xi} f(x)$ exists and converges to ℓ if and only if both the limits

$$
\lim _{x \rightarrow \xi-} f(x), \lim _{x \rightarrow \xi+} f(x)
$$

exist and converge to ℓ.

- The proof is immediate on comparing the definitions.

