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Repetitions are allowed so the list is not simply a set.
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Definition 4.1. A sequence is a list of real numbers
indexed by the members of N

di1,d2,d3,...,dnp,---

and a, denotes the n — th term.

Hopefully in any particular case we might have a formula
for a,, but this is not always so easy to establish.
Example 4.1. Examples of sequences are

1. —1,-4,-9,-16,...,—n°, ...,
2.1,1,1,...,1,...,

111 1
3. E’gvz’...,m,...’ )
4. 2,3,5,...,pn,... where p, denotes the n-th prime.

Repetitions are allowed so the list is not simply a set.

The notation {a,} is often used to denote a sequence, but
since it can be confused with the notation for a set, here
we will use the notation (aj).

The set A = {a, : n € N} denotes the range of (a,).

In all but one of the examples above we do have A = (a,).
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Definition 4.1. A sequence is a list of real numbers
indexed by the members of N

di1,d2,d3,...,dnp,---

and a, denotes the n — th term.

Hopefully in any particular case we might have a formula
for a,, but this is not always so easy to establish.
Example 4.1. Examples of sequences are

1. —1,—4,-9,-16,...,—n°, ...,
2. 1,1,1,...,1,...,
111 1
3. E’gvz’..-,m,...’
4. 2,3,5,...,pn,... where p, denotes the n-th prime.

Repetitions are allowed so the list is not simply a set.

The notation {a,} is often used to denote a sequence, but
since it can be confused with the notation for a set, here
we will use the notation (aj).

The set A = {a, : n € N} denotes the range of (a,).

In all but one of the examples above we do have A = (a,).
The exception is 2. where we have A = {1}.
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A sequence (a,) is bounded above (or below) when A is
bounded above (or below).

If A is both bounded above and below, then (a,) is
bounded.

If it is not bounded, then we say that (a,) is unbounded.

Recalling Definitions 2.6, 2.7, 2.8 we have at once the
following theorem.

Theorem 1

A sequence (ap) is bounded if and only if there is a real
number H such that for every n € N we have |a,| < H.
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Example 4.2. 1. (1) is bounded.
2. (n?) is unbounded.
3. <%> is bounded, by 1 from above and by O from below.

4. Here is a more complicated sequence. We define x,
inductively by

1 2
X1:27Xn+1:§ Xn+ — | .

Xn

® There is no really simple formula for x,, although
something could be worked out.
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Sequen)::es ° 2 <n2> IS Unbounded.
Robert C. ° 3 <%> is bounded, by 1 from above and by 0 from below.
Vaughan n . . .
® 4. Here is a more complicated sequence. We define x,
Introduction inductive/y by
5 1 n 2
X1 =2,Xp41==(xn+— ).
1 y An+1 2 n xn

® There is no really simple formula for x,, although
something could be worked out.
® However

1 2 3
X2 5 < +2> 5 5,

1 2 17
X3=<3+ > f:1.416...,

2\2 "3/2) 12
P LA LU DI T I
2\12 " 17) ~ 408

® Guess what is happening!
® This leads on naturally to the next topic
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number N such that whenever n € N and n > N we have

lan — ] < e.

«O> «Fr «Er =)

DA



Introduction

to Analysie Convergent Sequences

Sequences
S ® A sequence (a,) converges to the limit £ (where ¢ € R)
when the following holds.
Definition 4.2 Given any real number € > Q there is a real
Convergent
Sequences number N such that whenever n € N and n > N we have

lap — £] < e.
® When this is satisfied we write

lim a, =/
n—o0
or

ap — £ asn — oo,

and say that a, tends to £ as n tends to infinity.
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Convergent
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lap — £] < e.
® When this is satisfied we write
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and say that a, tends to £ as n tends to infinity.

® Note that in general we would expect that N is a function
of e.
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A sequence (a,) converges to the limit £ (where ¢ € R)
when the following holds.

Definition 4.2 Given any real number € > Q there is a real
number N such that whenever n € N and n > N we have

lap — £] < e.
When this is satisfied we write
lim a, =/
n—o0
or
ap — £ asn — oo,

and say that a, tends to £ as n tends to infinity.

Note that in general we would expect that N is a function
of e.

Occasionally we can only prove its existence, but those
proofs are usually pretty tricky.
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All other forms of convergence are modelled on this.
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There is one fundamental difficulty with this definition.
What if one does not know the value of ¢?

Often in order to make progress one will need to have a
good guess for £.
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Restate: A sequence (a,) converges to the limit ¢ (where
¢ € R) when the following holds.

Definition 4.2 Given any real number € > O there is a real
number N such that whenever n € N and n > N we have

lan — ¢] < e.
When this is satisfied we write

lim a,=¢
n—oo

This is the most important definition of the whole course.
You will learn to love it and hate it!
All other forms of convergence are modelled on this.

There is one fundamental difficulty with this definition.
What if one does not know the value of ¢?

Often in order to make progress one will need to have a
good guess for £.

Later we will see ways which avoid this.
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1 1
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Example 4.3. 1. Let a, = 1/n. We would guess that the
limit exists and is 0.

2. Suppose that b, is a constant sequence, i.e there is a
real number c such that for every n € N we have b, = c.
Then lim,_,o b, = c.

Proof. 1. Given any € > 0 we need to find an N such that
whenever n > N we have |a, — 0| < ¢, i.e.
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Example 4.3. 1. Let a, = 1/n. We would guess that the
limit exists and is 0.

2. Suppose that b, is a constant sequence, i.e there is a
real number c such that for every n € N we have b, = c.
Then lim,_,o b, = c.

Proof. 1. Given any € > 0 we need to find an N such that
whenever n > N we have |a, — 0| < ¢, i.e.

1 1 1
-|)-d-
n

n
Here we can choose N = 1/¢.

Thus whenever n > N we have
1 1
\an—€|:E<N=€

2. is even easier. Let € > 0 and choose N =1, say. Then,
whenever n > N we have

|bp —c|=|c—c|=0<e.

and we are done.
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® Note that to write down the formal proof we need to do

some “rough work” to help us find a suitable N, but once
we have a handle on N most of the rough work is
redundant. This is part of the normal process of
constructing formal proofs.

Example 4.4. let b, = 1/\/n. Prove that lim,_, b, = 0.
Proof. Let £ =0 and € > 0. Choose N = ¢~2. Thus
whenever n > N we have

|bn_€‘ =

aw

-5

and we are done.
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works for a,, we can take N/ = N + 1 and this works as an
N for c,.
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Example 4.5. Suppose that (a,) converges to (. Let
b, = apn+1. Then (by,) converges to (.

Proof. This is immediate from the definition, since if

|an — £] < € whenever n > N, then for such n we have
n+1>n>Nandso |b,—{| =l|apt1 — ¥ <e. O
Likewise, when n > 2, let ¢, = a,—1. Given an N(g) which
works for a,, we can take N/ = N + 1 and this works as an
N for c,.

| have not defined ¢y. It clearly does not play a rdle in
convergence and we could take it to be anything we like!
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The following example has its uses.
Example 4.5. Suppose that (a,) converges to (. Let
b, = apn+1. Then (by,) converges to (.

Proof. This is immediate from the definition, since if

|an — £] < € whenever n > N, then for such n we have
n+1>n>Nandso |b,—{| =l|apt1 — ¥ <e. O
Likewise, when n > 2, let ¢, = a,—1. Given an N(g) which
works for a,, we can take N/ = N + 1 and this works as an
N for c,.

| have not defined ¢y. It clearly does not play a rdle in
convergence and we could take it to be anything we like!

Generally shifting the suffix by a constant amount does
not change the convergence.
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«Or «Fr o«

DA



® |t might seem obvious that limits are unique, but it does
need to be proved.

A sequence can have at most one limit.

® Proof. We argue by contradiction.

«Or «Fr o«

DA



Introduction
to Analysis:
Sequences

Robert C.
Vaughan

Convergent
Sequences

® |t might seem obvious that limits are unique, but it does
need to be proved.

Theorem 2

A sequence can have at most one limit.

® Proof. We argue by contradiction.
® Suppose that (a,) has two different limits, k and 2.
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® |t is intuitive that when n is large a, is close to the value
of its limit, so it cannot be close to different limits.
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Theorem 2

A sequence can have at most one limit.

Proof. We argue by contradiction.

Suppose that (a,) has two different limits, k and 2.

It is intuitive that when n is large a, is close to the value
of its limit, so it cannot be close to different limits.

We can turn this into a proof. Let ¢ = 3|k — |.
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It might seem obvious that limits are unique, but it does
need to be proved.

Theorem 2

A sequence can have at most one limit.

Proof. We argue by contradiction.

Suppose that (a,) has two different limits, k and 2.

It is intuitive that when n is large a, is close to the value
of its limit, so it cannot be close to different limits.

We can turn this into a proof. Let ¢ = 3|k — |.

Choose Nj so that |a, — k| < € when n > Nj and N, so
that |a, — ¢| < & when n > N,.
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Sequences ® Proof. We argue by contradiction.

® Suppose that (a,) has two different limits, k and 2.

® |t is intuitive that when n is large a, is close to the value
of its limit, so it cannot be close to different limits.

® We can turn this into a proof. Let ¢ = 1|k — .

® Choose Nj so that |a, — k| < & when n > N; and N so
that |a, — ¢| < & when n > N,.

® Suppose that n > max{Ny, N>}. Then, by the triangle
inequality

k0] = |ap—f—(an—K)| < |an—b|+|an—K| < 26 = [k—(]

which is impossible.
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It might seem obvious that limits are unique, but it does
need to be proved.

Theorem 2

A sequence can have at most one limit.

Proof. We argue by contradiction.

Suppose that (a,) has two different limits, k and 2.

It is intuitive that when n is large a, is close to the value
of its limit, so it cannot be close to different limits.

We can turn this into a proof. Let ¢ = 3|k — |.

Choose Nj so that |a, — k| < € when n > Nj and N, so
that |a, — ¢| < & when n > N,.

Suppose that n > max{Ny, N>}. Then, by the triangle
inequality

|k—L| = |an—C—(an—k)| < |an—L|+|an—k| < 2e = |k—{|
which is impossible.

We are going to see many appearances by the triangle
inequality in convergence proofs.
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® The following theorem tells us in particular that
unbounded sequences are divergent.

Theorem 3

Every convergent sequence is bounded.
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® |f a sequence is not convergent, then it is divergent.
® Proving that a sequence is divergent can be awkward.

® The following theorem tells us in particular that
unbounded sequences are divergent.

Theorem 3

Every convergent sequence is bounded.

® Proof. Let (a,) be the sequence in question and let ¢ be
its limit.
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® \We use a special case of the definition of convergence. Let
€ =1 and choose N so that whenever n > N we have
lan — €] < 1.
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|an| = [(an =€) + 4] <fan = £] + (] <1+ 4],
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Every convergent sequence is bounded.
® Proof. Let (a,) be the sequence in question and let ¢ be
its limit.
® \We use a special case of the definition of convergence. Let
€ =1 and choose N so that whenever n > N we have
lan — €] < 1.
® Then, by the triangle inequality, whenever n > N

|an| = [(an =€) + 4] <fan = £] + (] <1+ 4],

® Now let H=max ({1 + [{|} U{|an| : n < N}).
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i ® The following theorem tells us in particular that

unbounded sequences are divergent.

Convergent Theorem 3
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Every convergent sequence is bounded.

® Proof. Let (a,) be the sequence in question and let ¢ be
its limit.

® \We use a special case of the definition of convergence. Let
€ =1 and choose N so that whenever n > N we have
lan — €] < 1.

® Then, by the triangle inequality, whenever n > N
|an| = |(an = O) + 4] < |an — €] + €] <1+ ]C].

® Now let H=max ({1 + [{|} U{|an| : n < N}).

[ J

Then, for every n € N, either n > N or n < N and so
lan| < H.
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The above is not the only way a sequence can diverge.
Example 4.7. The sequence ((—1)") is divergent.
Proof. The idea of the proof is simple. If it were to be
convergent, then successive terms will have to get closer
together. But here they are spaced 2 apart.
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The above is not the only way a sequence can diverge.
Example 4.7. The sequence ((—1)") is divergent.

Proof. The idea of the proof is simple. If it were to be
convergent, then successive terms will have to get closer
together. But here they are spaced 2 apart.

We argue by contradiction and use the triangle inequality
once more.
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The above is not the only way a sequence can diverge.
Example 4.7. The sequence ((—1)") is divergent.

Proof. The idea of the proof is simple. If it were to be
convergent, then successive terms will have to get closer
together. But here they are spaced 2 apart.

We argue by contradiction and use the triangle inequality
once more.

Suppose it converges to /, let £ =1 (any number <1
would do) and choose N accordingly.
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Example 4.6. The sequence (y/n) is divergent.

The above is not the only way a sequence can diverge.
Example 4.7. The sequence ((—1)") is divergent.
Proof. The idea of the proof is simple. If it were to be
convergent, then successive terms will have to get closer
together. But here they are spaced 2 apart.

We argue by contradiction and use the triangle inequality
once more.

Suppose it converges to /, let £ =1 (any number <1
would do) and choose N accordingly.

Then whenever n > N we have

2=|(=1)"+(-1)"| = |[(-1)" - (-1)™*|
=[(-1)" == ((-=1)"" = 1)
<|(-1)" =+ (- - <141=2

which is impossible.
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Example 4.6. The sequence (y/n) is divergent.

The above is not the only way a sequence can diverge.
Example 4.7. The sequence ((—1)") is divergent.
Proof. The idea of the proof is simple. If it were to be
convergent, then successive terms will have to get closer
together. But here they are spaced 2 apart.

We argue by contradiction and use the triangle inequality
once more.

Suppose it converges to /, let £ =1 (any number <1
would do) and choose N accordingly.

Then whenever n > N we have

2=|(-1)"+(-1)"| = |(=1)" = (=1)"*!]
=[(-1)" = £~ (=)™ = 0)]
<=1+ (- =t <1+1=2
which is impossible.
Note that it diverges even though it is bounded. In other

words being bounded is not enough to confer convergence
on a sequence.
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® How about more complicated sequences such as
(1+1/n)")?

® |t could be annoying to have to use the € definition.
® There are theorems which enable us to work round this.

Theorem 4 (The Combination Theorem for sequences)

Suppose that (a,) converges to « and (bp) converges to [3 as
n — oo, and let A and p be real numbers. Then

(i) (Aan + nby,) converges to Ao + s as n — oo,

(ii) {(anbp) converges to a5 as n — oo.

(iii) If B # 0, then%—)gasn%oo.
n

B
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® |t could be annoying to have to use the € definition.
® There are theorems which enable us to work round this.

Theorem 4 (The Combination Theorem for sequences)

Suppose that (a,) converges to « and (bp) converges to [3 as
n — oo, and let A and p be real numbers. Then

(i) (Aan + nby,) converges to Ao + s as n — oo,

(ii) {(anbp) converges to a5 as n — oo.

(iii) If B # 0, then%—)gasn%oo.
n

B

® We will see many variants of this as the subject progresses.
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® How about more complicated sequences such as

(14+1/m)")?

® |t could be annoying to have to use the € definition.
® There are theorems which enable us to work round this.

Theorem 4 (The Combination Theorem for sequences)

Suppose that (a,) converges to « and (bp) converges to [3 as
n — oo, and let A and p be real numbers. Then

(i) (Aan + nby,) converges to Ao + s as n — oo,

(ii) {(anbp) converges to a5 as n — oo.

(iii) If B # 0, then%—)gasn%oo.
n

B

® We will see many variants of this as the subject progresses.

® In part (iii) there is a convention. Since 3 # 0 we are
confident that there is some Ny so that for n > Ny we
have b, # 0. It is possible there are n < Ny with b, = 0.
In that case the convention is that we suppose that
n > Ny and ignore the n < Nj.
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® Theorem 4. Suppose that (a,) converges to « and (bp)
converges to 3 as n — oo, and let A\ and p be real
numbers. Then
(i) (Aan + wuby,) converges to Ao + pf3 as n — oo,
(ii) {(anbp) converges to a5 as n — oo.

(iii) If B # 0, then % — % as n — oo.

n
® Proof. (i) Let € > 0. Choose Ny, N, so that

€
a, — a| < ————— whenever n > N

€
b, — B| < ———— whenever n > Nj.
16 =41 2(1+[ul)
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® Theorem 4. Suppose that (a,) converges to « and (bp)
converges to 3 as n — oo, and let A\ and p be real
numbers. Then
(i) (Aan + wuby,) converges to Ao + pf3 as n — oo,
(ii) {(anbp) converges to a5 as n — oo.

(iii) If B # 0, then % — % as n — oo.

n
® Proof. (i) Let € > 0. Choose Ny, N, so that

lan — a < &
2(1+[A])

13
by— B < s
1bo =Bl < 3 )

® Let N = max{Ni, N2} and suppose that n > N.

whenever n > Ny

whenever n > Ns.
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(ii) {(anbp) converges to a5 as n — oo.
a a
S (iii) If 3 # 0, then b—" — 3 as n— oo.
n
® Proof. (i) Let € > 0. Choose Ny, N, so that

lan — al < whenever n > N;

€
2(1+ |A)

€
2(1+[ul)
® Let N = max{Ni, N2} and suppose that n > N.
® Then, by the triangle inequality,

|[Aap + ubp — Aa — pB| = |Man — @) + u(bn, — B)|
< I)\Ilan—a|+lullb —5|
< Al

|bn — Bl <

whenever n > Ns.

+ lul <€+€ e
i —=e
) (1+H) 2
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converges to 3 as n — oo, and let \ and . be real
numbers. Then

(i) (Aap + pby) converges to Ao+ 3 as n — oo,
(ii) (apbp) converges to a3 as n — 0.

® Proof. (ii) We relate apb, — a3 to a, — v and b, — 3 via

anbp — af = (ap — )by + a(b, — B).

(2.1)



Introduction ® Theorem 4. Suppose that (a,) converges to o and (b,)

to Analysis:

Sequences converges to 3 as n — oo, and let \ and . be real
Robert C. numbers. Then
Vaughan

(i) (Aap + pby) converges to Ao+ 3 as n — oo,
(ii) (apbp) converges to a3 as n — 0.
S ® Proof. (ii) We relate apb, — a3 to a, — v and b, — 3 via

anbp — af = (ap — )by + a(b, — B). (2.1)
® (bp) is convergent. So there is an H so that |b,| < H.
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Jousten (i) (Aap + pby) converges to Ao+ 3 as n — oo,
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Converacny ® Proof. (ii) We relate apb, — a3 to a, — v and b, — 3 via
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anbp — af = (ap — )by + a(b, — B). (2.1)

® (bp) is convergent. So there is an H so that |b,| < H.
® Now we can imitate (i). Let € > 0, choose Ny, N> so that

lan — al < m whenever n > N;

|bn — B < m whenever n > N,

and suppose that n > N = max{ Ny, N }.
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Theorem 4. Suppose that (a,) converges to « and (b,)
converges to 3 as n — oo, and let \ and . be real
numbers. Then

(i) (Aap + pby) converges to Ao+ 3 as n — oo,

(ii) (apbp) converges to a3 as n — 0.

Proof. (ii) We relate a,b, — af3 to a, — « and b, — (3 via

anbp — af = (ap — )by + a(b, — B). (2.1)
(bp) is convergent. So there is an H so that |b,| < H.

Now we can imitate (i). Let € > 0, choose Ny, N, so that

lan — al < m whenever n > N;

|bn — B < m whenever n > N,

and suppose that n > N = max{ Ny, N }.

Then, by (2.1), and the triangle inequality |a,b, — af| <
30 — allbal + lallbn — 8] < sz H + lal s

€ £ __
<§+§—E.
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® Theorem 4. Suppose that (a,) converges to « and (bp)

converges to 8 as n — oo, and let \ and u be real
numbers. Then

(ii) {(anbp) converges to a5 as n — oo.
(iii) If B # 0, then % — % as n— oo.
® Proof. (iii) In view of (ii), it suffices to prove that

1 1
bfn—>Basn—>oo.
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® Somehow we need to make use of 5 ## 0. From the special
case € = 3|3| we know that there is an N such that
whenever n > N; we have |b, — 3| < 3|8| so that by the
triangle inequality we have |b,| > |5]/2.
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Theorem 4. Suppose that (a,) converges to « and (bp)
converges to 8 as n — oo, and let \ and u be real
numbers. Then
(ii) {(anbp) converges to a5 as n — oo.
(iii) If B # 0, then % asn— oo

by, p

Proof. (iii) In view of (ii), it suffices to prove that

1 1
E%Basn%(}o.

Somehow we need to make use of 5 # 0. From the special
case € = 3|3| we know that there is an N such that
whenever n > N; we have |b, — 3| < 3|8| so that by the
triangle inequality we have |b,| > |5]/2.

Now choose an arbitrary e > 0 and N, so that whenever

n > N, we have |b, — 8] < €|8/%/(2).
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Theorem 4. Suppose that (a,) converges to « and (bp)
converges to 8 as n — oo, and let \ and u be real
numbers. Then
(ii) {(anbp) converges to a5 as n — oo.
(iii) If B # 0, then % asn— oo

by, p

Proof. (iii) In view of (ii), it suffices to prove that

1 1
E%Basn%(}o.

Somehow we need to make use of 5 # 0. From the special
case € = 3|3| we know that there is an N such that
whenever n > N; we have |b, — 3| < 3|8| so that by the
triangle inequality we have |b,| > |5]/2.

Now choose an arbitrary e > 0 and N, so that whenever

n > N, we have |b, — 8] < €|8/%/(2).

Let N = max{Nl, Ng}.
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Theorem 4. Suppose that (a,) converges to « and (bp)
converges to 8 as n — oo, and let \ and u be real
numbers. Then
(ii) {(anbp) converges to a5 as n — oo.
(iii) If B # 0, then % asn— oo

by, p

Proof. (iii) In view of (ii), it suffices to prove that

1 1
E%Basn%(}o.

Somehow we need to make use of 5 # 0. From the special
case € = 3|3| we know that there is an N such that
whenever n > N; we have |b, — 3| < 3|8| so that by the
triangle inequality we have |b,| > |5]/2.

Now choose an arbitrary e > 0 and N, so that whenever

n > N, we have |b, — 8] < €|8/%/(2).

Let N = max{Nl, Ng}.

Then whenever n > N we have

LA |B=bn| _ 16— bal _ 28— bn|
bnf3 |bnl| 3] 812

<e€

by B|
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Vaughan n—00 4”4 + 5n3 - 3” 4
® Proof. We have

Convergent _ —
Sequences n4 - 3”2 + 5 1 - 3n 2 + 5” 4

4n* +5n3—3n 4+5n~1 —3p3

® and we know from Example 4.3. 1. that n=! — 0 as
n — oo and that lim,_, ., c = c.
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. n*—=3n%+5 1
Robert C. ||m _— — -,
Vaughan n—00 4”4 + 5n3 - 3” 4

Proof. We have
Seavencer. n*—3n+5 1-3n2+4+5n"*
4n* +5n3—3n 4+5n~1 —3p3

® and we know from Example 4.3. 1. that n=! — 0 as
n — oo and that lim,_, ., c = c.
® Hence we can apply Theorem 4.4 multiple times and
obtain successively
n? = 0, n3= 0, nt > 0,
1-3n245n"% =1,
445071 —3n73 = 4,
1-3n2+5n% 1
— —.
4+5n~1—-3n73 4
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® What if we do not have an exact formula for the general
term of the sequence?

® The next theorem is very useful in such circumstances.
Theorem 5 (The Sandwich Theorem)

Suppose that (an), (bn), (cn) are three real sequences with
an < b, <c, forevery n e N, and a, — £ as n — oo and
¢, —¥fasn— o0o. Then b, — ¢ as n — 0o
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® What if we do not have an exact formula for the general
term of the sequence?

® The next theorem is very useful in such circumstances.
Theorem 5 (The Sandwich Theorem)

Suppose that (ap), (bn), (cn) are three real sequences with
an < b, <c, forevery n e N, and a, — £ as n — oo and
¢, —¥fasn— o0o. Then b, — ¢ as n — 0o

® Let ¢ > 0. Choose Nj so that whenever n > N; we have
|an — £| < € and choose N, so that whenever n > N, we
have |c, — /| < e.
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® What if we do not have an exact formula for the general
term of the sequence?

® The next theorem is very useful in such circumstances.
Theorem 5 (The Sandwich Theorem)

Suppose that (ap), (bn), (cn) are three real sequences with
an < b, <c, forevery n e N, and a, — £ as n — oo and
¢, —¥fasn— o0o. Then b, — ¢ as n — 0o

® Let ¢ > 0. Choose Nj so that whenever n > N; we have
|an — £| < € and choose N, so that whenever n > N, we
have |c, — /| < e.

o Let N = max{Ny, Np}.
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® What if we do not have an exact formula for the general
term of the sequence?
® The next theorem is very useful in such circumstances.

Theorem 5 (The Sandwich Theorem)

Suppose that (ap), (bn), (cn) are three real sequences with
an < b, <c, forevery n e N, and a, — £ as n — oo and
¢, —¥fasn— o0o. Then b, — ¢ as n — 0o

® Let ¢ > 0. Choose Nj so that whenever n > N; we have
|an — £| < € and choose N, so that whenever n > N, we
have |c, — /| < e.

o Let N = max{Ny, Np}.

® Then, whenever n > N, we have

—e<ap—L0<b,— €< c,— L <e,
—e< by, — ¥l <e,
|bp—{] < €.
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e Example 4.9. Suppose that |x| < 1. Then x" — 0 as
n — 0o.

® Proof. If x =0, so that x” = 0, then we already know the
result.
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® Thus we may suppose that x # 0, and thus |x|~ > 1.
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Example 4.9. Suppose that |x| < 1. Then x" — 0 as
n — 0o.

Proof. If x =0, so that x" = 0, then we already know the
result.

Thus we may suppose that x # 0, and thus |x|~! > 1.
Let y = |x|7! —1sothat y >0and |x|1 =1+y.
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Example 4.9. Suppose that |x| < 1. Then x" — 0 as
n — 0o.

Proof. If x =0, so that x" = 0, then we already know the
result.

Thus we may suppose that x # 0, and thus |x|~? > 1.
Let y = |x|7! —1sothat y >0and |x|1 =1+y.
By the binomial inequality

X" =0+y)"=1+ny>ny.
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Example 4.9. Suppose that |x| < 1. Then x" — 0 as
n — 0o.

Proof. If x =0, so that x" = 0, then we already know the
result.

Thus we may suppose that x # 0, and thus |x|~? > 1.
Let y = |x|7! —1sothat y >0and |x|1 =1+y.
By the binomial inequality

IX[7"=(1+y)">1+ny > ny.
Hence

1
0< |x|" < —.
ny
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Example 4.9. Suppose that |x| < 1. Then x" — 0 as
n — 0o.

Proof. If x =0, so that x" = 0, then we already know the
result.

Thus we may suppose that x # 0, and thus |x|~? > 1.
Let y = |x|7! —1sothat y >0and |x|1 =1+y.
By the binomial inequality

X" =0+y)"=1+ny>ny.

Hence 1
0<|x|"< —.
ny
Now both sides have limit 0 so we can apply the sandwich
theorem.
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Example 4.10. Suppose x > 0. Then x}/" — 1 as
n— oo.
By x1/" we mean that positive number t such that t” = x.

We have not established that such an object exists.
Shortly we will look at 21/2. However after we have studied
monotonic sequences Chapter 5 the proofs become easier.
Proof. We first suppose that x > 1.
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® We have not established that such an object exists.
Shortly we will look at 21/2. However after we have studied
S monotonic sequences Chapter 5 the proofs become easier.
® Proof. We first suppose that x > 1.
® Then x1/" > 1, for if x}/" < 1, then it would follow by the
order axioms and induction that x = (x1/")" < 1" = 1.
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Example 4.10. Suppose x > 0. Then x}/" — 1 as

n— oo.
By x1/" we mean that positive number t such that t” = x.

® We have not established that such an object exists.

Shortly we will look at 21/2. However after we have studied
monotonic sequences Chapter 5 the proofs become easier.

® Proof. We first suppose that x > 1.

Then x1/" > 1, for if x1/" < 1, then it would follow by the
order axioms and induction that x = (x1/")" < 1" = 1.
Let y, = x}/" — 1, so y, > 0 and (1+yn)"= (Xl/”)” = X.
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Example 4.10. Suppose x > 0. Then x}/" — 1 as

n— oo.
By x1/" we mean that positive number t such that t” = x.

® We have not established that such an object exists.

Shortly we will look at 21/2. However after we have studied
monotonic sequences Chapter 5 the proofs become easier.

® Proof. We first suppose that x > 1.

Then x1/7 > 1, for if x1/" < 1, then it would follow by the
order axioms and induction that x = (x1/")" < 1" = 1.
Let y, = x}/" — 1, so y, > 0 and (1+yn)"= (Xl/”)” = X.

® Hence, by the binomial inequality,

x=(14+yn)" > 14 ny, = 1+ n(x*/" — 1) which can be
rearranged to give 1 < x1/" <1+ X—;1 and again the
sandwich theorem comes to our aid.
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® We have not established that such an object exists.

Shortly we will look at 21/2. However after we have studied
monotonic sequences Chapter 5 the proofs become easier.

® Proof. We first suppose that x > 1.

Then x1/7 > 1, for if x1/" < 1, then it would follow by the
order axioms and induction that x = (x1/")" < 1" = 1.
Let y, = x}/" — 1, so y, > 0 and (1+yn)"= (Xl/”)” = X.

® Hence, by the binomial inequality,

x=(14+yn)" > 14 ny, = 1+ n(x*/" — 1) which can be
rearranged to give 1 < x1/" <1+ X—;1 and again the
sandwich theorem comes to our aid.

If instead we have 0 < x < 1, then

1 1 1/n
X1/n=<x> - L
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Example 4.10. Suppose x > 0. Then x}/" — 1 as
n— oo.
By x1/" we mean that positive number t such that t” = x.

® We have not established that such an object exists.

Shortly we will look at 21/2. However after we have studied
monotonic sequences Chapter 5 the proofs become easier.

® Proof. We first suppose that x > 1.

Then x1/7 > 1, for if x1/" < 1, then it would follow by the
order axioms and induction that x = (x1/")" < 1" = 1.
Let y, = x}/" — 1, so y, > 0 and (1+yn)"= (Xl/”)” = X.

® Hence, by the binomial inequality,

x=(14+yn)" > 14 ny, = 1+ n(x*/" — 1) which can be
rearranged to give 1 < x1/" <1+ X—;1 and again the
sandwich theorem comes to our aid.

If instead we have 0 < x < 1, then

1 1 1/n
X1/n=<x> - L

Hence, by the combination theorem we have the desired
conclusion.
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i ¢ Definition 4.3. A sequence (a,) diverges to +oo (written

Xp — +00) as n — oo when for any B > 0 there exists a
real number N such that whenever n > N we have a, > B.
Likewise (an) diverges to —oo (and we write x, — —00)

Divergence to as n — oo when for any b < 0 there exists a real number
N such that whenever n > N we have a, < b.
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S ¢ Definition 4.3. A sequence (a,) diverges to +oo (written

Xp — +00) as n — oo when for any B > 0 there exists a
real number N such that whenever n > N we have a, > B.
Likewise (an) diverges to —oo (and we write x, — —00)

ﬁ]iﬁs?@eme to as n — oo when for any b < 0 there exists a real number
N such that whenever n > N we have a, < b.

e Example 4.11 1. Let a, = +/n for n € N. Then (a,)

diverges to +00.
2. Let by = n+ (—1)"\/n. Then (by) diverges to +oc.



o Anatyse Divergence to Infinity

Sequences

Robert C. °

i Definition 4.3. A sequence (a,) diverges to +o0o (written

Xp — +00) as n — oo when for any B > 0 there exists a
real number N such that whenever n > N we have a, > B.
Likewise (an) diverges to —oo (and we write x, — —00)
mﬁfye"ce to as n — oo when for any b < 0 there exists a real number
N such that whenever n > N we have a, < b.
e Example 4.11 1. Let a, = +/n for n € N. Then (a,)
diverges to +00.
2. Let by = n+ (—1)"\/n. Then (by) diverges to +oc.
® Proof. 1. Let B > 0 and choose N = B2. Then, whenever
n>Nwehavean:ﬁ>\/N:B.
2. Let B > 0 and choose N = (v/B + 1)?. Then

by =n+(~1)"Vn>n—n=(ya-1)?-1
>(VE-3) 1= (vB+1) -i=8+VE>B
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