Robert C. Vaughan

Functions

Limits

One Sideo Limits

Limits of Functions

Robert C. Vaughan

April 2, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Functions

Limits

One Sideo Limits • Definition 7.1. A function f from a set A to a set B $f : A \mapsto B : f(x) = y$

is a rule which assigns to each $x \in A$ a unique $y \in B$.

Functions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

Robert C. Vaughan

Functions

Limits

One Sideo Limits Definition 7.1. A function f from a set A to a set B
 f : A → B : f(x) = y

is a rule which assigns to each $x \in A$ a unique $y \in B$.

• The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write y = f(x).

Robert C. Vaughan

Functions

Limits

One Sided Limits Definition 7.1. A function f from a set A to a set B
 f : A → B : f(x) = y

is a rule which assigns to each $x \in A$ a unique $y \in B$.

- The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write y = f(x).
- If we know a formula for f(x) we may alternatively write

$$x\mapsto f(x).$$

Functions

Robert C. Vaughan

Functions

Limits

One Sided Limits Definition 7.1. A function f from a set A to a set B
 f : A → B : f(x) = y

Functions

is a rule which assigns to each $x \in A$ a unique $y \in B$.

- The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write y = f(x).
- If we know a formula for f(x) we may alternatively write

$$x\mapsto f(x).$$

• The set A is called the **domain** of f.

Robert C. Vaughan

Functions

Limits

One Sided Limits Definition 7.1. A function f from a set A to a set B
 f : A → B : f(x) = y

is a rule which assigns to each $x \in A$ a unique $y \in B$.

- The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write y = f(x).
- If we know a formula for f(x) we may alternatively write

$$x \mapsto f(x).$$

- The set A is called the **domain** of f.
- For S ⊂ A we use the notation f(S) = {f(x); x ∈ S} and we call f(S) the image of S under f.

Functions

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Robert C. Vaughan

Functions

Limits

One Sided Limits Definition 7.1. A function f from a set A to a set B
 f : A → B : f(x) = y

Functions

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

is a rule which assigns to each $x \in A$ a unique $y \in B$.

- The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write y = f(x).
- If we know a formula for f(x) we may alternatively write

$$x \mapsto f(x).$$

- The set A is called the **domain** of f.
- For S ⊂ A we use the notation f(S) = {f(x); x ∈ S} and we call f(S) the image of S under f.
- When S = A we call f(A) the image or range of f.

Robert C. Vaughan

Functions

Limits

One Sided Limits Definition 7.1. A function f from a set A to a set B
 f : A → B : f(x) = y

Functions

is a rule which assigns to each $x \in A$ a unique $y \in B$.

- The element $y \in \mathcal{B}$ is called the image of the element $x \in \mathcal{A}$ and we write y = f(x).
- If we know a formula for f(x) we may alternatively write

$$x \mapsto f(x).$$

- The set A is called the **domain** of f.
- For S ⊂ A we use the notation f(S) = {f(x); x ∈ S} and we call f(S) the image of S under f.
- When S = A we call f(A) the image or range of f.
- The set B, which may have elements which are not in f(A) is called the codomain of f. We can also think of the function f as being the set of ordered pairs (x, y) in which x and y are connected by the rule y = f(x).

Robert C. Vaughan

Functions

Limits

One Sideo Limits When no element y of the codomain appears in more than one ordered pair, then the function is called bijective, which means that to each point in the image there is a unique member of the domain, i.e. there is an inverse function f⁻¹(y) = x with the property that f⁻¹(f(x)) = x and f(f⁻¹(y)) = y.

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- When no element y of the codomain appears in more than one ordered pair, then the function is called bijective, which means that to each point in the image there is a unique member of the domain, i.e. there is an inverse function f⁻¹(y) = x with the property that f⁻¹(f(x)) = x and f(f⁻¹(y)) = y.
- Example 7.1. Let R be the domain and codomain of the following function defined as the set of ordered pairs (x, x²) with x ∈ R.

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- When no element y of the codomain appears in more than one ordered pair, then the function is called bijective, which means that to each point in the image there is a unique member of the domain, i.e. there is an inverse function f⁻¹(y) = x with the property that f⁻¹(f(x)) = x and f(f⁻¹(y)) = y.
- Example 7.1. Let R be the domain and codomain of the following function defined as the set of ordered pairs (x, x²) with x ∈ R.
- Then each positive member y of the codomain occurs in both $(-\sqrt{y}, y)$ and (\sqrt{y}, y) , but no negative number appears in the image.

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- When no element y of the codomain appears in more than one ordered pair, then the function is called bijective, which means that to each point in the image there is a unique member of the domain, i.e. there is an inverse function f⁻¹(y) = x with the property that f⁻¹(f(x)) = x and f(f⁻¹(y)) = y.
- Example 7.1. Let R be the domain and codomain of the following function defined as the set of ordered pairs (x, x²) with x ∈ R.
- Then each positive member y of the codomain occurs in both $(-\sqrt{y}, y)$ and (\sqrt{y}, y) , but no negative number appears in the image.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Of course this is the function $f(x) = x^2$.

Robert C. Vaughan

Functions

Limits

One Sideo Limits Example 7.2. The equation y² = x with x ∈ ℝ and y ∈ ℝ does not define a function from ℝ to ℝ because given x > 0 there are two values of y for which this holds.

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- Example 7.2. The equation y² = x with x ∈ ℝ and y ∈ ℝ does not define a function from ℝ to ℝ because given x > 0 there are two values of y for which this holds.
- However if we take A = {x : x ≥ 0}, B = {y : y ≥ 0}, then the equation y² = x does define a function because given x ∈ A there is only one corresponding y ∈ B.

Robert C. Vaughan

Functions

Limits

One Sided Limits

- Example 7.2. The equation y² = x with x ∈ ℝ and y ∈ ℝ does not define a function from ℝ to ℝ because given x > 0 there are two values of y for which this holds.
- However if we take A = {x : x ≥ 0}, B = {y : y ≥ 0}, then the equation y² = x does define a function because given x ∈ A there is only one corresponding y ∈ B.
- Of course this is the function f(x) = √x, where as usual this denotes the non-negative square root.

Robert C. Vaughan

Functions

Limits

One Sided Limits

- Example 7.2. The equation y² = x with x ∈ ℝ and y ∈ ℝ does not define a function from ℝ to ℝ because given x > 0 there are two values of y for which this holds.
- However if we take A = {x : x ≥ 0}, B = {y : y ≥ 0}, then the equation y² = x does define a function because given x ∈ A there is only one corresponding y ∈ B.
- Of course this is the function f(x) = √x, where as usual this denotes the non-negative square root.
- Definition 7.2. Suppose that the function f is defined on a subset S of R and its codomain is R. Then we say that f is bounded above by H when the image f(S) is bounded above by H. Likewise we define bounded below by h when the image is bounded below by h, and bounded when it is both bounded above and below.

Robert C. Vaughan

Functions

Limits

One Sideo Limits If f(S) is non-empty and bounded above, then by the continuum property sup f(S) exists.

Robert C. Vaughan

Functions

Limits

One Sided Limits

- If f(S) is non-empty and bounded above, then by the continuum property sup f(S) exists.
- Definition 7.3. When sup f(S) is non-empty and bounded above, and there is a ξ ∈ S so that f(ξ) = sup f(S), then we say that f has a maximum and the maximum is attained at x = ξ.

Robert C. Vaughan

Functions

Limits

One Sided Limits

- If f(S) is non-empty and bounded above, then by the continuum property sup f(S) exists.
- Definition 7.3. When sup f(S) is non-empty and bounded above, and there is a ξ ∈ S so that f(ξ) = sup f(S), then we say that f has a maximum and the maximum is attained at x = ξ.
- If there is no such ξ , then the maximum **does not exist**.

Robert C. Vaughan

Functions

Limits

One Sided Limits

- If f(S) is non-empty and bounded above, then by the continuum property sup f(S) exists.
- Definition 7.3. When sup f(S) is non-empty and bounded above, and there is a ξ ∈ S so that f(ξ) = sup f(S), then we say that f has a maximum and the maximum is attained at x = ξ.
- If there is no such ξ , then the maximum **does not exist**.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Likewise when f(S) is bounded below we use the corresponding term **minimum** for infima which are attained.

Robert C. Vaughan

Functions

Limits

One Sided Limits

- If f(S) is non-empty and bounded above, then by the continuum property sup f(S) exists.
- Definition 7.3. When sup f(S) is non-empty and bounded above, and there is a ξ ∈ S so that f(ξ) = sup f(S), then we say that f has a maximum and the maximum is attained at x = ξ.
- If there is no such ξ , then the maximum **does not exist**.
- Likewise when f(S) is bounded below we use the corresponding term **minimum** for infima which are attained.
- Example 7.3. The function f: (0,1] → ℝ: f(x) = ¹/_x is unbounded, but it is bounded below and inf f((0,1]) = 1, so it has minimum 1 which is attained with x = 1.

Robert C. Vaughan

Functions

Limits

One Sideo Limits • An important class of functions are monotonic, which we define analogously to that for monotonic sequences.

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- An important class of functions are monotonic, which we define analogously to that for monotonic sequences.
- Definition 7.4. 1. Suppose that A and B are subsets of \mathbb{R} and that $f : A \mapsto B$. We say that f is increasing when $f(x_1) \leq f(x_2)$ for every $x_1, x_2 \in \mathbb{R}$ with $x_1 \leq x_2$, and it is decreasing when $f(x_1) \geq f(x_2)$ for every such x_1, x_2 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- An important class of functions are monotonic, which we define analogously to that for monotonic sequences.
- Definition 7.4. 1. Suppose that A and B are subsets of \mathbb{R} and that $f : A \mapsto B$. We say that f is increasing when $f(x_1) \leq f(x_2)$ for every $x_1, x_2 \in \mathbb{R}$ with $x_1 \leq x_2$, and it is decreasing when $f(x_1) \geq f(x_2)$ for every such x_1, x_2 .
- 2. When f(x₁) < f(x₂) for every pair x₁, x₂ with x₁ < x₂ we call it strictly increasing, and on the other hand when f(x₁) > f(x₂) for every pair x₁, x₂ with x₁ < x₂ we call it strictly decreasing.

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- An important class of functions are monotonic, which we define analogously to that for monotonic sequences.
- Definition 7.4. 1. Suppose that A and B are subsets of \mathbb{R} and that $f : A \mapsto B$. We say that f is increasing when $f(x_1) \leq f(x_2)$ for every $x_1, x_2 \in \mathbb{R}$ with $x_1 \leq x_2$, and it is decreasing when $f(x_1) \geq f(x_2)$ for every such x_1, x_2 .
- 2. When f(x₁) < f(x₂) for every pair x₁, x₂ with x₁ < x₂ we call it strictly increasing, and on the other hand when f(x₁) > f(x₂) for every pair x₁, x₂ with x₁ < x₂ we call it strictly decreasing.
- 3. Such functions are called **monotonic** in case 1. and **strictly monotonic** in case 2.

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- An important class of functions are monotonic, which we define analogously to that for monotonic sequences.
- Definition 7.4. 1. Suppose that A and B are subsets of \mathbb{R} and that $f : A \mapsto B$. We say that f is increasing when $f(x_1) \leq f(x_2)$ for every $x_1, x_2 \in \mathbb{R}$ with $x_1 \leq x_2$, and it is decreasing when $f(x_1) \geq f(x_2)$ for every such x_1, x_2 .
- 2. When f(x₁) < f(x₂) for every pair x₁, x₂ with x₁ < x₂ we call it strictly increasing, and on the other hand when f(x₁) > f(x₂) for every pair x₁, x₂ with x₁ < x₂ we call it strictly decreasing.
- 3. Such functions are called **monotonic** in case 1. and **strictly monotonic** in case 2.
- 4. With reference to the last paragraph of Definition 7.1. it follows that every strictly monotonic function has an inverse from its image.

Robert C. Vaughan

Functions

Limits

One Sideo Limits • **Example 7.4.** The function exp(x) defined by (6.9) is strictly increasing.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Functions

Limits

One Sided Limits

- **Example 7.4.** The function exp(x) defined by (6.9) is strictly increasing.
- To see this note that when $x_1 < x_2$ we have

$$\exp(x_2) = \exp(x_1)\exp(x_2 - x_1)$$

and

$$\exp(x_2 - x_1) = \sum_{n=0}^{\infty} \frac{(x_2 - x_1)^n}{n!} > 1,$$

and moreover by Theorem 6.13 (iv) we have $\exp(x_1) > 0$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Functions

Limits

One Sided Limits

- Example 7.4. The function exp(x) defined by (6.9) is strictly increasing.
- To see this note that when $x_1 < x_2$ we have

$$\exp(x_2) = \exp(x_1)\exp(x_2 - x_1)$$

and

$$\exp(x_2 - x_1) = \sum_{n=0}^{\infty} \frac{(x_2 - x_1)^n}{n!} > 1,$$

and moreover by Theorem 6.13 (iv) we have $\exp(x_1) > 0$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 In view of 4. above it follows that exp has an inverse function.

Robert C. Vaughan

Functions

Limits

One Sideo Limits • Definition 7.5. We define the function log(x), sometimes written ln(x), to be the inverse function of exp(x).

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- Definition 7.5. We define the function log(x), sometimes written ln(x), to be the inverse function of exp(x).
- The domain of exp is ℝ and we will show in Corollary 8.8 that its image is ℝ⁺ = {x : x ∈ ℝ and x > 0}, the set of positive real numbers.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Functions

Limits

One Sided Limits

- Definition 7.5. We define the function log(x), sometimes written ln(x), to be the inverse function of exp(x).
- The domain of exp is ℝ and we will show in Corollary 8.8 that its image is ℝ⁺ = {x : x ∈ ℝ and x > 0}, the set of positive real numbers.
- Hence log(x) has domain \mathbb{R}^+ and image \mathbb{R} . It also satisfies

$$\log(\exp(x)) = x$$
 and $\exp(\log(y)) = y$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

for $x \in \mathbb{R}$ and $y \in \mathbb{R}^+$.

Robert C. Vaughan

Functions

Limits

One Sided Limits

- **Definition 7.5.** We define the function log(x), sometimes written ln(x), to be the inverse function of exp(x).
- The domain of exp is ℝ and we will show in Corollary 8.8 that its image is ℝ⁺ = {x : x ∈ ℝ and x > 0}, the set of positive real numbers.
- Hence $\log(x)$ has domain \mathbb{R}^+ and image \mathbb{R} . It also satisfies

$$og(exp(x)) = x and exp(log(y)) = y$$

for $x \in \mathbb{R}$ and $y \in \mathbb{R}^+$.

Given u, v in the domain of log there will be x, y ∈ ℝ so that x = log u, y = log v and so u = exp(x), v = exp(y). Thus uv = exp(x) exp(y) = exp(x + y) and

$$\log(uv) = x + y = \log(u) + \log(v).$$

We can now use this to define, whenever a > 0,

$$a^{x} : \mathbb{R} \mapsto \mathbb{R}^{+} : x \mapsto \exp(x \log(a)).$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Limits

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Limits of Functions

Robert C. Vaughan

Functions

Limits

One Sideo Limits For functions of a real variable, when we consider limits we are fundamentally looking at a real variable getting closer and closer to some real number ξ, rather than in the case of sequences where the variable n is getting larger and larger.

Limits

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Limits of Functions

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- For functions of a real variable, when we consider limits we are fundamentally looking at a real variable getting closer and closer to some real number ξ, rather than in the case of sequences where the variable n is getting larger and larger.
- Moreover when we consider x getting closer and closer to *ξ* we need to be impartial as to the sign of x - ξ, that is we want to look at both x < ξ and x > ξ.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Limits of Functions

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- For functions of a real variable, when we consider limits we are fundamentally looking at a real variable getting closer and closer to some real number *ξ*, rather than in the case of sequences where the variable *n* is getting larger and larger.
- Moreover when we consider x getting closer and closer to *ξ* we need to be impartial as to the sign of x - ξ, that is we want to look at both x < ξ and x > ξ.
- We also want to avoid making any assumptions about the behaviour of f at ξ

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- For functions of a real variable, when we consider limits we are fundamentally looking at a real variable getting closer and closer to some real number ξ, rather than in the case of sequences where the variable n is getting larger and larger.
- Moreover when we consider x getting closer and closer to *ξ* we need to be impartial as to the sign of x - ξ, that is we want to look at both x < ξ and x > ξ.
- We also want to avoid making any assumptions about the behaviour of f at ξ
- Thus in the first instance given a ξ we will restrict our attention to functions whose domain contains the two open intervals (a, ξ) and (ξ, b) where a < ξ < b.

Limits of Functions

Robert C. Vaughan

Functions

Limits

One Sided Limits • Definition 7.6. Limit of a function. Suppose that $a < \xi < b, \ \mathcal{A} \subset \mathbb{R}$ and $\mathcal{B} \subset \mathbb{R}, \ f : \mathcal{A} \mapsto \mathcal{B}$ and $(a, \xi) \cup (\xi, b) \in \mathcal{A}$.

Limits

Limits of Functions

Robert C. Vaughan

Functions

Limits

One Sided Limits

- Definition 7.6. Limit of a function. Suppose that $a < \xi < b$, $\mathcal{A} \subset \mathbb{R}$ and $\mathcal{B} \subset \mathbb{R}$, $f : \mathcal{A} \mapsto \mathcal{B}$ and $(a, \xi) \cup (\xi, b) \in \mathcal{A}$.
- Then

$$\lim_{x\to\xi}f(x)=\ell,$$

or equivalently

$$f(x) \rightarrow \ell \text{ as } x \rightarrow \xi,$$

means that there is an $\ell \in \mathbb{R}$ such that for every $\varepsilon > 0$ there is a $\delta > 0$ so that whenever $x \in A$ and

$$0 < |x - \xi| < \delta$$

we have

$$|f(x)-\ell|<\varepsilon.$$

・ロト・日本・日本・日本・日本・日本

Robert C. Vaughan

Functions

Limits

One Sideo Limits Restatement: there is an ℓ ∈ ℝ such that for every ε > 0 there is a δ > 0 so that whenever x ∈ A and

$$0 < |x - \xi| < \delta$$

we have

$$|f(x) - \ell| < \varepsilon.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ● ●

Robert C. Vaughan

Functions

Limits

One Sideo Limits Restatement: there is an ℓ ∈ ℝ such that for every ε > 0 there is a δ > 0 so that whenever x ∈ A and

$$0 < |x - \xi| < \delta$$

we have

$$|f(x) - \ell| < \varepsilon.$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

• See how the definition has a similar structure to the definition of limits for sequences.

Robert C. Vaughan

Functions

Limits

One Sideo Limits Restatement: there is an ℓ ∈ ℝ such that for every ε > 0 there is a δ > 0 so that whenever x ∈ A and

$$0 < |x - \xi| < \delta$$

we have

 $|f(x)-\ell|<\varepsilon.$

- See how the definition has a similar structure to the definition of limits for sequences.
- There is an ε in both which plays the rôle of measuring how close we are to the limit, and instead of N we have a δ which plays a similar rôle to N.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Functions

Limits

One Sided Limits Restatement: there is an ℓ ∈ ℝ such that for every ε > 0 there is a δ > 0 so that whenever x ∈ A and

$$0 < |x - \xi| < \delta$$

we have

 $|f(x)-\ell|<\varepsilon.$

- See how the definition has a similar structure to the definition of limits for sequences.
- There is an ε in both which plays the rôle of measuring how close we are to the limit, and instead of N we have a δ which plays a similar rôle to N.
- We should expect that, just as for N, when we come to find a suitable δ it depends on ε.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Functions

Limits

One Sided Limits Restatement: there is an ℓ ∈ ℝ such that for every ε > 0 there is a δ > 0 so that whenever x ∈ A and

$$0 < |x - \xi| < \delta$$

we have

 $|f(x)-\ell|<\varepsilon.$

- See how the definition has a similar structure to the definition of limits for sequences.
- There is an ε in both which plays the rôle of measuring how close we are to the limit, and instead of N we have a δ which plays a similar rôle to N.
- We should expect that, just as for N, when we come to find a suitable δ it depends on ε.
- We should also note the condition 0 < |x ξ|. We want to include the possibility that the limit ℓ differs from f(ξ) if the latter should exist.

Robert C. Vaughan

Functions

Limits

One Sideo Limits

• Example 7.5. Suppose that $f : (0,1) \mapsto \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 0 & x \neq \frac{1}{2}, \\ 1 & x = \frac{1}{2}. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Functions

Limits

One Sideo Limits • Example 7.5. Suppose that $f : (0,1) \mapsto \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 0 & x \neq \frac{1}{2}, \\ 1 & x = \frac{1}{2}. \end{cases}$$

• Then we have

$$\lim_{x \to \frac{1}{2}} f(x) = 0 \neq f(1/2).$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ● ●

Robert C. Vaughan

Functions

Limits

One Sideo Limits • Example 7.5. Suppose that $f : (0,1) \mapsto \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 0 & x \neq \frac{1}{2}, \\ 1 & x = \frac{1}{2}. \end{cases}$$

• Then we have

$$\lim_{x \to \frac{1}{2}} f(x) = 0 \neq f(1/2).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

• To see this take $\delta = \frac{1}{2}$ in the definition.

Robert C. Vaughan

Functions

Limits

One Sideo Limits • Example 7.5. Suppose that $f : (0,1) \mapsto \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 0 & x \neq \frac{1}{2}, \\ 1 & x = \frac{1}{2}. \end{cases}$$

Then we have

$$\lim_{x \to \frac{1}{2}} f(x) = 0 \neq f(1/2).$$

- To see this take $\delta = \frac{1}{2}$ in the definition.
- Then for $0 < |x \frac{1}{2}| < \delta$, so that $0 < x < \frac{1}{2}$ or $\frac{1}{2} < x < 1$ we have

$$|f(x) - 0| = |0 - 0| = 0 < \varepsilon.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Functions

Limits

One Sideo Limits • Here is a more typical example. **Example 7.6.** Let $f : \mathbb{R} \mapsto \mathbb{R} : f(x) = x^2$ and $\xi \in \mathbb{R}$. Then $\lim_{x \to \xi} f(x) = \xi^2$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- Here is a more typical example. **Example 7.6.** Let $f : \mathbb{R} \mapsto \mathbb{R} : f(x) = x^2$ and $\xi \in \mathbb{R}$. Then $\lim_{x \to \xi} f(x) = \xi^2$.
- *Proof.* We guess that $\ell = \xi^2$. Let $\varepsilon > 0$. Choose

1

$$\delta = \min\left\{1, rac{arepsilon}{1+2|\xi|}
ight\}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- Here is a more typical example.
 Example 7.6. Let f : ℝ → ℝ : f(x) = x² and ξ ∈ ℝ.
 Then lim f(x) = ξ².
- *Proof.* We guess that $\ell = \xi^2$. Let $\varepsilon > 0$. Choose

$$\delta = \min\left\{1, rac{arepsilon}{1+2|\xi|}
ight\}.$$

• Then whenever $0 < |x - \xi| < \delta$, by the triangle inequality,

$$\begin{split} |f(x) - \xi^2| &= |x^2 - \xi^2| \\ &= |x - \xi| |x + \xi| \\ &= |x - \xi| |(x - \xi) + 2\xi| \\ &\leq |x - \xi| (|x - \xi| + 2|\xi|) \\ &< \delta(\delta + 2|\xi|) \\ &\leq \frac{\varepsilon}{1 + 2|\xi|} (1 + 2|\xi|) \\ &= \varepsilon. \end{split}$$

イロト 不得 トイヨト イヨト ニヨー

Sac

Robert C. Vaughan

Functions

Limits

One Sideo Limits

- Here is a more typical example. **Example 7.6.** Let $f : \mathbb{R} \mapsto \mathbb{R} : f(x) = x^2$ and $\xi \in \mathbb{R}$. Then $\lim_{x \to \xi} f(x) = \xi^2$.
- *Proof.* We guess that $\ell = \xi^2$. Let $\varepsilon > 0$. Choose

$$\delta = \min\left\{1, rac{arepsilon}{1+2|\xi|}
ight\}.$$

• Then whenever $0 < |x - \xi| < \delta$, by the triangle inequality,

$$\begin{split} |f(x) - \xi^2| &= |x^2 - \xi^2| \\ &= |x - \xi| |x + \xi| \\ &= |x - \xi| |(x - \xi) + 2\xi| \\ &\leq |x - \xi| (|x - \xi| + 2|\xi|) \\ &< \delta(\delta + 2|\xi|) \\ &\leq \frac{\varepsilon}{1 + 2|\xi|} (1 + 2|\xi|) \\ &= \varepsilon. \end{split}$$

Sar

• See how δ has to depend on ξ as well as ε .

Robert C. Vaughan

Functions

Limits

One Sided Limits Here is an example where the limit does not exist.
 Example 7.7. Let f : (0,2) → ℝ be defined by

$$f(x) = \begin{cases} 0 & (0 \le x \le 1), \\ 1 & (1 < x < 2). \end{cases}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Then $\lim_{x\to 1} f(x)$ does not exist.

Robert C. Vaughan

Functions

Limits

One Sideo Limits Here is an example where the limit does not exist.
 Example 7.7. Let f : (0,2) → ℝ be defined by

$$f(x) = \begin{cases} 0 & (0 \le x \le 1), \\ 1 & (1 < x < 2). \end{cases}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Then $\lim_{x\to 1} f(x)$ does not exist.

• *Proof.* We argue by contradiction. Suppose the limit exists and equals ℓ .

Robert C. Vaughan

Functions

Limits

One Sideo Limits Here is an example where the limit does not exist.
 Example 7.7. Let f : (0,2) → ℝ be defined by

$$f(x) = \begin{cases} 0 & (0 \le x \le 1), \\ 1 & (1 < x < 2). \end{cases}$$

Then $\lim_{x\to 1} f(x)$ does not exist.

- *Proof.* We argue by contradiction. Suppose the limit exists and equals ℓ .
- Choose $\varepsilon = \frac{1}{3}$ and $\delta > 0$ so that whenever $|x 1| < \delta$ we have $|f(x) \ell| < \varepsilon = \frac{1}{3}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Functions

Limits

One Sideo Limits Here is an example where the limit does not exist.
 Example 7.7. Let f : (0,2) → ℝ be defined by

$$f(x) = \begin{cases} 0 & (0 \le x \le 1), \\ 1 & (1 < x < 2). \end{cases}$$

Then $\lim_{x\to 1} f(x)$ does not exist.

- *Proof.* We argue by contradiction. Suppose the limit exists and equals ℓ .
- Choose $\varepsilon = \frac{1}{3}$ and $\delta > 0$ so that whenever $|x 1| < \delta$ we have $|f(x) \ell| < \varepsilon = \frac{1}{3}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• When $1 - \delta < x_1 < 1$ we have $f(x_1) = 0$ and when $1 < x_2 < 1 + \delta$ we have $f(x_2) = 1$.

Robert C. Vaughan

Functions

Limits

One Sided Limits Here is an example where the limit does not exist.
 Example 7.7. Let f : (0,2) → ℝ be defined by

$$f(x) = \begin{cases} 0 & (0 \le x \le 1), \\ 1 & (1 < x < 2). \end{cases}$$

Then $\lim_{x\to 1} f(x)$ does not exist.

- *Proof.* We argue by contradiction. Suppose the limit exists and equals ℓ .
- Choose ε = ¹/₃ and δ > 0 so that whenever |x − 1| < δ we have |f(x) − ℓ| < ε = ¹/₃.
- When $1 \delta < x_1 < 1$ we have $f(x_1) = 0$ and when $1 < x_2 < 1 + \delta$ we have $f(x_2) = 1$.
- Hence, by the triangle inequality

$$\begin{split} 1 &= |f(x_2) - f(x_1)| = |(f(x_2) - \ell) - (f(x_1) - \ell)| \\ &\leq |f(x_2) - \ell| + |f(x_2) - \ell| \\ &< \frac{1}{3} + \frac{1}{3} = \frac{2}{3}. \end{split}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Robert C. Vaughan

Functions

Limits

One Sideo Limits • **Example 7.8.** Let $f : \mathbb{R} \mapsto \mathbb{R} : x \mapsto x^3 + x$. Prove that $\lim_{x\to 2} f(x) = 10$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Functions

Limits

One Sided Limits

- Example 7.8. Let $f : \mathbb{R} \mapsto \mathbb{R} : x \mapsto x^3 + x$. Prove that $\lim_{x \to 2} f(x) = 10$.
- *Proof.* Let $\varepsilon > 0$. Choose $\delta = \min \{1, \frac{\varepsilon}{20}\}$. Then whenever $|x 2| < \delta$ we have

$$\begin{split} |f(x) - 10| &= |x^3 + x - 10| \\ &= |(x - 2)(x^2 + 2x + 5)| \\ &= |x - 2||(x - 2)^2 + 6(x - 2) + 13| \\ &\leq |x - 2|(|x - 2|^2 + 6|x - 2| + 13) \\ &< \delta(\delta^2 + 6\delta + 13) \\ &\leq \frac{\varepsilon}{20}(1^2 + 6 + 13) \\ &= \varepsilon. \end{split}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Functions

Limits

One Sided Limits • As with sequences we will need to combine limits. The proofs of the next two theorems follow in the same way as those for sequences and are left as exercises.

Theorem 1 (Combination Theorem for Functions)

Suppose $a < \xi < b$, $f, g : (a, \xi) \cup (\xi, b) \mapsto \mathbb{R}$, $f(x) \to \ell$ and $g(x) \to m$ as $x \to \xi$, and $\lambda, \mu \in \mathbb{R}$. Then (i) $\lambda f(x) + \mu g(x) \to \lambda \ell + \mu m$ as $x \to \xi$, (ii) $f(x)g(x) \to \ell m$ as $x \to \xi$, (iii) and when $m \neq 0$ we have $\frac{f(x)}{g(x)} \to \frac{\ell}{m}$ as $x \to \xi$.

Theorem 2 (Sandwich Theorem for Functions)

Suppose that $a < \xi < b$, $f, g, h : (a, \xi) \cup (\xi, b) \mapsto \mathbb{R}$,

 $g(x) \leq f(x) \leq h(x)$ when $x \in (a, \xi) \cup (\xi, b)$,

 $g(x) \rightarrow \ell$ and $h(x) \rightarrow \ell$ as $x \rightarrow \xi$. Then $f(x) \rightarrow \ell$ as $x \rightarrow \xi$.

Robert C. Vaughan

Functions

Limits

One Sided Limits It can happen that sometimes we want to restrict our attention to one of the cases x < ξ or x > ξ.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Functions

Limits

One Sided Limits

- It can happen that sometimes we want to restrict our attention to one of the cases x < ξ or x > ξ.
- Typically this happens when a function is only defined on a closed interval [a, b] and we want to understand the limiting behaviour at a and b.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Functions

Limits

One Sided Limits

- It can happen that sometimes we want to restrict our attention to one of the cases x < ξ or x > ξ.
- Typically this happens when a function is only defined on a closed interval [a, b] and we want to understand the limiting behaviour at a and b.
- It can also happen with examples like $f:[0,2]\mapsto \mathbb{R}$

$$f(x) = \begin{cases} 0 & (0 \le x < 1), \\ 1 & (x = 1), \\ 2 & (1 < x \le 2) \end{cases}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

when $\xi = 1$.

• Thus we introduce a variant of our definition of limit.

One Sided Limits

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Limits of Functions

Robert C. Vaughan

Functions

Limits

One Sided Limits Definition 7.7. Limit from above and below. Suppose that A ⊂ ℝ and B ⊂ ℝ, f : A → B, a < ξ and (a, ξ) ∈ A. Then lim_{x→ξ−} f(x) = ℓ means that there is an ℓ ∈ ℝ such that for every ε > 0 there is a δ > 0 so that whenever x ∈ A and ξ − δ < x < ξ we have |f(x) − ℓ| < ε and we call ℓ the limit from below.

One Sided Limits

Limits of Functions

Robert C. Vaughan

Functions

Limits

One Sided Limits

- Definition 7.7. Limit from above and below. Suppose that A ⊂ ℝ and B ⊂ ℝ, f : A → B, a < ξ and (a, ξ) ∈ A. Then lim_{x→ξ−} f(x) = ℓ means that there is an ℓ ∈ ℝ such that for every ε > 0 there is a δ > 0 so that whenever x ∈ A and ξ − δ < x < ξ we have |f(x) − ℓ| < ε and we call ℓ the limit from below.
- There is a corresponding definition for limit from above. Suppose that $\mathcal{A} \subset \mathbb{R}$ and $\mathcal{B} \subset \mathbb{R}$, $f : \mathcal{A} \mapsto \mathcal{B}$, $\xi < b$ and $(\xi, b) \in \mathcal{A}$. Then $\lim_{x \to \xi+} f(x) = \ell$ means that there is an $\ell \in \mathbb{R}$ such that for every $\varepsilon > 0$ there is a $\delta > 0$ so that whenever $x \in \mathcal{A}$ and $\xi < x < \xi + \delta$ we have $|f(x) - \ell| < \varepsilon$ and we call ℓ the limit from above.

Robert C. Vaughan

Functions

Limits

One Sided Limits • Example 7.9. Suppose that $f : [0, \infty) \mapsto \mathbb{R} : f(x) = \sqrt{x}$. Then $\lim_{x\to 0+} f(x) = 0$.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Robert C. Vaughan

Functions

Limits

One Sided Limits

- Example 7.9. Suppose that $f : [0, \infty) \mapsto \mathbb{R} : f(x) = \sqrt{x}$. Then $\lim_{x\to 0+} f(x) = 0$.
- *Proof.* Let ε > 0. Choose δ = ε². Then, whenever 0 < x < δ we have

$$|f(x) - 0| = \sqrt{x} < \sqrt{\delta} = \varepsilon.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Note that $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0^-} f(x)$ do not exist.

Robert C. Vaughan

Functions

Limits

One Sided Limits

- Example 7.9. Suppose that $f : [0, \infty) \mapsto \mathbb{R} : f(x) = \sqrt{x}$. Then $\lim_{x\to 0+} f(x) = 0$.
- *Proof.* Let ε > 0. Choose δ = ε². Then, whenever 0 < x < δ we have

$$|f(x)-0|=\sqrt{x}<\sqrt{\delta}=\varepsilon.$$

Note that $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0^-} f(x)$ do not exist.

• As might be expected, if the limits from below and above exist and agree, then the limit does exist.

Theorem 3

Suppose $a < \xi < b$ and $f : (a, b) \mapsto \mathbb{R}$. Then $\lim_{x \to \xi} f(x)$ exists and converges to ℓ if and only if both the limits

$$\lim_{x\to\xi-}f(x),\quad \lim_{x\to\xi+}f(x)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

exist and converge to ℓ .

Robert C. Vaughan

Functions

Limits

One Sided Limits

- Example 7.9. Suppose that $f : [0, \infty) \mapsto \mathbb{R} : f(x) = \sqrt{x}$. Then $\lim_{x\to 0+} f(x) = 0$.
- *Proof.* Let $\varepsilon > 0$. Choose $\delta = \varepsilon^2$. Then, whenever $0 < x < \delta$ we have

$$|f(x)-0|=\sqrt{x}<\sqrt{\delta}=\varepsilon.$$

Note that $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0^-} f(x)$ do not exist.

• As might be expected, if the limits from below and above exist and agree, then the limit does exist.

Theorem 3

Suppose $a < \xi < b$ and $f : (a, b) \mapsto \mathbb{R}$. Then $\lim_{x \to \xi} f(x)$ exists and converges to ℓ if and only if both the limits

$$\lim_{x \to \xi-} f(x), \quad \lim_{x \to \xi+} f(x)$$

exist and converge to ℓ .

• The proof is immediate on comparing the definitions.

San