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• Definition 4.1. A sequence is a list of real numbers
indexed by the members of N

a1, a2, a3, . . . , an, . . .

and an denotes the n − th term.

• Hopefully in any particular case we might have a formula
for an, but this is not always so easy to establish.

• Example 4.1. Examples of sequences are
1. −1,−4,−9,−16, . . . ,−n2, . . . ,
2. 1, 1, 1, . . . , 1, . . . ,
3. 1

2 ,
1
3 ,

1
4 , . . . ,

1
n+1 , . . . ,

4. 2, 3, 5, . . . , pn, . . . where pn denotes the n-th prime.
• Repetitions are allowed so the list is not simply a set.
• The notation {an} is often used to denote a sequence, but

since it can be confused with the notation for a set, here
we will use the notation ⟨an⟩.

• The set A = {an : n ∈ N} denotes the range of ⟨an⟩.
• In all but one of the examples above we do have A = ⟨an⟩.
• The exception is 2. where we have A = {1}.
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• We have some obvious terminology.

• A sequence ⟨an⟩ is bounded above (or below) when A is
bounded above (or below).

• If A is both bounded above and below, then ⟨an⟩ is
bounded.

• If it is not bounded, then we say that ⟨an⟩ is unbounded.
• Recalling Definitions 2.6, 2.7, 2.8 we have at once the
following theorem.

Theorem 1

A sequence ⟨an⟩ is bounded if and only if there is a real
number H such that for every n ∈ N we have |an| ≤ H.
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• Example 4.2. 1. ⟨1n⟩ is bounded.

• 2. ⟨n2⟩ is unbounded.
• 3.

〈
1
n2

〉
is bounded, by 1 from above and by 0 from below.

• 4. Here is a more complicated sequence. We define xn
inductively by

x1 = 2, xn+1 =
1

2

(
xn +

2

xn

)
.

• There is no really simple formula for xn, although
something could be worked out.

• However

x2 =
1

2

(
2 +

2

2

)
=

3

2
= 1.5,

x3 =
1

2

(
3

2
+

2

3/2

)
=

17

12
= 1.416 . . . ,

x4 =
1

2

(
17

12
+

24

17

)
=

577

408
= 1.4142 . . . .

• Guess what is happening!
• This leads on naturally to the next topic
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Convergent Sequences

• A sequence ⟨an⟩ converges to the limit ℓ (where ℓ ∈ R)
when the following holds.
Definition 4.2 Given any real number ε > 0 there is a real
number N such that whenever n ∈ N and n > N we have

|an − ℓ| < ε.

• When this is satisfied we write

lim
n→∞

an = ℓ

or
an → ℓ asn → ∞,

and say that an tends to ℓ as n tends to infinity.

• Note that in general we would expect that N is a function
of ε.

• Occasionally we can only prove its existence, but those
proofs are usually pretty tricky.
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• Restate: A sequence ⟨an⟩ converges to the limit ℓ (where
ℓ ∈ R) when the following holds.
Definition 4.2 Given any real number ε > 0 there is a real
number N such that whenever n ∈ N and n > N we have

|an − ℓ| < ε.

• When this is satisfied we write

lim
n→∞

an = ℓ

• This is the most important definition of the whole course.
You will learn to love it and hate it!

• All other forms of convergence are modelled on this.

• There is one fundamental difficulty with this definition.
What if one does not know the value of ℓ?

• Often in order to make progress one will need to have a
good guess for ℓ.

• Later we will see ways which avoid this.
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• Often in order to make progress one will need to have a
good guess for ℓ.

• Later we will see ways which avoid this.
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• Example 4.3. 1. Let an = 1/n. We would guess that the
limit exists and is 0.
2. Suppose that bn is a constant sequence, i.e there is a
real number c such that for every n ∈ N we have bn = c.
Then limn→∞ bn = c.

• Proof. 1. Given any ε > 0 we need to find an N such that
whenever n > N we have |an − 0| < ε, i.e.

1

n
=

∣∣∣∣1n
∣∣∣∣ = ∣∣∣∣(1

n

)
− 0

∣∣∣∣ < ε.

• Here we can choose N = 1/ε.
• Thus whenever n > N we have

|an − ℓ| = 1

n
<

1

N
= ε

• 2. is even easier. Let ε > 0 and choose N = 1, say. Then,
whenever n > N we have

|bn − c | = |c − c | = 0 < ε.

and we are done.
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• Note that to write down the formal proof we need to do
some “rough work” to help us find a suitable N, but once
we have a handle on N most of the rough work is
redundant. This is part of the normal process of
constructing formal proofs.

• Example 4.4. let bn = 1/
√
n. Prove that limn→ bn = 0.

• Proof. Let ℓ = 0 and ε > 0. Choose N = ε−2. Thus
whenever n > N we have

|bn − ℓ| =
∣∣∣∣ 1√

n

∣∣∣∣ = 1√
n
<

1√
N

= ε

and we are done.
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• The following example has its uses.
Example 4.5. Suppose that ⟨an⟩ converges to ℓ. Let
bn = an+1. Then ⟨bn⟩ converges to ℓ.

• Proof. This is immediate from the definition, since if
|an − ℓ| < ε whenever n > N, then for such n we have
n + 1 > n > N and so |bn − ℓ| = |an+1 − ℓ| < ε. □

• Likewise, when n ≥ 2, let cn = an−1. Given an N(ε) which
works for an we can take N ′ = N + 1 and this works as an
N for cn.

• I have not defined c1. It clearly does not play a rôle in
convergence and we could take it to be anything we like!

• Generally shifting the suffix by a constant amount does
not change the convergence.
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• It might seem obvious that limits are unique, but it does
need to be proved.

Theorem 2

A sequence can have at most one limit.

• Proof. We argue by contradiction.
• Suppose that ⟨an⟩ has two different limits, k and ℓ.
• It is intuitive that when n is large an is close to the value

of its limit, so it cannot be close to different limits.
• We can turn this into a proof. Let ε = 1

2 |k − ℓ|.
• Choose N1 so that |an − k | < ε when n > N1 and N2 so
that |an − ℓ| < ε when n > N2.

• Suppose that n > max{N1,N2}. Then, by the triangle
inequality

|k−ℓ| = |an−ℓ−(an−k)| ≤ |an−ℓ|+|an−k| < 2ε = |k−ℓ|

which is impossible.
• We are going to see many appearances by the triangle
inequality in convergence proofs.
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• If a sequence is not convergent, then it is divergent.

• Proving that a sequence is divergent can be awkward.

• The following theorem tells us in particular that
unbounded sequences are divergent.

Theorem 3

Every convergent sequence is bounded.

• Proof. Let ⟨an⟩ be the sequence in question and let ℓ be
its limit.

• We use a special case of the definition of convergence. Let
ε = 1 and choose N so that whenever n > N we have
|an − ℓ| < 1.

• Then, by the triangle inequality, whenever n > N

|an| = |(an − ℓ) + ℓ| ≤ |an − ℓ|+ |ℓ| < 1 + |ℓ|.

• Now let H = max
(
{1 + |ℓ|} ∪ {|an| : n ≤ N}

)
.

• Then, for every n ∈ N, either n > N or n ≤ N and so
|an| ≤ H.
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|an − ℓ| < 1.

• Then, by the triangle inequality, whenever n > N

|an| = |(an − ℓ) + ℓ| ≤ |an − ℓ|+ |ℓ| < 1 + |ℓ|.

• Now let H = max
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)
.

• Then, for every n ∈ N, either n > N or n ≤ N and so
|an| ≤ H.
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• Example 4.6. The sequence ⟨
√
n⟩ is divergent.

• The above is not the only way a sequence can diverge.
• Example 4.7. The sequence ⟨(−1)n⟩ is divergent.
• Proof. The idea of the proof is simple. If it were to be
convergent, then successive terms will have to get closer
together. But here they are spaced 2 apart.

• We argue by contradiction and use the triangle inequality
once more.

• Suppose it converges to ℓ, let ε = 1 (any number ≤ 1
would do) and choose N accordingly.

• Then whenever n > N we have

2 = |(−1)n + (−1)n| = |(−1)n − (−1)n+1|
= |(−1)n − ℓ−

(
(−1)n+1 − ℓ

)
|

≤ |(−1)n − ℓ|+ |(−1)n+1 − ℓ| < 1 + 1 = 2

which is impossible.
• Note that it diverges even though it is bounded. In other
words being bounded is not enough to confer convergence
on a sequence.
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• How about more complicated sequences such as

⟨(1 + 1/n)n⟩?

• It could be annoying to have to use the ε definition.
• There are theorems which enable us to work round this.

Theorem 4 (The Combination Theorem for sequences)

Suppose that ⟨an⟩ converges to α and ⟨bn⟩ converges to β as
n → ∞, and let λ and µ be real numbers. Then
(i) ⟨λan + µbn⟩ converges to λα+ µβ as n → ∞,
(ii) ⟨anbn⟩ converges to αβ as n → ∞.

(iii) If β ̸= 0, then
an
bn

→ α

β
as n → ∞.

• We will see many variants of this as the subject progresses.
• In part (iii) there is a convention. Since β ̸= 0 we are
confident that there is some N0 so that for n > N0 we
have bn ̸= 0. It is possible there are n ≤ N0 with bn = 0.
In that case the convention is that we suppose that
n > N0 and ignore the n ≤ N0.
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• Theorem 4. Suppose that ⟨an⟩ converges to α and ⟨bn⟩
converges to β as n → ∞, and let λ and µ be real
numbers. Then
(i) ⟨λan + µbn⟩ converges to λα+ µβ as n → ∞,
(ii) ⟨anbn⟩ converges to αβ as n → ∞.

(iii) If β ̸= 0, then
an
bn

→ α

β
as n → ∞.

• Proof. (i) Let ε > 0. Choose N1,N2 so that

|an − α| < ε

2(1 + |λ|)
whenever n > N1

|bn − β| < ε

2(1 + |µ|)
whenever n > N2.

• Let N = max{N1,N2} and suppose that n > N.
• Then, by the triangle inequality,

|λan + µbn − λα− µβ| = |λ(an − α) + µ(bn − β)|
≤ |λ||an − α|+ |µ||bn − β|

≤ |λ| ε

2(1 + |λ|)
+ |µ| ε

2(1 + |µ|)
<

ε

2
+

ε

2
= ε.
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• Proof. (ii) We relate anbn − αβ to an − α and bn − β via

anbn − αβ = (an − α)bn + α(bn − β). (2.1)

• ⟨bn⟩ is convergent. So there is an H so that |bn| ≤ H.
• Now we can imitate (i). Let ε > 0, choose N1,N2 so that

|an − α| < ε
2(1+H) whenever n > N1

|bn − β| < ε
2(1+|α|) whenever n > N2

and suppose that n > N = max{N1,N2}.
• Then, by (2.1), and the triangle inequality |anbn − αβ| ≤

|an − α||bn|+ |α||bn − β| ≤ ε
2(1+H)H + |α| ε

2(1+|α|)

< ε
2 + ε

2 = ε.
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(iii) If β ̸= 0, then
an
bn

→ α

β
as n → ∞.

• Proof. (iii) In view of (ii), it suffices to prove that

1
bn

→ 1
β as n → ∞.

• Somehow we need to make use of β ̸= 0. From the special
case ε = 1

2 |β| we know that there is an N1 such that
whenever n > N1 we have |bn − β| < 1

2 |β| so that by the
triangle inequality we have |bn| > |β|/2.

• Now choose an arbitrary ε > 0 and N2 so that whenever
n > N2 we have |bn − β| < ε|β|2/(2).

• Let N = max{N1,N2}.
• Then whenever n > N we have∣∣∣∣ 1bn − 1

β

∣∣∣∣ = ∣∣∣∣β − bn
bnβ

∣∣∣∣ = |β − bn|
|bn||β|

<
2|β − bn|

|β|2
< ε.
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• Example 4.8. Prove that

lim
n→∞

n4 − 3n2 + 5

4n4 + 5n3 − 3n
=

1

4
.

• Proof. We have

n4 − 3n2 + 5

4n4 + 5n3 − 3n
=

1− 3n−2 + 5n−4

4 + 5n−1 − 3n−3

• and we know from Example 4.3. 1. that n−1 → 0 as
n → ∞ and that limn→∞ c = c.

• Hence we can apply Theorem 4.4 multiple times and
obtain successively

n−2 → 0, n−3 → 0, n−4 → 0,

1− 3n−2 + 5n−4 → 1,

4 + 5n−1 − 3n−3 → 4,

1− 3n−2 + 5n−4

4 + 5n−1 − 3n−3
→ 1

4
.
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• What if we do not have an exact formula for the general
term of the sequence?

• The next theorem is very useful in such circumstances.

Theorem 5 (The Sandwich Theorem)

Suppose that ⟨an⟩, ⟨bn⟩, ⟨cn⟩ are three real sequences with
an ≤ bn ≤ cn for every n ∈ N, and an → ℓ as n → ∞ and
cn → ℓ as n → ∞. Then bn → ℓ as n → ∞

• Let ε > 0. Choose N1 so that whenever n > N1 we have
|an − ℓ| < ε and choose N2 so that whenever n > N2 we
have |cn − ℓ| < ε.

• Let N = max{N1,N2}.
• Then, whenever n > N, we have

−ε < an − ℓ ≤ bn − ℓ ≤ cn − ℓ < ε,

−ε < bn − ℓ < ε,

|bn−ℓ| < ε.
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• Example 4.9. Suppose that |x | < 1. Then xn → 0 as
n → ∞.

• Proof. If x = 0, so that xn = 0, then we already know the
result.

• Thus we may suppose that x ̸= 0, and thus |x |−1 > 1.

• Let y = |x |−1 − 1 so that y > 0 and |x |−1 = 1 + y .

• By the binomial inequality

|x |−n = (1 + y)n ≥ 1 + ny > ny .

• Hence

0 ≤ |x |n <
1

ny
.

• Now both sides have limit 0 so we can apply the sandwich
theorem.
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• Example 4.10. Suppose x > 0. Then x1/n → 1 as
n → ∞.

• By x1/n we mean that positive number t such that tn = x .
• We have not established that such an object exists.
Shortly we will look at 21/2. However after we have studied
monotonic sequences Chapter 5 the proofs become easier.

• Proof. We first suppose that x ≥ 1.
• Then x1/n ≥ 1, for if x1/n < 1, then it would follow by the
order axioms and induction that x = (x1/n)n < 1n = 1.

• Let yn = x1/n − 1, so yn ≥ 0 and (1 + yn)
n = (x1/n)n = x .

• Hence, by the binomial inequality,
x = (1 + yn)

n ≥ 1 + nyn = 1 + n(x1/n − 1) which can be
rearranged to give 1 ≤ x1/n ≤ 1 + x−1

n and again the
sandwich theorem comes to our aid.

• If instead we have 0 < x < 1, then

1

x1/n
=

(
1

x

)1/n

→ 1.

• Hence, by the combination theorem we have the desired
conclusion.
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• Definition 4.3. A sequence ⟨an⟩ diverges to +∞ (written
xn → +∞) as n → ∞ when for any B > 0 there exists a
real number N such that whenever n > N we have an > B.
Likewise ⟨an⟩ diverges to −∞ (and we write xn → −∞)
as n → ∞ when for any b < 0 there exists a real number
N such that whenever n > N we have an < b.

• Example 4.11 1. Let an =
√
n for n ∈ N. Then ⟨an⟩

diverges to +∞.
2. Let bn = n + (−1)n

√
n. Then ⟨bn⟩ diverges to +∞.

• Proof. 1. Let B > 0 and choose N = B2. Then, whenever
n > N we have an =

√
n >

√
N = B.

• 2. Let B > 0 and choose N = (
√
B + 1)2. Then

bn = n + (−1)n
√
n ≥ n −

√
n =

(√
n − 1

2

)2 − 1
4

>
(√

N − 1
2

)2
− 1

4 =
(√

B + 1
2

)2
− 1

4 = B +
√
B > B.



Introduction
to Analysis:
Sequences

Robert C.
Vaughan

Introduction

Convergent
Sequences

Divergence to
Infinity

Divergence to Infinity

• Definition 4.3. A sequence ⟨an⟩ diverges to +∞ (written
xn → +∞) as n → ∞ when for any B > 0 there exists a
real number N such that whenever n > N we have an > B.
Likewise ⟨an⟩ diverges to −∞ (and we write xn → −∞)
as n → ∞ when for any b < 0 there exists a real number
N such that whenever n > N we have an < b.

• Example 4.11 1. Let an =
√
n for n ∈ N. Then ⟨an⟩

diverges to +∞.
2. Let bn = n + (−1)n

√
n. Then ⟨bn⟩ diverges to +∞.

• Proof. 1. Let B > 0 and choose N = B2. Then, whenever
n > N we have an =

√
n >

√
N = B.

• 2. Let B > 0 and choose N = (
√
B + 1)2. Then

bn = n + (−1)n
√
n ≥ n −

√
n =

(√
n − 1

2

)2 − 1
4

>
(√

N − 1
2

)2
− 1

4 =
(√

B + 1
2

)2
− 1

4 = B +
√
B > B.



Introduction
to Analysis:
Sequences

Robert C.
Vaughan

Introduction

Convergent
Sequences

Divergence to
Infinity

Divergence to Infinity

• Definition 4.3. A sequence ⟨an⟩ diverges to +∞ (written
xn → +∞) as n → ∞ when for any B > 0 there exists a
real number N such that whenever n > N we have an > B.
Likewise ⟨an⟩ diverges to −∞ (and we write xn → −∞)
as n → ∞ when for any b < 0 there exists a real number
N such that whenever n > N we have an < b.

• Example 4.11 1. Let an =
√
n for n ∈ N. Then ⟨an⟩

diverges to +∞.
2. Let bn = n + (−1)n

√
n. Then ⟨bn⟩ diverges to +∞.

• Proof. 1. Let B > 0 and choose N = B2. Then, whenever
n > N we have an =

√
n >

√
N = B.

• 2. Let B > 0 and choose N = (
√
B + 1)2. Then

bn = n + (−1)n
√
n ≥ n −

√
n =

(√
n − 1

2

)2 − 1
4

>
(√

N − 1
2

)2
− 1

4 =
(√

B + 1
2

)2
− 1

4 = B +
√
B > B.


	Introduction
	Convergent Sequences
	Divergence to Infinity

