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• A series is a sum of the kind

a1 + a2 + · · · an

which is often abbreviated to

n∑
m=1

am.

• Thus given a sequence ⟨an⟩ we can form a new sequence
⟨sn⟩ defined by

sn =
n∑

m=1

am. (1.1)
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• Definition 6.1 If the sequence ⟨sn⟩ converges, then we say
that the infinite series

∞∑
m=1

am = a1 + a2 + · · ·+ an + · · · (1.2)

converges and the sum of the series is the limit

lim
n→∞

sn.

• The sn are called the partial sums of the infinite series.

• When a series converges the sum

tn =
∞∑

m=n+1

an (1.3)

is called the tail of the series.
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• Remark There is no reason that a series has to start with
n = 1. We could equally work with

∞∑
n=M

an

where M is any integer.

• Moreover if we can establish the convergence for some M ,
then it follows for any M by adding or subtracting a finite
number of terms.
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• Example 6.1. Let x ∈ R and an = xn, so that

sn = x + x2 + . . .+ xn =
x − xn+1

1− x
(x ̸= 1).

• By Example 4.9, when |x | < 1 we have limn→∞ xn = 0.
• Thus, in that case the series converges and we have

lim
n→∞

sn =
x

1− x
(|x | < 1).

• If x = 1, then sn = n is unbounded and thus divergent.
• If |x | > 1. Let y = |x | − 1. Then by the binomial
inequality we have |x |n = (1 + y)n ≥ 1 + ny and, as
y > 0, ⟨sn⟩ is unbounded once more and so divergent.

• If x = −1, sn = −1 + 1− 1 + 1− · · ·+ (−1)n = −1 when
n is odd, and 0 when n is even.

• Since a sequence cannot have two limits the series again
diverges, even though it is bounded.

• Thus we conclude that
∞∑
n=1

xn converges if and only if

|x | < 1, and in that case it sums to x
1−x .
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• Example 6.2. Let an =
(
n(n + 1)

)−1
. Then

sn =
n∑

m=1

am =
1

1.2
+

1

2.3
+

1

3.4
+ · · ·+ 1

n(n + 1)

• The nice thing about this series is there is an exact
formula for the sum of the first n terms.

• In fact sn = 1− (n + 1)−1.
• One way to see this is to apply induction. The base case

n = 1 gives s1 =
1

2
= 1− 1

1 + 1
.

• Now suppose the formula has been verified for n. Then

sn+1 = sn +
1

(n + 1)(n + 2)
= 1− 1

n + 1
+

1

(n + 1)(n + 2)

= 1− (n + 2)− 1

(n + 1)(n + 2)
= 1− 1

(n + 1) + 1
.

• Now we let n → ∞. Thus sn → 1. Hence
∞∑

m=1

1

m(m + 1)
= 1.



Introduction
to Analysis:

Series

Robert C.
Vaughan

Series

Tests for
Convergence
of Series

Proofs of the
Tests

Further
Theorems and
Examples

Power Series

• Example 6.2. Let an =
(
n(n + 1)

)−1
. Then

sn =
n∑

m=1

am =
1

1.2
+

1

2.3
+

1

3.4
+ · · ·+ 1

n(n + 1)

• The nice thing about this series is there is an exact
formula for the sum of the first n terms.

• In fact sn = 1− (n + 1)−1.
• One way to see this is to apply induction. The base case

n = 1 gives s1 =
1

2
= 1− 1

1 + 1
.

• Now suppose the formula has been verified for n. Then

sn+1 = sn +
1

(n + 1)(n + 2)
= 1− 1

n + 1
+

1

(n + 1)(n + 2)

= 1− (n + 2)− 1

(n + 1)(n + 2)
= 1− 1

(n + 1) + 1
.

• Now we let n → ∞. Thus sn → 1. Hence
∞∑

m=1

1

m(m + 1)
= 1.



Introduction
to Analysis:

Series

Robert C.
Vaughan

Series

Tests for
Convergence
of Series

Proofs of the
Tests

Further
Theorems and
Examples

Power Series

• Example 6.2. Let an =
(
n(n + 1)

)−1
. Then

sn =
n∑

m=1

am =
1

1.2
+

1

2.3
+

1

3.4
+ · · ·+ 1

n(n + 1)

• The nice thing about this series is there is an exact
formula for the sum of the first n terms.

• In fact sn = 1− (n + 1)−1.

• One way to see this is to apply induction. The base case

n = 1 gives s1 =
1

2
= 1− 1

1 + 1
.

• Now suppose the formula has been verified for n. Then

sn+1 = sn +
1

(n + 1)(n + 2)
= 1− 1

n + 1
+

1

(n + 1)(n + 2)

= 1− (n + 2)− 1

(n + 1)(n + 2)
= 1− 1

(n + 1) + 1
.

• Now we let n → ∞. Thus sn → 1. Hence
∞∑

m=1

1

m(m + 1)
= 1.



Introduction
to Analysis:

Series

Robert C.
Vaughan

Series

Tests for
Convergence
of Series

Proofs of the
Tests

Further
Theorems and
Examples

Power Series

• Example 6.2. Let an =
(
n(n + 1)

)−1
. Then

sn =
n∑

m=1

am =
1

1.2
+

1

2.3
+

1

3.4
+ · · ·+ 1

n(n + 1)

• The nice thing about this series is there is an exact
formula for the sum of the first n terms.

• In fact sn = 1− (n + 1)−1.
• One way to see this is to apply induction. The base case

n = 1 gives s1 =
1

2
= 1− 1

1 + 1
.

• Now suppose the formula has been verified for n. Then

sn+1 = sn +
1

(n + 1)(n + 2)
= 1− 1

n + 1
+

1

(n + 1)(n + 2)

= 1− (n + 2)− 1

(n + 1)(n + 2)
= 1− 1

(n + 1) + 1
.

• Now we let n → ∞. Thus sn → 1. Hence
∞∑

m=1

1

m(m + 1)
= 1.



Introduction
to Analysis:

Series

Robert C.
Vaughan

Series

Tests for
Convergence
of Series

Proofs of the
Tests

Further
Theorems and
Examples

Power Series

• Example 6.2. Let an =
(
n(n + 1)

)−1
. Then

sn =
n∑

m=1

am =
1

1.2
+

1

2.3
+

1

3.4
+ · · ·+ 1

n(n + 1)

• The nice thing about this series is there is an exact
formula for the sum of the first n terms.

• In fact sn = 1− (n + 1)−1.
• One way to see this is to apply induction. The base case

n = 1 gives s1 =
1

2
= 1− 1

1 + 1
.

• Now suppose the formula has been verified for n. Then

sn+1 = sn +
1

(n + 1)(n + 2)
= 1− 1

n + 1
+

1

(n + 1)(n + 2)

= 1− (n + 2)− 1

(n + 1)(n + 2)
= 1− 1

(n + 1) + 1
.

• Now we let n → ∞. Thus sn → 1. Hence
∞∑

m=1

1

m(m + 1)
= 1.



Introduction
to Analysis:

Series

Robert C.
Vaughan

Series

Tests for
Convergence
of Series

Proofs of the
Tests

Further
Theorems and
Examples

Power Series

• Example 6.2. Let an =
(
n(n + 1)

)−1
. Then

sn =
n∑

m=1

am =
1

1.2
+

1

2.3
+

1

3.4
+ · · ·+ 1

n(n + 1)

• The nice thing about this series is there is an exact
formula for the sum of the first n terms.

• In fact sn = 1− (n + 1)−1.
• One way to see this is to apply induction. The base case

n = 1 gives s1 =
1

2
= 1− 1

1 + 1
.

• Now suppose the formula has been verified for n. Then

sn+1 = sn +
1

(n + 1)(n + 2)
= 1− 1

n + 1
+

1

(n + 1)(n + 2)

= 1− (n + 2)− 1

(n + 1)(n + 2)
= 1− 1

(n + 1) + 1
.

• Now we let n → ∞. Thus sn → 1. Hence
∞∑

m=1

1

m(m + 1)
= 1.



Introduction
to Analysis:

Series

Robert C.
Vaughan

Series

Tests for
Convergence
of Series

Proofs of the
Tests

Further
Theorems and
Examples

Power Series

• Here is another trick up our sleeve for series.

• Example 6.3. Let bn = 1
n2

and un =
n∑

m=1

bm.

• Since each bm > 0, ⟨un⟩ is an increasing sequence.

• Moreover, when m ≥ 2 we have
1

m2
≤ 1

m(m − 1)
so

un = 1 +
1

22
+

1

32
+ · · ·+ 1

n2

≤ 1 +
1

1.2
+

1

2.3
+ · · · 1

(n − 1)n

= 1 + sn−1

in the notation of the previous example.

• Therefore for n ≥ 2, un ≤ 2− 1

n
< 2.

• Hence we have an increasing sequence bounded above.
• Thus by the monotonic convergence theorem un converges.
• This is yet another example where we have established
convergence but do not yet have the tools to give the
value of the limit.
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n2

and un =
n∑

m=1

bm.

• Since each bm > 0, ⟨un⟩ is an increasing sequence.

• Moreover, when m ≥ 2 we have
1

m2
≤ 1

m(m − 1)
so

un = 1 +
1

22
+

1

32
+ · · ·+ 1

n2

≤ 1 +
1

1.2
+

1

2.3
+ · · · 1

(n − 1)n

= 1 + sn−1

in the notation of the previous example.

• Therefore for n ≥ 2, un ≤ 2− 1

n
< 2.

• Hence we have an increasing sequence bounded above.

• Thus by the monotonic convergence theorem un converges.
• This is yet another example where we have established
convergence but do not yet have the tools to give the
value of the limit.
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• An immediate consequence of the definition.

Theorem 1

Suppose that

sn =
n∑

m=1

am

converges. Then the tail of the series

tn =
∞∑

m=n+1

am

satisfies
lim
n→∞

tn = 0

and limn→∞ an = 0

• Proof. Let ℓ denote the value of the infinite series. Then

tn = ℓ− sn → 0 and an = tn−1 − tn.
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Combination Theorem for Series

• We can now port over the theory of sequences. For
example the following is immediate.

Theorem 2 (The Combination Theorem for Series)

Suppose that
∞∑
n=1

an and
∞∑
n=1

bn

converge to α and β respectively and λ and µ are real
numbers. Let

cn = λan + µbn (n ∈ N).

Then
∞∑
n=1

cn

converges to λα+ µβ.
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• Because series are so important there are various tests and
criteria for their convergence, and these can be presented
in the form of an algorithm. Be warned that most of the
really interesting series fall outside the scope of this
algorithm!

• Suppose that ⟨an⟩ is a real sequence and sn is defined by

sn =
n∑

m=1

am.

Then we are concerned with the existence of

∞∑
m=1

am = a1 + a2 + · · ·+ an + · · ·

• There are four steps to the algorithm. If the algorithm
fails to determine the convergence or divergence, then an
ad hoc method will be required.
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Algorithm to Test Series for Convergence

• Step 1. If limn→ an does not exist, or it does but it is not

0, then
∞∑
n=1

an diverges.

• Step 2. The Comparison Test. Comparison with a known
series. There are two cases.

• 2.1. Suppose that |an| ≤ bn for every n ∈ N and
∞∑
n=1

bn

converges. Then so does
∞∑
n=1

an.

• 2.2. Suppose that 0 ≤ cn ≤ an for every n ∈ N and
∞∑
n=1

cn

diverges. Then so does
∞∑
n=1

an.
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Algorithm to Test Series for Convergence

• Step 3. The ratio test. Suppose that an ̸= 0 for every

large n and lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists. Let its value be ℓ.

If ℓ < 1, then
∞∑
n=1

an converges and if ℓ > 1, then it

diverges.
If ℓ = 1, then no conclusion can be made.

• There are more sophisticated versions of 3., e.g. the n-th
root test, but if Step 3. fails these other versions are
unlikely to do any better.

• Step 4. The Leibnitz (or alternating series) test. Suppose
there is a sequence ⟨dn⟩ which is (i) non-negative, (ii)
decreasing and (iii) satisfies lim

n→∞
dn = 0 and (iv)

an = (−1)n−1dn. Then
∞∑
n=1

an converges.
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Algorithm to Test Series for Convergence

• Example 6.4. The series
∞∑
n=1

(−1)n diverges because

(−1)n ̸→ limit as n →.

• Example 6.5. The series
∞∑
n=1

(1− 1/n)2 diverges because

lim
n→∞

(1− 1/n)2 = 1 ̸= 0.

• Example 6.3.
∞∑

m=1

1

m2
gives an example of convergence by

the comparison test.
• Crucial for comparison is a range of useful examples.

• We will show later that
∞∑
n=1

1

n
diverges. Then it follows

from part 2 of the comparison test that if c < 1, then
∞∑
n=1

1

nc
diverges.
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• Example 6.6. Let an = (n!)2/(2n)!. Then∣∣∣∣an+1

an

∣∣∣∣ = (2n)!((n + 1)!)2

(2n + 2)!(n!)2
=

(n + 1)2

(2n + 1)(2n + 2)
→ 1

4
.

• Hence
∞∑
n=1

an converges by the ratio test.

• Here is a more elaborate version.

• Example 6.7 Let x ∈ R and bn = (n!)2xn/(2n)!. Then∣∣∣∣bn+1

bn

∣∣∣∣ = (2n)!((n + 1)!)2

(2n + 2)!(n!)2
|x | = (n + 1)2|x |

(2n + 1)(2n + 2)
→ |x |

4
.

• So
∞∑
n=1

bn converges for |x | < 4 and diverges for |x | > 4.

• Note that nothing can be concluded when |x | = 1
4 .

• By more sophisticated arguments the series can be shown
to converge when x = −1

4 and diverge when x = 1
4 .
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• Note that nothing can be concluded when |x | = 1
4 .

• By more sophisticated arguments the series can be shown
to converge when x = −1

4 and diverge when x = 1
4 .
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• Example 6.8. Let x ∈ R and cn =
xn

n!
.

• Then ∣∣∣∣cn+1

cn

∣∣∣∣ = n!

(n + 1)!
|x | = |x |

n + 1
→ 0

regardless of the value of x.

• Hence
∞∑
n=1

xn

n!

converges for every real x.

• The following function is very important.

exp(x) = 1 +
∞∑
n=1

xn

n!
=

∞∑
n=0

xn

n!

• Note that here we have deployed the conventions 0! = 1
and that in such series x0 = 1 even when x = 0.
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• Example 6.9. If an = 1 for every n, we have sn = n and so

∞∑
n=1

an

diverges.

• If instead an = 1
n2
, then the series converges.

• But in either case we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1.

• This explains why the ratio test cannot have any
conclusion when the limit is 1.
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• Example 6.10. Let

an =
(−1)n−1

√
n

.

• We apply the alternating series test with

dn =
1√
n
.

• For every n ∈ N we have dn > 0 and

dn+1 =
1√
n + 1

<
1√
n
= dn

so dn is decreasing and

lim
n→∞

dn = 0.

• Thus
∞∑
n=1

an

converges by the Leibnitz test.
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Proofs of the Tests

• The first test is easily dealt with.

Theorem 3

If limn→∞ an does not exist, or it does but is not 0, then

∞∑
n=1

an

diverges.

• Proof. Suppose on the contrary that sn =
n∑

m=1

am

converges. Then, by Thoerem 6.1

lim
n→∞

an = 0

contradicting the hypothesis.
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Proofs of the Tests

• The remaining tests are more demanding.

Theorem 4

1. Suppose that |an| ≤ bn for every n ∈ N and
∞∑
n=1

bn

converges. Then so does
∞∑
n=1

an.

2. Suppose that 0 ≤ cn ≤ an for every n ∈ N and
∞∑
n=1

cn

diverges. Then so does
∞∑
n=1

an.
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Proofs of the Tests

• Restatement of Theorem 6.4.1. Suppose that |an| ≤ bn for

every n ∈ N and
∞∑
n=1

bn converges. Then so does
∞∑
n=1

an.

• Proof of 1. We first treat a special case. Suppose

0 ≤ An ≤ bn. Let un =
n∑

m=1

Am and B =
∞∑

m=1

bm. Then

un ≤
n∑

m=1

bm ≤
∞∑

m=1

bn = B,

so ⟨un⟩ is bounded above.

• As the An are non-negative, the sequence is increasing.

• Hence ⟨un⟩ converges.
• Now we turn to the general case |an| ≤ bn for every n ∈ N.
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Proofs of the Tests

• Let

Dn =

{
an if (an ≥ 0),

0 if (an < 0),
En =

{
0 if (an ≥ 0),

−an if (an < 0).

• Then 0 ≤ Dn ≤ bn and 0 ≤ En ≤ bn.

• Hence
∞∑
n=1

Dn and
∞∑
n=1

En

both converge.

• Thus by the combination theorem, Theorem 2,

∞∑
n=1

(Dn − En)

converges.

• But Dn − En = an for every n ∈ N.
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Proofs of the Tests

• Restatement of Theorem 6.4.2. Suppose that 0 ≤ cn ≤ an

for every n ∈ N and
∞∑
n=1

cn diverges. Then so does
∞∑
n=1

an.

• Proof of 2. Let

tn =
n∑

m=1

cm.

• Since each cm ≥ 0, tn is an increasing sequence.

• If the sequence ⟨tn⟩ were bounded then the series
∞∑
n=1

cn

would have to converge.

• Hence it is unbounded.

• But sn ≥ tn, so ⟨sn⟩ is unbounded and hence
∞∑
n=1

an

diverges.
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Proofs of the Tests

• The Ratio Test.

Theorem 5

Suppose that an ̸= 0 for every large n and

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists. Let its value be ℓ.

If ℓ < 1, then
∞∑
n=1

an converges.

If ℓ > 1, then
∞∑
n=1

an diverges.
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Proof of the Ratio Test

• We assume that lim
n→∞

|an+1/an| = ℓ. Of course ℓ ≥ 0.

• Suppose first ℓ < 1. The plan is to compare with
∞∑
n=1

xn.

• Let ε = 1−ℓ
2 and choose N ∈ N so that whenever n > N

we have ||an+1/an| − ℓ| < ε and so |an+1/an| − ℓ < ε.

• Put x = ℓ+ ε so that x = ℓ+
1− ℓ

2
=

1 + ℓ

2
< 1 and

|an+1/an| < x whenever n > N.

• Now by induction on n ≥ N we have |an| ≤ xn|aN |x−N .

• To see this take the base case as n = N and then given
n ≤ N we have |an+1| < x |an| ≤ xn+1|aN |x−N .

• By Example 6.1
∞∑
n=1

xn converges. Hence
∞∑
n=1

xn|aN |x−N

converges. Thus, by comparison
∞∑

n=N

an converges.
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• Now by induction on n ≥ N we have |an| ≤ xn|aN |x−N .

• To see this take the base case as n = N and then given
n ≤ N we have |an+1| < x |an| ≤ xn+1|aN |x−N .

• By Example 6.1
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Proof of the Ratio Test

• We assume that lim
n→∞

|an+1/an| = ℓ.

• Now suppose that ℓ > 1.

• Then, by taking ε = ℓ− 1 in the definition of convergence
it follows that there is an N ∈ N so that whenever n ≥ N
we have ∣∣∣∣an+1

an

∣∣∣∣ > 1.

• Hence
|an+1| > |an| > . . . |aN | > 0.

• Thus either limn→∞ an does not exist or
| limn→∞ an| ≥ |aN | > 0,

• so the second part of the theorem follows from Theorem
6.2.
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The Root Test

• The following test is not part of the algorithm. For most
applications it is easier to use the ratio test. It does have
the merit of not requiring an ̸= 0 and there is an
important application later to power series.

Theorem 6

If the sequence bn = |an|1/n is bounded and lim sup
n→∞

bn < 1,

then
∞∑
n=1

an converges absolutely. If ⟨bn⟩ is unbounded, or it is

bounded but lim sup
n→∞

bn > 1, then the series diverges.

• Given any non-negative number c we mean by c1/n the
positive real number x such that xn = c .

• We can establish the existence of such a number by taking
x = sup{r : r ∈ Q, r ≥ 0, rn ≤ c}

• I will skip the proof. It can be read in the course text.
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• We now come to the final part of our algorithm.

Theorem 7 (The Leibnitz Test)

Suppose ⟨dn⟩ is (i) non-negative, (ii) decreasing, (iii) satisfies

lim
n→∞

dn = 0, and (iv) an = (−1)n−1dn. Then
∞∑
n=1

an converges.

• Proof. Let sn =
n∑

m=1

an. Then, as d2n+1 ≥ d2n+2, s2n+2 =

s2n + a2n+2 + a2n+1 = s2n − d2n+2 + d2n+1 ≥ s2n.
• Likewise s2n+1 = s2n−1 + d2n+1 − d2n ≤ s2n−1.
• Hence ⟨s2n⟩ is increasing and ⟨s2n−1⟩ is decreasing.
• We also have s2n = s2n−1 + a2n = s2n−1 − d2n ≤ s2n−1 so

that
s2 ≤ s4 ≤ s6 ≤ . . . ≤ s2n ≤ s2n−1 ≤ · · · ≤ s5 ≤ s3 ≤ s1.

• Thus ⟨s2n⟩ is bounded above by s1 and ⟨s2n−1⟩ is bounded
below by s2, and so both converge, to, say, ℓ1 and ℓ2.
Then ℓ1 − ℓ2 = lim

n→∞
(s2n−1 − s2n) = lim

n→∞
d2n = 0. Let

ℓ = ℓ1 = ℓ2. Then limn→∞ sn = ℓ.
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• There is a terminology which can now be introduced,
following Theorem 6.4.

• Definition 6.2. A series

∞∑
n=1

an (4.4)

is absolutely convergent when

∞∑
n=1

|an| (4.5)

converges.

• When (4.4) converges but (4.5) diverges we call the series
(4.4) conditionally convergent.
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(4.4) conditionally convergent.
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• Note that a convergent series is not necessarily absolutely
convergent.

• For example
∞∑
n=1

(−1)n−1

√
n

converges by the Leibnitz test, Theorem 6.7,

• but
∞∑
n=1

1√
n

diverges since the n-th partial sum is bounded below by√
n and so is unbounded.
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• The following is a corollary of the comparison test.

Theorem 8

Every absolutely convergent series is convergent.

• Indeed any series which passes part 1. of Theorem 6.4 is
automatically absolutely convergent.

• Proof. Take bn = |an| in part 1. of the comparison test.
• Absolute convergence confers a useful further property.

Theorem 9

Let f : N → N be a permutation of N. That is, f is a bijection
- for every n ∈ N there is a unique m ∈ N such that f (m) = n.

Suppose, moreover, that
∞∑
n=1

an converges absolutely. Then so

does
∞∑
n=1

af (n) and
∞∑
n=1

af (n) =
∞∑
n=1

an.

• However one rearranges an absolutely convergent series the
sum is the same. This is false for conditional convergence.
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• The details of the proof of the rearrangement theorem are
in the course text.

• The proof is an application of the Cauchy condition for
convergence.

• Given ε and a suitable N one needs to choose an M so
that f (m) > N when m > M.
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• Often the ratio test is useless, because the comparison is
with a series which converge or diverges exponentially fast.
Most series converge or diverge much more slowly. The
series considered below are more useful.

Theorem 10

Suppose that σ ∈ R and σ ≤ 1. Then the series
∞∑
n=1

1

nσ

diverges.

• Proof. We argue by contradiction. Suppose that the series

converges and let ℓ be its sum. Consider sn =
n∑

m=1

1

mσ
.

• Then ⟨sn⟩ converges to ℓ and hence so does ⟨s2n⟩.
• Therefore lim

n→∞
(s2n − sn) = ℓ− ℓ = 0. But

s2n − sn =
2n∑

m=n+1

1

mσ
≥

2n∑
m=n+1

1

(2n)σ
= 2−σn1−σ ≥ 1

2
.

• Taking limits we just showed that 0 ≥ 1
2 .
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• One can contrast the previous theorem with the next one.

Theorem 11

Suppose that σ ∈ R and σ > 1. Then
∞∑
n=1

1

nσ
converges.

• Proof. We have nσ > 0 for every n ∈ N. Thus the partial

sums sn =
n∑

m=1

1

mσ
form an increasing sequence.

• Hence it suffices to show that the subsequence ⟨s2k ⟩ is
bounded above, i.e. s2k ≤ B for every k ∈ N, because
given n the Archimedean property ensures that there is a
k with n ≤ 2k and then it follows that sn ≤ s2k ≤ B.
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• Proof continued. We have sn =
n∑

m=1

1

mσ
, and need to

show that ⟨s2k ⟩ is bounded.

• Let tk = s2k − s2k−1 =
2k∑

n=2k−1+1

1

nσ
.

• Then 1 + t1 + t2 + · · · tk

= 1+(s2−s1)+· · · (s2k−s2k−1) = s2k+1−s1 = s2k . (4.6)

• Moreover tj =
2j∑

n=2j−1+1

1

nσ
≤ 2j−1

2(j−1)(σ)
= x j−1 where

x = 21−σ and so 0 < x < 1.

• By Example 6.1 and the comparison test,
k∑

j=1

tj converges

and so by (4.6) ⟨s2k ⟩ converges and so is bounded, as
required.
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• We now examine a special class of series which give rise to
many of the most important functions in mathematics and
have myriad applications.

• Definition6.3. For a given sequence ⟨an⟩ of real numbers
consider the series

A(x) =
∞∑
n=0

anx
n. (5.7)

• We call such a series a power series. Note that we
include a term with n = 0 and by convention x0 = 1
regardless of the value of x.
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• The following is the fundamental theorem of power series.

Theorem 12

Given a sequence ⟨an⟩ of real numbers and the corresponding
power series A(x),
(i) the series converges absolutely for every x and

lim sup
n→∞

|an|1/n = 0

or (ii) there is a positive real number R such that the series
converges absolutely for all x with |x | < R and diverges for all
x with |x | > R and lim sup

n→∞
|an|1/n = R−1

or (iii) the series converges for x = 0 only and ⟨|an|1/n⟩ is
unbounded.

• Definition 6.4. It is conventional to define R in case (ii)
to be the radius of convergence of A(x), and to extend
this to be R = ∞ in case (i) and R = 0 in case (iii). By
an abuse of notation we could write R = 1/ lim sup

n→∞
|an|1/n.
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Proof of Theorem 6.12

• We can suppose that x ̸= 0. Let cn = anx
n. Then

|cn|1/n = |x ||an|1/n.

• If ⟨|cn|1/n⟩ is unbounded, then so is ⟨|an|1/n⟩ and by the
root test the series diverges for all x ̸= 0, which gives case
(iii).

• If lim sup
n→∞

|cn|1/n, exists and is non-zero, then likewise for

lim sup
n→∞

|an|1/n and we can define R =
(
lim sup
n→∞

|an|1/n
)−1

.

• Then lim sup
n→∞

|cn|1/n = |x |R−1 and by the root test the

series converges absolutely when |x | < R and diverges
when |x | > R. which gives (ii).

• Finally, if lim sup
n→∞

|cn|1/n = 0, then |x | lim sup
n→∞

|an|1/n = 0

and so lim sup
n→∞

|an|1/n = 0.

• Thus by the root test the series converges absolutely for
every x , which gives case (i) and completes the proof.
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|cn|1/n, exists and is non-zero, then likewise for

lim sup
n→∞

|an|1/n and we can define R =
(
lim sup
n→∞

|an|1/n
)−1

.

• Then lim sup
n→∞

|cn|1/n = |x |R−1 and by the root test the

series converges absolutely when |x | < R and diverges
when |x | > R. which gives (ii).

• Finally, if lim sup
n→∞

|cn|1/n = 0, then |x | lim sup
n→∞

|an|1/n = 0

and so lim sup
n→∞

|an|1/n = 0.

• Thus by the root test the series converges absolutely for
every x , which gives case (i) and completes the proof.
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Important Functions

• We can now introduce some important functions.

• Definition 6.5. Whenever the corresponding series
converges we define

exp(x) =
∞∑
n=0

xn

n!
,

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n + 1)!
,

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!
.
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• The first part of the following theorem is an easy
consequence of the ratio test and the second part is
obvious.

Theorem 13

(i) Each of the series defining exp, sin and cos has radius of
convergence ∞.
(ii) We have exp(0) = 1, sin(0) = 0, cos(0) = 1.
(iii) For every pair of real numbers x and y we have

exp(x + y) = exp(x) exp(y)

and

exp(−x) =
1

exp(x)
.

(iv) For every x ∈ R we have exp(x) > 0.
(v) The function exp(x) is unbounded above, and for every
ε > 0 there are x such that exp(x) < ε.
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• It remains to prove the following.
(iii) For every pair of real numbers x and y we have

exp(x + y) = exp(x) exp(y), exp(−x) =
1

exp(x)
.

(iv) For every x ∈ R we have exp(x) > 0.
(v) The function exp(x) is unbounded above, and for
every ε > 0 there are x such that exp(x) < ε.

• For the time being assume (iii). When x ≥ 0 all the terms
in the series are non-negative and the first term is 1. Thus
in this case exp(x) > 0. By the second equation in (iii)
this then follows when x < 0, which establishes (iv).

• For any n ∈ N we have exp(n) = 1 + n+ · · · > n Hence by
the Archimedean property exp is unbounded above.
Moreover by the second equation in (iii) we have
exp(−n) < 1/n. This establishes (v).
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• We now prove (iii), that for every pair x and y we have

exp(x + y) = exp(x) exp(y), exp(−x) = 1/exp(x).

• By the ratio test
∞∑

m=0

∞∑
k=0

|x |m|y |k

m!k!
converge absolutely and

so by the rearrangement theorem

exp(x) exp(y) =
∞∑

m=0

∞∑
k=0

xmyk

m!k!

can be rearranged in any way we like.

• Thus it is
∞∑
n=0

∞∑
m=0

∞∑
k=0

m+k=n

xmyk

m!k!
=

∞∑
n=0

n∑
m=0

xmyn−m

m!(n −m)!

=
∞∑
n=0

1

n!

n∑
m=0

n!xmyn−m

m!(n −m)!
=

∞∑
n=0

1

n!

n∑
m=0

(
n

m

)
xmyn−m

=
∞∑
n=0

(x + y)n

n!
= exp(x + y).
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• There is one other interesting theorem in this chapter.

Theorem 14

Suppose that x ∈ R. Then

lim
n→∞

(1 + x/n)n = lim
n→∞

(1− x/n)−n = exp(x).

• I will not prove it here, but the details can be found in the
course text.
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