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• Definition 5.1. 1. We say that ⟨an⟩ is increasing when
an ≤ an+1 for every n ∈ N, and it is decreasing when
an ≥ an+1 for every n ∈ N.

• 2. When an < an+1 for every n ∈ N we call it strictly
increasing, and on the other hand when an > an+1 for
every n ∈ N we call it strictly decreasing.

• 3. Such sequences are called monotonic in case 1. and
strictly monotonic in case 2.

• There is a modern tendency to use increasing to mean
strictly increasing and, by a terrible misuse of language, to
use non-decreasing to mean increasing, and a concomitant
variant for the other two cases. A student of the English
language would expect that the sequence ⟨(−1)n⟩ is
non-decreasing and non-increasing.
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• Example 5.1. 1. Note that the only sequences which are
both increasing and decreasing are the constant sequences,
such as

1, 1, 1, 1, 1, 1, . . .

• 2. The sequence ⟨ 1n ⟩ is strictly decreasing.

• 3. The sequence ⟨n2⟩ is strictly increasing.

• 4. The sequence 〈
1

n
+

(−1)n√
n

〉
is neither increasing nor decreasing.

• 5. The sequence

1, 1,
1

2
,
1

2
,
1

3
,
1

3
, . . .

is decreasing but not strictly decreasing.

• All the above, except 4. are monotonic, 2. and 3. are
strictly monotonic
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• The next theorem explains the power of the concept. You
do not have to know much to be sure of convergence.

Theorem 1

Every monotonic bounded sequence ⟨an⟩ converges. When it is
increasing the limit is given by sup{an : n ∈ N} and when it is
decreasing it is given by inf{an : n ∈ N}.

• Proof. If ⟨an⟩ is bounded and decreasing, then ⟨−an⟩ is
bounded, increasing and inf{an : n ∈ N} =
sup{−an : n ∈ N}, so it suffices to suppose that ⟨an⟩ is
increasing.

• As A = {an : n ∈ N} is bounded it is bounded above.
• Moreover as a1 ∈ A it is non-empty. Hence supA exists.
• Let A = supA and let ε > 0.
• Then, by the definition of supremum we cannot have
an ≤ A− ε for every n ∈ N.

• Hence there exists an N ∈ N so that A− ε < aN ≤ A.
• As ⟨an⟩ is increasing, induction gives A− ε < aN+n ≤ A
for every n ∈ N, so |an − A| < ε for every n > N.
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• Example 5.2. Recall Example 4.2. 4. where we defined

inductively x1 = 2, xn+1 =
1
2

(
xn +

2
xn

)
.

• By induction on n, xn > 0 for every n ∈ N.
• Squaring both sides gives x2n+1 =

1
4(x

2
n + 4 + 4x−2

n ),

x2n+1 − 2 = 1
4(x

2
n − 4 + 4x−2

n ) = 1
4(xn − 2/xn)

2 ≥ 0.

• Hence x2n ≥ 2 for every n ∈ N.
• Rearranging the original definition gives

xn − xn+1 =
xn
2 − 1

xn
= x2n−2

2xn
≥ 0, xn+1 ≤ xn

for every n ∈ N, so ⟨xn⟩ is decreasing and bounded below.
• By Theorem 5.1, ℓ = limn→∞ xn exists.
• By 1. and 2. we have x2n ≥ 2 > 1 and so xn > 1. Thus,

since ℓ = inf{xn} we have ℓ ≥ 1.
• By the definition of xn, the combination theorem and

Example 4.5,

ℓ = lim
n→∞

xn+1 = lim
n→∞

1

2

(
xn +

2

xn

)
=

1

2

(
ℓ+

2

ℓ

)
.

• Solving for ℓ, 1
2ℓ =

1
ℓ , ℓ

2 = 2. So
√
2 exists and = ℓ.
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xn
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2

(
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2

ℓ

)
.

• Solving for ℓ, 1
2ℓ =

1
ℓ , ℓ

2 = 2. So
√
2 exists and = ℓ.
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• Definition 5.2. Suppose that ⟨an⟩ is a sequence and ⟨mn⟩
is a strictly increasing sequence of natural numbers. That
is, mn ∈ N and mn < mn+1 for every n ∈ N. Then we call
the sequence ⟨amn⟩ a subsequence of ⟨an⟩.

• Example 5.3. Suppose that

an =
1√
n

and mn = n2, so that ⟨mn⟩ = 1, 4, 9, 16, . . .. Then

amn =
1√
n2

=
1

n
.

• Subsequences are very useful as a “way in” to the
behaviour of a sequence, since a nasty subsequence may
well have subsequences which are much easier to deal with
and then give us a handle on the original sequence.
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• We can make good use of the following theorem.

Theorem 2

Suppose that the sequence ⟨an⟩ converges to ℓ. Then every
subsequence of ⟨an⟩ converges to ℓ.

• Let ⟨mn⟩ be a strictly increasing sequence of elements of
N.

• Then a simple induction shows that mn ≥ n.

• Let ε > 0 and choose N so that whenever n > N we have
|an − ℓ| < ε.

• Since mn ≥ n we also have mn > N when n > N.

• Therefore for every n > N we have |amn − ℓ| < ε and so
⟨amn⟩ converges to ℓ.
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• Example 5.4. We can now give a simple proof that
⟨(−1)n⟩ diverges.

• Proof. Suppose on the contrary that the sequence
converges to ℓ.

• Then the subsequences ⟨(−1)2n⟩ and ⟨(−1)2n−1⟩ would
both converge to ℓ.

• But the first one converges to +1 and the second one to
−1 and this would contradict Theorem 4.2.
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• Now we come to a more complex example.

• Example 5.5. Let an = n1/n, bn = (n + 1)1/n,

cn =
(

n
n+1

)1/n
.

• By the binomial inequality(
n+1
n+2

)n+1
=

(
1− 1

n+2

)n+1
≥ 1− n+1

n+2 = 1
n+2 .

(n + 1)n+1 ≥(n + 2)n, (n + 1)1/n ≥ (n + 2)1/(n+1)

• So ⟨bn⟩ is decreasing, bounded below and convergent.

• We also have

1 > n
n+1 >

(
n

n+1

)n
, 1 >

(
n

n+1

)1/n
= cn > n

n+1

• so, by the sandwich theorem, ⟨cn⟩ converges to 1.

• Next we have bncn = (n + 1)1/n
(

n
n+1

)1/n
= n1/n = an.

• Thus an converges and as an > 1 we have limn→∞ an ≥ 1.
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• We have shown that an = n1/n converges and that the
limit ℓ is ≥ 1.

• Now consider the subsequence ⟨a2n⟩.
• Then

a22n = (2n)1/n = 21/nan.

• By Exercise 4.10 21/n → 1.

• Hence
ℓ2 = ℓ, ℓ = 1.

• Thus
lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn = 1.
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• The next two theorems are extremely useful when a
sequence is not necessarily monotonic.

Theorem 3

Every sequence has a monotonic subsequence.

Theorem 4 (The Bolzano-Weierstrass Theorem)

Every bounded sequence has a convergent subsequence.

Theorem 4 follows at once by Theorem 3 and the
monotonic convergence theorem, Theorem 1.

• Proof of Theorem 5.3. Let ⟨an⟩ be the sequence.
• We call an index m extremal when it has the property that
ak ≤ am whenever k ≥ m.

• If a sequence has infinitely many extrema, then the
extrema form a sequence m1 < m2 < . . .

• and since mk+1 > mk we have amk+1
≤ amk

.
• Thus ⟨amk

⟩ is a decreasing sequence.
• Now suppose there are at most a finite number of extrema.
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• Repeat.
Theorem 5.3.Every sequence has a monotonic
subsequence.

• We are left to deal with the case when there are at most a
finite number of extrema.

• Let n0 denote the last extremum, or in the case that there
are no extrema let n0 = 1.

• Let m1 = n0 + 1.

• Since this is not an extremum there will be an m2 > m1 so
that am2 > am1 .

• Then we can proceed iteratively.

• Given amk
, as mk ≥ m1 and so is not an extremum, there

will be an mk+1 > mk so that amk+1
> amk

.

• Thus in this case we have constructed an increasing
sequence.
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• Example 5.6 1. Recall the Example 4.2, which we
examined in detail in Example 5.5 where we defined
inductively

x1 = 2, xn+1 =
1

2

(
xn +

2

xn

)
.

• If 1 ≤ xn ≤ 2, then it follows that

1 =
1

2

(
1 +

2

2

)
≤ xn+1 ≤

1

2

(
2 +

2

1

)
= 2.

• Hence, by induction, xn is bounded between 1 and 2.
Thus the sequence has a convergent subsequence.

• 2. In the example ⟨(−1)n⟩ we looked at in Examples 4.7
and 8, each of the subsequences ⟨(−1)2n⟩ and ⟨(−1)2n−1⟩
are monotonic and convergent.
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Limit Inferior and Limit Superior

• Given a sequence ⟨an⟩, let An = {am : m ≥ n} and when
the sequence is bounded above we write tn = supAn.

• We could also adopt the convention that if the sequence is
unbounded above we write tn = ∞, but we should be
aware that we cannot then treat tn as a number, and here
we will avoid this convention.

• When ⟨an⟩ is bounded below we likewise write sn = infAn.

• As An+1 ⊂ An it follows that if the sequence is bounded
above, so that tn and tn+1 exist, we have tn+1 ≤ tn.

• In other words we have a decreasing sequence.

• If the sequence is also bounded below, then each of the
sets An is bounded below by the same bound.

• Hence ⟨tn⟩ is decreasing and bounded below and so
convergent.

• A similar argument shows that sn is increasing and
bounded above, and so convergent.



Introduction
to Analysis:
Monotonic
Sequences,

and
Subsequences

Robert C.
Vaughan

Monotonic
Sequences

Subsequences

Limit Inferior
and Limit
Superior

Cauchy
Sequences

Limit Inferior and Limit Superior

• Given a sequence ⟨an⟩, let An = {am : m ≥ n} and when
the sequence is bounded above we write tn = supAn.

• We could also adopt the convention that if the sequence is
unbounded above we write tn = ∞, but we should be
aware that we cannot then treat tn as a number, and here
we will avoid this convention.

• When ⟨an⟩ is bounded below we likewise write sn = infAn.

• As An+1 ⊂ An it follows that if the sequence is bounded
above, so that tn and tn+1 exist, we have tn+1 ≤ tn.

• In other words we have a decreasing sequence.

• If the sequence is also bounded below, then each of the
sets An is bounded below by the same bound.

• Hence ⟨tn⟩ is decreasing and bounded below and so
convergent.

• A similar argument shows that sn is increasing and
bounded above, and so convergent.



Introduction
to Analysis:
Monotonic
Sequences,

and
Subsequences

Robert C.
Vaughan

Monotonic
Sequences

Subsequences

Limit Inferior
and Limit
Superior

Cauchy
Sequences

Limit Inferior and Limit Superior

• Given a sequence ⟨an⟩, let An = {am : m ≥ n} and when
the sequence is bounded above we write tn = supAn.

• We could also adopt the convention that if the sequence is
unbounded above we write tn = ∞, but we should be
aware that we cannot then treat tn as a number, and here
we will avoid this convention.

• When ⟨an⟩ is bounded below we likewise write sn = infAn.

• As An+1 ⊂ An it follows that if the sequence is bounded
above, so that tn and tn+1 exist, we have tn+1 ≤ tn.

• In other words we have a decreasing sequence.

• If the sequence is also bounded below, then each of the
sets An is bounded below by the same bound.

• Hence ⟨tn⟩ is decreasing and bounded below and so
convergent.

• A similar argument shows that sn is increasing and
bounded above, and so convergent.



Introduction
to Analysis:
Monotonic
Sequences,

and
Subsequences

Robert C.
Vaughan

Monotonic
Sequences

Subsequences

Limit Inferior
and Limit
Superior

Cauchy
Sequences

Limit Inferior and Limit Superior

• Given a sequence ⟨an⟩, let An = {am : m ≥ n} and when
the sequence is bounded above we write tn = supAn.

• We could also adopt the convention that if the sequence is
unbounded above we write tn = ∞, but we should be
aware that we cannot then treat tn as a number, and here
we will avoid this convention.

• When ⟨an⟩ is bounded below we likewise write sn = infAn.

• As An+1 ⊂ An it follows that if the sequence is bounded
above, so that tn and tn+1 exist, we have tn+1 ≤ tn.

• In other words we have a decreasing sequence.

• If the sequence is also bounded below, then each of the
sets An is bounded below by the same bound.

• Hence ⟨tn⟩ is decreasing and bounded below and so
convergent.

• A similar argument shows that sn is increasing and
bounded above, and so convergent.
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• Definition 5.3. When a sequence ⟨an⟩ is bounded we define

lim sup
n→∞

an = lim
n→∞

tn = lim
n→∞

sup{am : m ≥ n}

and

lim inf
n→∞

an = lim
n→∞

sn = lim
n→∞

inf{am : m ≥ n}.

• The important thing is that when a sequence is bounded
these limits always exist.

• Moreover if we were to adopt a general version of the
convention mentioned above, then we could say that they
exist even when the sequence is unbounded. This can be
very useful and avoids having to deal with objects which
might not exist.
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• Example 5.7. Let ⟨an⟩ be bounded and let ⟨amn⟩ be a
convergent subsequence. Then

lim inf
n→∞

an ≤ lim
n→∞

amn ≤ lim sup
n→∞

an.

• Proof. We have mn ≥ n.

• Hence amn ∈ An and so

sn ≤ amn ≤ tn

• and the conclusion follows by Corollary 4.7.
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• The power of the concept is illustrated by Theorem 5.

Theorem 5

Suppose that ⟨an⟩ is bounded. Then it converges if and only if
lim infn→∞ an = lim supn→∞ an and then it converges to the
common value.

• Proof. Note that “if and only if” means we have two tasks.
• 1. Suppose that ⟨an⟩ converges.
• Let ℓ be its limit and let ε > 0.
• Choose N so that whenever n > N we have |an − ℓ| < ε

2 .
• When am ∈ An we have m ≥ n > N so that

|am − ℓ| < ε
2 , ℓ− ε

2 < am < ℓ+ ε
2 .

• Since these bounds hold for every element of An, in the
notation used in the preamble we have

ℓ− ε < ℓ− ε

2
≤ sn ≤ tn ≤ ℓ+

ε

2
< ℓ+ ε.

• Thus for every n > N we have |sn − ℓ| < ε, |tn − ℓ| < ε
and so lim infn→∞ an = l = lim supn→∞ an.
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• 2. Suppose that

lim inf
n→∞

an = lim sup
n→∞

an.

• As in Example 5.7 we have

sn ≤ an ≤ tn.

• Then the conclusion follows from the sandwich theorem,
Theorem 4.5.
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• Example 5.8. Define ⟨an⟩ as follows.

• Let k ∈ N and when k(k−1)
2 < n ≤ (k+1)k

2 define

m = n − k(k−1)
2 , an = m

k .

• Since (k+1)k
2 − k(k−1)

2 = k for this range of n we have
everything of the form

1
k ,

2
k , . . . ,

k
k .

• Hence our sequence is just an ordering of all the rational
numbers in (0, 1], with repetitions of course

1
1 ,

1
2 ,

2
2 ,

1
3 ,

2
3 ,

3
3 ,

1
4 ,

2
4 ,

3
4 ,

4
4 , . . . .

• Thus the sequence is bounded between 0 and 1.
• One subsequence is that given by mk = k(k−1)

2 + 1,
amk

= 1
k and this converges to 0.

• Another mk = k(k−1)
2 + k = (k+1)k

2 , amk
= k

k = 1 and this
converges to 1.

• It follows that lim infn→∞ an = 0, lim supn→∞ an = 1.
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• Since (k+1)k
2 − k(k−1)

2 = k for this range of n we have
everything of the form

1
k ,

2
k , . . . ,

k
k .

• Hence our sequence is just an ordering of all the rational
numbers in (0, 1], with repetitions of course

1
1 ,

1
2 ,

2
2 ,

1
3 ,

2
3 ,

3
3 ,

1
4 ,

2
4 ,

3
4 ,

4
4 , . . . .

• Thus the sequence is bounded between 0 and 1.
• One subsequence is that given by mk = k(k−1)

2 + 1,
amk

= 1
k and this converges to 0.

• Another mk = k(k−1)
2 + k = (k+1)k

2 , amk
= k

k = 1 and this
converges to 1.

• It follows that lim infn→∞ an = 0, lim supn→∞ an = 1.
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Cauchy Sequences

• When we introduced the idea of convergence we
mentioned that one of the difficulties with the definition is
the need to know the value of the limit.

• As we have seen this is a major issue and we have used
various work rounds.

• Cauchy introduced an idea which avoids knowing a priori
anything about the value of the limit.

• Definition 5.3. A sequence ⟨an⟩ is a Cauchy sequence
when for every ε > 0 there is an N > 0 such that
whenever n > N and m > N we have

|an − am| < ε.

• We remark that in order to satisfy the criterion for being a
Cauchy sequence it suffices to know that the above holds
just for n > m > N because that gives the case m < n,
the case n < m holds by interchanging the values of m
and n, and the case m = n is clear.
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• Definition 5.3. A sequence ⟨an⟩ is a Cauchy sequence
when for every ε > 0 there is an N > 0 such that
whenever n > N and m > N we have

|an − am| < ε.

• There is an immediately useful theorem.

Theorem 6

A sequence converges if and only if it is a Cauchy sequence.

• We do not have to know anything about the limit!
• Proof. We have two tasks.
• 1. Suppose that the sequence ⟨an⟩ converges.
• Let ℓ be the limit and let ε > 0.
• Choose N so that whenever n > N we have |an − ℓ| < ε

2 .
• Then for any m, n with n > N, m > N, by the triangle

inequality, |an − am| =

|an − ℓ− (am − ℓ)| ≤ |am − ℓ|+ |am − ℓ| < ε

2
+

ε

2
= ε.
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• Definition 5.3. A sequence ⟨an⟩ is a Cauchy sequence
when for every ε > 0 there is an N > 0 such that
whenever n > N and m > N we have |an − am| < ε.
Theorem 6. A sequence converges if and only if it is a
Cauchy sequence.

• Proof, part 2. Suppose ⟨an⟩ is a Cauchy sequence.
• Choose N0 so that whenever n > m > N0 we have

|an − am| < 1, and then choose M ∈ N so that
N0 < M ≤ N0 + 1 and M is fixed by N0.

• Then for every n > M we have, by the triangle inequality,

|an| = |an − aM + aM | ≤ |an − aM |+ |aM | < 1 + |aM |.
• So ⟨an⟩ is bounded by max{|a1|, |a2|, . . . , |aM |, 1 + |aM |}.
• Hence, by the Bolzano-Weierstrass theorem, Theorem 4,
⟨an⟩ has a convergent subsequence, ⟨amn⟩.

• Let ℓ = limn→∞ amn .
• Let ε > 0. Choose N1 so that whenever n > N1 we have

|amn − ℓ| < ε

2
.
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• We just showed there is an N1 so that when n > N1

|amn − ℓ| < ε

2
. (4.1)

• We are assuming that we have a Cauchy sequence. Hence
there is an N2 so that when n > N2 and m > N2 we have

|am − an| <
ε

2
. (4.2)

• Now choose N = max{N1,N2}, so that whenever n > N
we have n > N2 and mn > N1.

• Then mn ≥ n > N2 also.

• Hence, by the triangle inequality, (4.1) and (4.2), when
n > N we have |an − ℓ| =

|an − amn + amn − ℓ| ≤ |an − amn |+ |amn − ℓ| < ε

2
+

ε

2
= ε.
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• Example 5.9. Suppose that 0 < λ < 1 and ⟨an⟩ is a
sequence which satisfies for each n ≥ 1 |an+1 − an| < λn.

• We have, for n > m ≥ 1, by generalizing the triangle
inequality to n −m terms (an easy induction), |an − am|

= |(an − an−1) + (an−1 − an−2) + · · ·+ (am+1 − am)|
≤ |an − an−1|+ |an−1 − an−2|+ · · ·+ |am+1 − am|
≤ λn−1 + λn−2 + · · ·+ λm

• This is the sum of the first n −m terms of a g.p. and

summing this gives
λm − λn

1− λ
<

λm

1− λ
.

• By Example 4.9. this → 0 as m → ∞.
• Hence, for every ε > 0 there is an N so that whenever
n > m > N we have |an − am| < ε.

• Thus ⟨an⟩ is a Cauchy sequence and so it converges.
• Note that we do not know the limit, only that it exists!
• Indeed given any real number ℓ it is possible to construct a
sequence which satisfies the hypothesis and converges to ℓ!

• For example, take an = ℓ+ λn.
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