Introduction to Analysis: Sequences

Robert C. Vaughan

February 23, 2024

Introduction to Analysis: Sequences

Robert C. Vaughan

- Definition 4.1. A sequence is a list of real numbers indexed by the members of \mathbb{N}

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

and a_{n} denotes the $n-t h$ term.

- Definition 4.1. A sequence is a list of real numbers indexed by the members of \mathbb{N}

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

and a_{n} denotes the $n-t h$ term.

- Hopefully in any particular case we might have a formula for a_{n}, but this is not always so easy to establish.
- Definition 4.1. A sequence is a list of real numbers indexed by the members of \mathbb{N}

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

and a_{n} denotes the $n-t h$ term.

- Hopefully in any particular case we might have a formula for a_{n}, but this is not always so easy to establish.
- Example 4.1. Examples of sequences are

1. $-1,-4,-9,-16, \ldots,-n^{2}, \ldots$,
2. $1,1,1, \ldots, 1, \ldots$,
3. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n+1}, \ldots$,
4. $2,3,5, \ldots, p_{n}, \ldots$ where p_{n} denotes the n-th prime.

- Definition 4.1. A sequence is a list of real numbers indexed by the members of \mathbb{N}

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

and a_{n} denotes the $n-t h$ term.

- Hopefully in any particular case we might have a formula for a_{n}, but this is not always so easy to establish.
- Example 4.1. Examples of sequences are 1. $-1,-4,-9,-16, \ldots,-n^{2}, \ldots$,

2. $1,1,1, \ldots, 1, \ldots$,
3. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n+1}, \ldots$,
4. $2,3,5, \ldots, p_{n}, \ldots$ where p_{n} denotes the n-th prime.

- Repetitions are allowed so the list is not simply a set.
- Definition 4.1. A sequence is a list of real numbers indexed by the members of \mathbb{N}

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

and a_{n} denotes the n-th term.

- Hopefully in any particular case we might have a formula for a_{n}, but this is not always so easy to establish.
- Example 4.1. Examples of sequences are 1. $-1,-4,-9,-16, \ldots,-n^{2}, \ldots$,

2. $1,1,1, \ldots, 1, \ldots$,
3. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n+1}, \ldots$,
4. $2,3,5, \ldots, p_{n}, \ldots$ where p_{n} denotes the n-th prime.

- Repetitions are allowed so the list is not simply a set.
- The notation $\left\{a_{n}\right\}$ is often used to denote a sequence, but since it can be confused with the notation for a set, here we will use the notation $\left\langle a_{n}\right\rangle$.
- Definition 4.1. A sequence is a list of real numbers indexed by the members of \mathbb{N}

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

and a_{n} denotes the $n-t h$ term.

- Hopefully in any particular case we might have a formula for a_{n}, but this is not always so easy to establish.
- Example 4.1. Examples of sequences are 1. $-1,-4,-9,-16, \ldots,-n^{2}, \ldots$,

2. $1,1,1, \ldots, 1, \ldots$,
3. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n+1}, \ldots$,
4. $2,3,5, \ldots, p_{n}, \ldots$ where p_{n} denotes the n-th prime.

- Repetitions are allowed so the list is not simply a set.
- The notation $\left\{a_{n}\right\}$ is often used to denote a sequence, but since it can be confused with the notation for a set, here we will use the notation $\left\langle a_{n}\right\rangle$.
- The set $\mathcal{A}=\left\{a_{n}: n \in \mathbb{N}\right\}$ denotes the range of $\left\langle a_{n}\right\rangle$.
- Definition 4.1. A sequence is a list of real numbers indexed by the members of \mathbb{N}

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

and a_{n} denotes the $n-t h$ term.

- Hopefully in any particular case we might have a formula for a_{n}, but this is not always so easy to establish.
- Example 4.1. Examples of sequences are

1. $-1,-4,-9,-16, \ldots,-n^{2}, \ldots$,
2. $1,1,1, \ldots, 1, \ldots$,
3. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n+1}, \ldots$,
4. $2,3,5, \ldots, p_{n}, \ldots$ where p_{n} denotes the n-th prime.

- Repetitions are allowed so the list is not simply a set.
- The notation $\left\{a_{n}\right\}$ is often used to denote a sequence, but since it can be confused with the notation for a set, here we will use the notation $\left\langle a_{n}\right\rangle$.
- The set $\mathcal{A}=\left\{a_{n}: n \in \mathbb{N}\right\}$ denotes the range of $\left\langle a_{n}\right\rangle$.
- In all but one of the examples above we do have $\mathcal{A}=\left\langle a_{n}\right\rangle$.
- Definition 4.1. A sequence is a list of real numbers indexed by the members of \mathbb{N}

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

and a_{n} denotes the $n-t h$ term.

- Hopefully in any particular case we might have a formula for a_{n}, but this is not always so easy to establish.
- Example 4.1. Examples of sequences are

1. $-1,-4,-9,-16, \ldots,-n^{2}, \ldots$,
2. $1,1,1, \ldots, 1, \ldots$,
3. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n+1}, \ldots$,
4. $2,3,5, \ldots, p_{n}, \ldots$ where p_{n} denotes the n-th prime.

- Repetitions are allowed so the list is not simply a set.
- The notation $\left\{a_{n}\right\}$ is often used to denote a sequence, but since it can be confused with the notation for a set, here we will use the notation $\left\langle a_{n}\right\rangle$.
- The set $\mathcal{A}=\left\{a_{n}: n \in \mathbb{N}\right\}$ denotes the range of $\left\langle a_{n}\right\rangle$.
- In all but one of the examples above we do have $\mathcal{A}=\left\langle a_{n}\right\rangle$.
- The exception is 2 . where we have $\mathcal{A}=\{1\}$.

```
Introduction
to Analysis:
Sequences
Robert C.
Vaughan
```

- We have some obvious terminology.

```
Introduction
```

Convergent
Sequences

- We have some obvious terminology.
- A sequence $\left\langle a_{n}\right\rangle$ is bounded above (or below) when \mathcal{A} is bounded above (or below).
- We have some obvious terminology.
- A sequence $\left\langle a_{n}\right\rangle$ is bounded above (or below) when \mathcal{A} is bounded above (or below).
- If \mathcal{A} is both bounded above and below, then $\left\langle a_{n}\right\rangle$ is bounded.
- We have some obvious terminology.
- A sequence $\left\langle a_{n}\right\rangle$ is bounded above (or below) when \mathcal{A} is bounded above (or below).
- If \mathcal{A} is both bounded above and below, then $\left\langle a_{n}\right\rangle$ is bounded.
- If it is not bounded, then we say that $\left\langle a_{n}\right\rangle$ is unbounded.
- We have some obvious terminology.
- A sequence $\left\langle a_{n}\right\rangle$ is bounded above (or below) when \mathcal{A} is bounded above (or below).
- If \mathcal{A} is both bounded above and below, then $\left\langle a_{n}\right\rangle$ is bounded.
- If it is not bounded, then we say that $\left\langle a_{n}\right\rangle$ is unbounded.
- Recalling Definitions 2.6, 2.7, 2.8 we have at once the following theorem.

Theorem 1

A sequence $\left\langle a_{n}\right\rangle$ is bounded if and only if there is a real number H such that for every $n \in \mathbb{N}$ we have $\left|a_{n}\right| \leq H$.

```
Introduction
to Analysis:
    Sequences
    Robert C.
    Vaughan
Introduction
Convergent
Sequences
Divergence to
Infinity
```

```
Introduction to Analysis: Sequences
Robert C. Vaughan
```

Introduction

- Example 4.2. 1. $\left\langle 1^{n}\right\rangle$ is bounded.
- 2. $\left\langle n^{2}\right\rangle$ is unbounded.

Introduction to Analysis: Sequences

Robert C. Vaughan

- Example 4.2. 1. $\left\langle 1^{n}\right\rangle$ is bounded.
- 2. $\left\langle n^{2}\right\rangle$ is unbounded.
- 3. $\left\langle\frac{1}{n^{2}}\right\rangle$ is bounded, by 1 from above and by 0 from below.

Robert C. Vaughan

- Example 4.2. 1. $\left\langle 1^{n}\right\rangle$ is bounded.
- 2. $\left\langle n^{2}\right\rangle$ is unbounded.
- 3. $\left\langle\frac{1}{n^{2}}\right\rangle$ is bounded, by 1 from above and by 0 from below.
- 4. Here is a more complicated sequence. We define x_{n} inductively by

$$
x_{1}=2, x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) .
$$

- Example 4.2. 1. $\left\langle 1^{n}\right\rangle$ is bounded.
- 2. $\left\langle n^{2}\right\rangle$ is unbounded.
- 3. $\left\langle\frac{1}{n^{2}}\right\rangle$ is bounded, by 1 from above and by 0 from below.
- 4. Here is a more complicated sequence. We define x_{n} inductively by

$$
x_{1}=2, x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) .
$$

- There is no really simple formula for x_{n}, although something could be worked out.
- Example 4.2. 1. $\left\langle 1^{n}\right\rangle$ is bounded.
- 2. $\left\langle n^{2}\right\rangle$ is unbounded.
- 3. $\left\langle\frac{1}{n^{2}}\right\rangle$ is bounded, by 1 from above and by 0 from below.
- 4. Here is a more complicated sequence. We define x_{n} inductively by

$$
x_{1}=2, x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) .
$$

- There is no really simple formula for x_{n}, although something could be worked out.
- However

$$
\begin{aligned}
& x_{2}=\frac{1}{2}\left(2+\frac{2}{2}\right)=\frac{3}{2}=1.5 \\
& x_{3}=\frac{1}{2}\left(\frac{3}{2}+\frac{2}{3 / 2}\right)=\frac{17}{12}=1.416 \ldots \\
& x_{4}=\frac{1}{2}\left(\frac{17}{12}+\frac{24}{17}\right)=\frac{577}{408}=1.4142 \ldots
\end{aligned}
$$

- Example 4.2. 1. $\left\langle 1^{n}\right\rangle$ is bounded.
- 2. $\left\langle n^{2}\right\rangle$ is unbounded.
- 3. $\left\langle\frac{1}{n^{2}}\right\rangle$ is bounded, by 1 from above and by 0 from below.
- 4. Here is a more complicated sequence. We define x_{n} inductively by

$$
x_{1}=2, x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) .
$$

- There is no really simple formula for x_{n}, although something could be worked out.
- However

$$
\begin{aligned}
& x_{2}=\frac{1}{2}\left(2+\frac{2}{2}\right)=\frac{3}{2}=1.5 \\
& x_{3}=\frac{1}{2}\left(\frac{3}{2}+\frac{2}{3 / 2}\right)=\frac{17}{12}=1.416 \ldots \\
& x_{4}=\frac{1}{2}\left(\frac{17}{12}+\frac{24}{17}\right)=\frac{577}{408}=1.4142 \ldots
\end{aligned}
$$

- Guess what is happening!
- Example 4.2. 1. $\left\langle 1^{n}\right\rangle$ is bounded.
- 2. $\left\langle n^{2}\right\rangle$ is unbounded.
- 3. $\left\langle\frac{1}{n^{2}}\right\rangle$ is bounded, by 1 from above and by 0 from below.
- 4. Here is a more complicated sequence. We define x_{n} inductively by

$$
x_{1}=2, x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) .
$$

- There is no really simple formula for x_{n}, although something could be worked out.
- However

$$
\begin{aligned}
& x_{2}=\frac{1}{2}\left(2+\frac{2}{2}\right)=\frac{3}{2}=1.5 \\
& x_{3}=\frac{1}{2}\left(\frac{3}{2}+\frac{2}{3 / 2}\right)=\frac{17}{12}=1.416 \ldots \\
& x_{4}=\frac{1}{2}\left(\frac{17}{12}+\frac{24}{17}\right)=\frac{577}{408}=1.4142 \ldots
\end{aligned}
$$

- Guess what is happening!
- This leads on naturally to the next topic

Convergent Sequences

Robert C.
Vaughan

- A sequence $\left\langle a_{n}\right\rangle$ converges to the limit ℓ (where $\ell \in \mathbb{R}$) when the following holds.
Definition 4.2 Given any real number $\varepsilon>0$ there is a real number N such that whenever $n \in \mathbb{N}$ and $n>N$ we have

$$
\left|a_{n}-\ell\right|<\varepsilon .
$$

Convergent Sequences

Robert C.
Vaughan

- A sequence $\left\langle a_{n}\right\rangle$ converges to the limit ℓ (where $\ell \in \mathbb{R}$) when the following holds.
Definition 4.2 Given any real number $\varepsilon>0$ there is a real number N such that whenever $n \in \mathbb{N}$ and $n>N$ we have

$$
\left|a_{n}-\ell\right|<\varepsilon .
$$

- When this is satisfied we write

$$
\lim _{n \rightarrow \infty} a_{n}=\ell
$$

or

$$
a_{n} \rightarrow \ell \text { asn } \rightarrow \infty,
$$

and say that a_{n} tends to ℓ as n tends to infinity.

Convergent Sequences

Robert C.
Vaughan

- A sequence $\left\langle a_{n}\right\rangle$ converges to the limit ℓ (where $\ell \in \mathbb{R}$) when the following holds.
Definition 4.2 Given any real number $\varepsilon>0$ there is a real number N such that whenever $n \in \mathbb{N}$ and $n>N$ we have

$$
\left|a_{n}-\ell\right|<\varepsilon .
$$

- When this is satisfied we write

$$
\lim _{n \rightarrow \infty} a_{n}=\ell
$$

or

$$
a_{n} \rightarrow \ell \text { asn } \rightarrow \infty,
$$

and say that a_{n} tends to ℓ as n tends to infinity.

- Note that in general we would expect that N is a function of ε.

Convergent Sequences

Robert C.
Vaughan

- A sequence $\left\langle a_{n}\right\rangle$ converges to the limit ℓ (where $\ell \in \mathbb{R}$) when the following holds.
Definition 4.2 Given any real number $\varepsilon>0$ there is a real number N such that whenever $n \in \mathbb{N}$ and $n>N$ we have

$$
\left|a_{n}-\ell\right|<\varepsilon
$$

- When this is satisfied we write

$$
\lim _{n \rightarrow \infty} a_{n}=\ell
$$

or

$$
a_{n} \rightarrow \ell \text { asn } \rightarrow \infty,
$$

and say that a_{n} tends to ℓ as n tends to infinity.

- Note that in general we would expect that N is a function of ε.
- Occasionally we can only prove its existence, but those proofs are usually pretty tricky.

Robert C. Vaughan

- Restate: A sequence $\left\langle a_{n}\right\rangle$ converges to the limit ℓ (where $\ell \in \mathbb{R}$) when the following holds.
Definition 4.2 Given any real number $\varepsilon>0$ there is a real number N such that whenever $n \in \mathbb{N}$ and $n>N$ we have

$$
\left|a_{n}-\ell\right|<\varepsilon .
$$

Robert C. Vaughan

- Restate: A sequence $\left\langle a_{n}\right\rangle$ converges to the limit ℓ (where $\ell \in \mathbb{R}$) when the following holds.
Definition 4.2 Given any real number $\varepsilon>0$ there is a real number N such that whenever $n \in \mathbb{N}$ and $n>N$ we have

$$
\left|a_{n}-\ell\right|<\varepsilon .
$$

- When this is satisfied we write

$$
\lim _{n \rightarrow \infty} a_{n}=\ell
$$

- Restate: A sequence $\left\langle a_{n}\right\rangle$ converges to the limit ℓ (where $\ell \in \mathbb{R}$) when the following holds.
Definition 4.2 Given any real number $\varepsilon>0$ there is a real number N such that whenever $n \in \mathbb{N}$ and $n>N$ we have

$$
\left|a_{n}-\ell\right|<\varepsilon .
$$

- When this is satisfied we write

$$
\lim _{n \rightarrow \infty} a_{n}=\ell
$$

- This is the most important definition of the whole course. You will learn to love it and hate it!
- Restate: A sequence $\left\langle a_{n}\right\rangle$ converges to the limit ℓ (where $\ell \in \mathbb{R}$) when the following holds.
Definition 4.2 Given any real number $\varepsilon>0$ there is a real number N such that whenever $n \in \mathbb{N}$ and $n>N$ we have

$$
\left|a_{n}-\ell\right|<\varepsilon .
$$

- When this is satisfied we write

$$
\lim _{n \rightarrow \infty} a_{n}=\ell
$$

- This is the most important definition of the whole course. You will learn to love it and hate it!
- All other forms of convergence are modelled on this.
- Restate: A sequence $\left\langle a_{n}\right\rangle$ converges to the limit ℓ (where $\ell \in \mathbb{R}$) when the following holds.
Definition 4.2 Given any real number $\varepsilon>0$ there is a real number N such that whenever $n \in \mathbb{N}$ and $n>N$ we have

$$
\left|a_{n}-\ell\right|<\varepsilon .
$$

- When this is satisfied we write

$$
\lim _{n \rightarrow \infty} a_{n}=\ell
$$

- This is the most important definition of the whole course. You will learn to love it and hate it!
- All other forms of convergence are modelled on this.
- There is one fundamental difficulty with this definition. What if one does not know the value of ℓ ?
- Restate: A sequence $\left\langle a_{n}\right\rangle$ converges to the limit ℓ (where $\ell \in \mathbb{R}$) when the following holds.
Definition 4.2 Given any real number $\varepsilon>0$ there is a real number N such that whenever $n \in \mathbb{N}$ and $n>N$ we have

$$
\left|a_{n}-\ell\right|<\varepsilon .
$$

- When this is satisfied we write

$$
\lim _{n \rightarrow \infty} a_{n}=\ell
$$

- This is the most important definition of the whole course. You will learn to love it and hate it!
- All other forms of convergence are modelled on this.
- There is one fundamental difficulty with this definition. What if one does not know the value of ℓ ?
- Often in order to make progress one will need to have a good guess for ℓ.
- Restate: A sequence $\left\langle a_{n}\right\rangle$ converges to the limit ℓ (where $\ell \in \mathbb{R}$) when the following holds.
Definition 4.2 Given any real number $\varepsilon>0$ there is a real number N such that whenever $n \in \mathbb{N}$ and $n>N$ we have

$$
\left|a_{n}-\ell\right|<\varepsilon .
$$

- When this is satisfied we write

$$
\lim _{n \rightarrow \infty} a_{n}=\ell
$$

- This is the most important definition of the whole course. You will learn to love it and hate it!
- All other forms of convergence are modelled on this.
- There is one fundamental difficulty with this definition. What if one does not know the value of ℓ ?
- Often in order to make progress one will need to have a good guess for ℓ.
- Later we will see ways which avoid this.
- Example 4.3. 1. Let $a_{n}=1 / n$. We would guess that the limit exists and is 0 .

2. Suppose that b_{n} is a constant sequence, i.e there is a real number c such that for every $n \in \mathbb{N}$ we have $b_{n}=c$. Then $\lim _{n \rightarrow \infty} b_{n}=c$.

- Example 4.3. 1. Let $a_{n}=1 / n$. We would guess that the limit exists and is 0 . 2. Suppose that b_{n} is a constant sequence, i.e there is a real number c such that for every $n \in \mathbb{N}$ we have $b_{n}=c$. Then $\lim _{n \rightarrow \infty} b_{n}=c$.
- Proof. 1. Given any $\varepsilon>0$ we need to find an N such that whenever $n>N$ we have $\left|a_{n}-0\right|<\varepsilon$, i.e.

$$
\frac{1}{n}=\left|\frac{1}{n}\right|=\left|\left(\frac{1}{n}\right)-0\right|<\varepsilon
$$

- Example 4.3. 1. Let $a_{n}=1 / n$. We would guess that the limit exists and is 0 . 2. Suppose that b_{n} is a constant sequence, i.e there is a real number c such that for every $n \in \mathbb{N}$ we have $b_{n}=c$. Then $\lim _{n \rightarrow \infty} b_{n}=c$.
- Proof. 1. Given any $\varepsilon>0$ we need to find an N such that whenever $n>N$ we have $\left|a_{n}-0\right|<\varepsilon$, i.e.

$$
\frac{1}{n}=\left|\frac{1}{n}\right|=\left|\left(\frac{1}{n}\right)-0\right|<\varepsilon
$$

- Here we can choose $N=1 / \varepsilon$.
- Example 4.3. 1. Let $a_{n}=1 / n$. We would guess that the limit exists and is 0 . 2. Suppose that b_{n} is a constant sequence, i.e there is a real number c such that for every $n \in \mathbb{N}$ we have $b_{n}=c$. Then $\lim _{n \rightarrow \infty} b_{n}=c$.
- Proof. 1. Given any $\varepsilon>0$ we need to find an N such that whenever $n>N$ we have $\left|a_{n}-0\right|<\varepsilon$, i.e.

$$
\frac{1}{n}=\left|\frac{1}{n}\right|=\left|\left(\frac{1}{n}\right)-0\right|<\varepsilon
$$

- Here we can choose $N=1 / \varepsilon$.
- Thus whenever $n>N$ we have

$$
\left|a_{n}-\ell\right|=\frac{1}{n}<\frac{1}{N}=\varepsilon
$$

- Example 4.3. 1. Let $a_{n}=1 / n$. We would guess that the limit exists and is 0 . 2. Suppose that b_{n} is a constant sequence, i.e there is a real number c such that for every $n \in \mathbb{N}$ we have $b_{n}=c$. Then $\lim _{n \rightarrow \infty} b_{n}=c$.
- Proof. 1. Given any $\varepsilon>0$ we need to find an N such that whenever $n>N$ we have $\left|a_{n}-0\right|<\varepsilon$, i.e.

$$
\frac{1}{n}=\left|\frac{1}{n}\right|=\left|\left(\frac{1}{n}\right)-0\right|<\varepsilon
$$

- Here we can choose $N=1 / \varepsilon$.
- Thus whenever $n>N$ we have

$$
\left|a_{n}-\ell\right|=\frac{1}{n}<\frac{1}{N}=\varepsilon
$$

- 2. is even easier. Let $\varepsilon>0$ and choose $N=1$, say. Then, whenever $n>N$ we have

$$
\left|b_{n}-c\right|=|c-c|=0<\varepsilon
$$

and we are done.

- Note that to write down the formal proof we need to do some "rough work" to help us find a suitable N, but once we have a handle on N most of the rough work is redundant. This is part of the normal process of constructing formal proofs.
- Note that to write down the formal proof we need to do some "rough work" to help us find a suitable N, but once we have a handle on N most of the rough work is redundant. This is part of the normal process of constructing formal proofs.
- Example 4.4. let $b_{n}=1 / \sqrt{n}$. Prove that $\lim _{n \rightarrow} b_{n}=0$.
- Note that to write down the formal proof we need to do some "rough work" to help us find a suitable N, but once we have a handle on N most of the rough work is redundant. This is part of the normal process of constructing formal proofs.
- Example 4.4. let $b_{n}=1 / \sqrt{n}$. Prove that $\lim _{n \rightarrow} b_{n}=0$.
- Proof. Let $\ell=0$ and $\varepsilon>0$. Choose $N=\varepsilon^{-2}$. Thus whenever $n>N$ we have

$$
\left|b_{n}-\ell\right|=\left|\frac{1}{\sqrt{n}}\right|=\frac{1}{\sqrt{n}}<\frac{1}{\sqrt{N}}=\varepsilon
$$

and we are done.

Robert C. Vaughan

- The following example has its uses. Example 4.5. Suppose that $\left\langle a_{n}\right\rangle$ converges to ℓ. Let $b_{n}=a_{n+1}$. Then $\left\langle b_{n}\right\rangle$ converges to ℓ.

Robert C. Vaughan

- The following example has its uses. Example 4.5. Suppose that $\left\langle a_{n}\right\rangle$ converges to ℓ. Let $b_{n}=a_{n+1}$. Then $\left\langle b_{n}\right\rangle$ converges to ℓ.
- Proof. This is immediate from the definition, since if $\left|a_{n}-\ell\right|<\varepsilon$ whenever $n>N$, then for such n we have $n+1>n>N$ and so $\left|b_{n}-\ell\right|=\left|a_{n+1}-\ell\right|<\varepsilon . \square$

Robert C. Vaughan

- The following example has its uses. Example 4.5. Suppose that $\left\langle a_{n}\right\rangle$ converges to ℓ. Let $b_{n}=a_{n+1}$. Then $\left\langle b_{n}\right\rangle$ converges to ℓ.
- Proof. This is immediate from the definition, since if $\left|a_{n}-\ell\right|<\varepsilon$ whenever $n>N$, then for such n we have $n+1>n>N$ and so $\left|b_{n}-\ell\right|=\left|a_{n+1}-\ell\right|<\varepsilon . \square$
- Likewise, when $n \geq 2$, let $c_{n}=a_{n-1}$. Given an $N(\varepsilon)$ which works for a_{n} we can take $N^{\prime}=N+1$ and this works as an N for c_{n}.
- The following example has its uses. Example 4.5. Suppose that $\left\langle a_{n}\right\rangle$ converges to ℓ. Let $b_{n}=a_{n+1}$. Then $\left\langle b_{n}\right\rangle$ converges to ℓ.
- Proof. This is immediate from the definition, since if $\left|a_{n}-\ell\right|<\varepsilon$ whenever $n>N$, then for such n we have $n+1>n>N$ and so $\left|b_{n}-\ell\right|=\left|a_{n+1}-\ell\right|<\varepsilon . \square$
- Likewise, when $n \geq 2$, let $c_{n}=a_{n-1}$. Given an $N(\varepsilon)$ which works for a_{n} we can take $N^{\prime}=N+1$ and this works as an N for c_{n}.
- I have not defined c_{1}. It clearly does not play a rôle in convergence and we could take it to be anything we like!
- The following example has its uses. Example 4.5. Suppose that $\left\langle a_{n}\right\rangle$ converges to ℓ. Let $b_{n}=a_{n+1}$. Then $\left\langle b_{n}\right\rangle$ converges to ℓ.
- Proof. This is immediate from the definition, since if $\left|a_{n}-\ell\right|<\varepsilon$ whenever $n>N$, then for such n we have $n+1>n>N$ and so $\left|b_{n}-\ell\right|=\left|a_{n+1}-\ell\right|<\varepsilon$. \square
- Likewise, when $n \geq 2$, let $c_{n}=a_{n-1}$. Given an $N(\varepsilon)$ which works for a_{n} we can take $N^{\prime}=N+1$ and this works as an N for c_{n}.
- I have not defined c_{1}. It clearly does not play a rôle in convergence and we could take it to be anything we like!
- Generally shifting the suffix by a constant amount does not change the convergence.

Introduction to Analysis: Sequences

Robert C.
Vaughan

Introduction
Convergent Sequences

Divergence to Infinity

- It might seem obvious that limits are unique, but it does need to be proved.

Theorem 2

A sequence can have at most one limit.

Introduction to Analysis: Sequences

Robert C.
Vaughan

- It might seem obvious that limits are unique, but it does need to be proved.

Theorem 2

A sequence can have at most one limit.

- Proof. We argue by contradiction.
- It might seem obvious that limits are unique, but it does need to be proved.

Theorem 2

A sequence can have at most one limit.

- Proof. We argue by contradiction.
- Suppose that $\left\langle a_{n}\right\rangle$ has two different limits, k and ℓ.
- It might seem obvious that limits are unique, but it does need to be proved.

Theorem 2

A sequence can have at most one limit.

- Proof. We argue by contradiction.
- Suppose that $\left\langle a_{n}\right\rangle$ has two different limits, k and ℓ.
- It is intuitive that when n is large a_{n} is close to the value of its limit, so it cannot be close to different limits.
- It might seem obvious that limits are unique, but it does need to be proved.

Theorem 2

A sequence can have at most one limit.

- Proof. We argue by contradiction.
- Suppose that $\left\langle a_{n}\right\rangle$ has two different limits, k and ℓ.
- It is intuitive that when n is large a_{n} is close to the value of its limit, so it cannot be close to different limits.
- We can turn this into a proof. Let $\varepsilon=\frac{1}{2}|k-\ell|$.
- It might seem obvious that limits are unique, but it does need to be proved.

Theorem 2

A sequence can have at most one limit.

- Proof. We argue by contradiction.
- Suppose that $\left\langle a_{n}\right\rangle$ has two different limits, k and ℓ.
- It is intuitive that when n is large a_{n} is close to the value of its limit, so it cannot be close to different limits.
- We can turn this into a proof. Let $\varepsilon=\frac{1}{2}|k-\ell|$.
- Choose N_{1} so that $\left|a_{n}-k\right|<\varepsilon$ when $n>N_{1}$ and N_{2} so that $\left|a_{n}-\ell\right|<\varepsilon$ when $n>N_{2}$.
- It might seem obvious that limits are unique, but it does need to be proved.

Theorem 2

A sequence can have at most one limit.

- Proof. We argue by contradiction.
- Suppose that $\left\langle a_{n}\right\rangle$ has two different limits, k and ℓ.
- It is intuitive that when n is large a_{n} is close to the value of its limit, so it cannot be close to different limits.
- We can turn this into a proof. Let $\varepsilon=\frac{1}{2}|k-\ell|$.
- Choose N_{1} so that $\left|a_{n}-k\right|<\varepsilon$ when $n>N_{1}$ and N_{2} so that $\left|a_{n}-\ell\right|<\varepsilon$ when $n>N_{2}$.
- Suppose that $n>\max \left\{N_{1}, N_{2}\right\}$. Then, by the triangle inequality

$$
|k-\ell|=\left|a_{n}-\ell-\left(a_{n}-k\right)\right| \leq\left|a_{n}-\ell\right|+\left|a_{n}-k\right|<2 \varepsilon=|k-\ell|
$$

which is impossible.

- It might seem obvious that limits are unique, but it does need to be proved.

Theorem 2

A sequence can have at most one limit.

- Proof. We argue by contradiction.
- Suppose that $\left\langle a_{n}\right\rangle$ has two different limits, k and ℓ.
- It is intuitive that when n is large a_{n} is close to the value of its limit, so it cannot be close to different limits.
- We can turn this into a proof. Let $\varepsilon=\frac{1}{2}|k-\ell|$.
- Choose N_{1} so that $\left|a_{n}-k\right|<\varepsilon$ when $n>N_{1}$ and N_{2} so that $\left|a_{n}-\ell\right|<\varepsilon$ when $n>N_{2}$.
- Suppose that $n>\max \left\{N_{1}, N_{2}\right\}$. Then, by the triangle inequality

$$
|k-\ell|=\left|a_{n}-\ell-\left(a_{n}-k\right)\right| \leq\left|a_{n}-\ell\right|+\left|a_{n}-k\right|<2 \varepsilon=|k-\ell|
$$

which is impossible.

- We are going to see many appearances by the triangle inequality in convergence proofs.
Introduction to Analysis: Sequences
Robert C.
Vaughan

Introduction

Convergent Sequences

- If a sequence is not convergent, then it is divergent.

Introduction to Analysis: Sequences

Robert C. Vaughan

Introduction
Convergent Sequences

- If a sequence is not convergent, then it is divergent.
- Proving that a sequence is divergent can be awkward.
- If a sequence is not convergent, then it is divergent.
- Proving that a sequence is divergent can be awkward.
- The following theorem tells us in particular that unbounded sequences are divergent.

Theorem 3

Every convergent sequence is bounded.

Robert C.
Vaughan

- If a sequence is not convergent, then it is divergent.
- Proving that a sequence is divergent can be awkward.
- The following theorem tells us in particular that unbounded sequences are divergent.

Theorem 3

Every convergent sequence is bounded.

- Proof. Let $\left\langle a_{n}\right\rangle$ be the sequence in question and let ℓ be its limit.
- If a sequence is not convergent, then it is divergent.
- Proving that a sequence is divergent can be awkward.
- The following theorem tells us in particular that unbounded sequences are divergent.

Theorem 3

Every convergent sequence is bounded.

- Proof. Let $\left\langle a_{n}\right\rangle$ be the sequence in question and let ℓ be its limit.
- We use a special case of the definition of convergence. Let $\varepsilon=1$ and choose N so that whenever $n>N$ we have $\left|a_{n}-\ell\right|<1$.
- If a sequence is not convergent, then it is divergent.
- Proving that a sequence is divergent can be awkward.
- The following theorem tells us in particular that unbounded sequences are divergent.

Theorem 3

Every convergent sequence is bounded.

- Proof. Let $\left\langle a_{n}\right\rangle$ be the sequence in question and let ℓ be its limit.
- We use a special case of the definition of convergence. Let $\varepsilon=1$ and choose N so that whenever $n>N$ we have $\left|a_{n}-\ell\right|<1$.
- Then, by the triangle inequality, whenever $n>N$

$$
\left|a_{n}\right|=\left|\left(a_{n}-\ell\right)+\ell\right| \leq\left|a_{n}-\ell\right|+|\ell|<1+|\ell| .
$$

- If a sequence is not convergent, then it is divergent.
- Proving that a sequence is divergent can be awkward.
- The following theorem tells us in particular that unbounded sequences are divergent.

Theorem 3

Every convergent sequence is bounded.

- Proof. Let $\left\langle a_{n}\right\rangle$ be the sequence in question and let ℓ be its limit.
- We use a special case of the definition of convergence. Let $\varepsilon=1$ and choose N so that whenever $n>N$ we have $\left|a_{n}-\ell\right|<1$.
- Then, by the triangle inequality, whenever $n>N$

$$
\left|a_{n}\right|=\left|\left(a_{n}-\ell\right)+\ell\right| \leq\left|a_{n}-\ell\right|+|\ell|<1+|\ell| .
$$

- Now let $H=\max \left(\{1+|\ell|\} \cup\left\{\left|a_{n}\right|: n \leq N\right\}\right)$.
- If a sequence is not convergent, then it is divergent.
- Proving that a sequence is divergent can be awkward.
- The following theorem tells us in particular that unbounded sequences are divergent.

Theorem 3

Every convergent sequence is bounded.

- Proof. Let $\left\langle a_{n}\right\rangle$ be the sequence in question and let ℓ be its limit.
- We use a special case of the definition of convergence. Let $\varepsilon=1$ and choose N so that whenever $n>N$ we have $\left|a_{n}-\ell\right|<1$.
- Then, by the triangle inequality, whenever $n>N$

$$
\left|a_{n}\right|=\left|\left(a_{n}-\ell\right)+\ell\right| \leq\left|a_{n}-\ell\right|+|\ell|<1+|\ell| .
$$

- Now let $H=\max \left(\{1+|\ell|\} \cup\left\{\left|a_{n}\right|: n \leq N\right\}\right)$.
- Then, for every $n \in \mathbb{N}$, either $n>N$ or $n \leq N$ and so $\left|a_{n}\right| \leq H$.
Introduction to Analysis: Sequences
Robert C.
Vaughan

Introduction

Convergent Sequences

- Example 4.6. The sequence $\langle\sqrt{n}\rangle$ is divergent.
- Example 4.6. The sequence $\langle\sqrt{n}\rangle$ is divergent.

Robert C.
Vaughan

Introduction
Convergent Sequences

Introduction to Analysis: Sequences

Robert C. Vaughan

- Example 4.6. The sequence $\langle\sqrt{n}\rangle$ is divergent.
- The above is not the only way a sequence can diverge.
- Example 4.7. The sequence $\left\langle(-1)^{n}\right\rangle$ is divergent.
- Example 4.6. The sequence $\langle\sqrt{n}\rangle$ is divergent.
- The above is not the only way a sequence can diverge.
- Example 4.7. The sequence $\left\langle(-1)^{n}\right\rangle$ is divergent.
- Proof. The idea of the proof is simple. If it were to be convergent, then successive terms will have to get closer together. But here they are spaced 2 apart.
- Example 4.6. The sequence $\langle\sqrt{n}\rangle$ is divergent.
- The above is not the only way a sequence can diverge.
- Example 4.7. The sequence $\left\langle(-1)^{n}\right\rangle$ is divergent.
- Proof. The idea of the proof is simple. If it were to be convergent, then successive terms will have to get closer together. But here they are spaced 2 apart.
- We argue by contradiction and use the triangle inequality once more.
- Example 4.6. The sequence $\langle\sqrt{n}\rangle$ is divergent.
- The above is not the only way a sequence can diverge.
- Example 4.7. The sequence $\left\langle(-1)^{n}\right\rangle$ is divergent.
- Proof. The idea of the proof is simple. If it were to be convergent, then successive terms will have to get closer together. But here they are spaced 2 apart.
- We argue by contradiction and use the triangle inequality once more.
- Suppose it converges to ℓ, let $\varepsilon=1$ (any number ≤ 1 would do) and choose N accordingly.
- Example 4.6. The sequence $\langle\sqrt{n}\rangle$ is divergent.
- The above is not the only way a sequence can diverge.
- Example 4.7. The sequence $\left\langle(-1)^{n}\right\rangle$ is divergent.
- Proof. The idea of the proof is simple. If it were to be convergent, then successive terms will have to get closer together. But here they are spaced 2 apart.
- We argue by contradiction and use the triangle inequality once more.
- Suppose it converges to ℓ, let $\varepsilon=1$ (any number ≤ 1 would do) and choose N accordingly.
- Then whenever $n>N$ we have

$$
\begin{aligned}
2 & =\left|(-1)^{n}+(-1)^{n}\right|=\left|(-1)^{n}-(-1)^{n+1}\right| \\
& =\left|(-1)^{n}-\ell-\left((-1)^{n+1}-\ell\right)\right| \\
& \leq\left|(-1)^{n}-\ell\right|+\left|(-1)^{n+1}-\ell\right|<1+1=2
\end{aligned}
$$

which is impossible.

- Example 4.6. The sequence $\langle\sqrt{n}\rangle$ is divergent.
- The above is not the only way a sequence can diverge.
- Example 4.7. The sequence $\left\langle(-1)^{n}\right\rangle$ is divergent.
- Proof. The idea of the proof is simple. If it were to be convergent, then successive terms will have to get closer together. But here they are spaced 2 apart.
- We argue by contradiction and use the triangle inequality once more.
- Suppose it converges to ℓ, let $\varepsilon=1$ (any number ≤ 1 would do) and choose N accordingly.
- Then whenever $n>N$ we have

$$
\begin{aligned}
2 & =\left|(-1)^{n}+(-1)^{n}\right|=\left|(-1)^{n}-(-1)^{n+1}\right| \\
& =\left|(-1)^{n}-\ell-\left((-1)^{n+1}-\ell\right)\right| \\
& \leq\left|(-1)^{n}-\ell\right|+\left|(-1)^{n+1}-\ell\right|<1+1=2
\end{aligned}
$$

which is impossible.

- Note that it diverges even though it is bounded. In other words being bounded is not enough to confer convergence on a sequence.
Introduction to Analysis:

Sequences

Robert C.
Vaughan

Introduction

Convergent Sequences

- How about more complicated sequences such as

$$
\left\langle(1+1 / n)^{n}\right\rangle ?
$$

Robert C.
Vaughan

- How about more complicated sequences such as

$$
\left\langle(1+1 / n)^{n}\right\rangle ?
$$

- It could be annoying to have to use the ε definition.
- How about more complicated sequences such as

$$
\left\langle(1+1 / n)^{n}\right\rangle ?
$$

- It could be annoying to have to use the ε definition.
- There are theorems which enable us to work round this.

Theorem 4 (The Combination Theorem for sequences)

Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$, (ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.

- How about more complicated sequences such as

$$
\left\langle(1+1 / n)^{n}\right\rangle ?
$$

- It could be annoying to have to use the ε definition.
- There are theorems which enable us to work round this.

Theorem 4 (The Combination Theorem for sequences)

Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$, (ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.

- We will see many variants of this as the subject progresses.

Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$, (ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.

- We will see many variants of this as the subject progresses.
- In part (iii) there is a convention. Since $\beta \neq 0$ we are confident that there is some N_{0} so that for $n>N_{0}$ we have $b_{n} \neq 0$. It is possible there are $n \leq N_{0}$ with $b_{n}=0$. In that case the convention is that we suppose that $n>N_{0}$ and ignore the $n \leq N_{0}$.

Robert C. Vaughan

- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$, (ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.
- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$, (ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.
- Proof. (i) Let $\varepsilon>0$. Choose N_{1}, N_{2} so that

$$
\begin{aligned}
& \left|a_{n}-\alpha\right|<\frac{\varepsilon}{2(1+|\lambda|)} \text { whenever } n>N_{1} \\
& \left|b_{n}-\beta\right|<\frac{\varepsilon}{2(1+|\mu|)} \text { whenever } n>N_{2}
\end{aligned}
$$

- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$, (ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.
- Proof. (i) Let $\varepsilon>0$. Choose N_{1}, N_{2} so that

$$
\begin{aligned}
& \left|a_{n}-\alpha\right|<\frac{\varepsilon}{2(1+|\lambda|)} \text { whenever } n>N_{1} \\
& \left|b_{n}-\beta\right|<\frac{\varepsilon}{2(1+|\mu|)} \text { whenever } n>N_{2}
\end{aligned}
$$

- Let $N=\max \left\{N_{1}, N_{2}\right\}$ and suppose that $n>N$.
- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$, (ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.
- Proof. (i) Let $\varepsilon>0$. Choose N_{1}, N_{2} so that

$$
\begin{aligned}
& \left|a_{n}-\alpha\right|<\frac{\varepsilon}{2(1+|\lambda|)} \text { whenever } n>N_{1} \\
& \left|b_{n}-\beta\right|<\frac{\varepsilon}{2(1+|\mu|)} \text { whenever } n>N_{2}
\end{aligned}
$$

- Let $N=\max \left\{N_{1}, N_{2}\right\}$ and suppose that $n>N$.
- Then, by the triangle inequality,

$$
\begin{aligned}
& \left|\lambda a_{n}+\mu b_{n}-\lambda \alpha-\mu \beta\right|=\left|\lambda\left(a_{n}-\alpha\right)+\mu\left(b_{n}-\beta\right)\right| \\
& \leq|\lambda|\left|a_{n}-\alpha\right|+|\mu|\left|b_{n}-\beta\right| \\
& \leq|\lambda| \frac{\varepsilon}{2(1+|\lambda|)}+|\mu| \frac{\varepsilon}{2(1+|\mu|)}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Robert C. Vaughan

- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$, (ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$, (ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
- Proof. (ii) We relate $a_{n} b_{n}-\alpha \beta$ to $a_{n}-\alpha$ and $b_{n}-\beta$ via

$$
\begin{equation*}
a_{n} b_{n}-\alpha \beta=\left(a_{n}-\alpha\right) b_{n}+\alpha\left(b_{n}-\beta\right) \tag{2.1}
\end{equation*}
$$

- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$, (ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
- Proof. (ii) We relate $a_{n} b_{n}-\alpha \beta$ to $a_{n}-\alpha$ and $b_{n}-\beta$ via

$$
\begin{equation*}
a_{n} b_{n}-\alpha \beta=\left(a_{n}-\alpha\right) b_{n}+\alpha\left(b_{n}-\beta\right) \tag{2.1}
\end{equation*}
$$

- $\left\langle b_{n}\right\rangle$ is convergent. So there is an H so that $\left|b_{n}\right| \leq H$.
- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$,
(ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
- Proof. (ii) We relate $a_{n} b_{n}-\alpha \beta$ to $a_{n}-\alpha$ and $b_{n}-\beta$ via

$$
\begin{equation*}
a_{n} b_{n}-\alpha \beta=\left(a_{n}-\alpha\right) b_{n}+\alpha\left(b_{n}-\beta\right) \tag{2.1}
\end{equation*}
$$

- $\left\langle b_{n}\right\rangle$ is convergent. So there is an H so that $\left|b_{n}\right| \leq H$.
- Now we can imitate (i). Let $\varepsilon>0$, choose N_{1}, N_{2} so that

$$
\begin{aligned}
& \left|a_{n}-\alpha\right|<\frac{\varepsilon}{2(1+H)} \text { whenever } n>N_{1} \\
& \left|b_{n}-\beta\right|<\frac{\varepsilon}{2(1+|\alpha|)} \text { whenever } n>N_{2}
\end{aligned}
$$

and suppose that $n>N=\max \left\{N_{1}, N_{2}\right\}$.

- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(i) $\left\langle\lambda a_{n}+\mu b_{n}\right\rangle$ converges to $\lambda \alpha+\mu \beta$ as $n \rightarrow \infty$,
(ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
- Proof. (ii) We relate $a_{n} b_{n}-\alpha \beta$ to $a_{n}-\alpha$ and $b_{n}-\beta$ via

$$
\begin{equation*}
a_{n} b_{n}-\alpha \beta=\left(a_{n}-\alpha\right) b_{n}+\alpha\left(b_{n}-\beta\right) \tag{2.1}
\end{equation*}
$$

- $\left\langle b_{n}\right\rangle$ is convergent. So there is an H so that $\left|b_{n}\right| \leq H$.
- Now we can imitate (i). Let $\varepsilon>0$, choose N_{1}, N_{2} so that

$$
\begin{aligned}
& \left|a_{n}-\alpha\right|<\frac{\varepsilon}{2(1+H)} \text { whenever } n>N_{1} \\
& \left|b_{n}-\beta\right|<\frac{\varepsilon}{2(1+|\alpha|)} \text { whenever } n>N_{2}
\end{aligned}
$$

and suppose that $n>N=\max \left\{N_{1}, N_{2}\right\}$.

- Then, by (2.1), and the triangle inequality $\left|a_{n} b_{n}-\alpha \beta\right| \leq$

$$
\begin{aligned}
& \left|a_{n}-\alpha\right|\left|b_{n}\right|+|\alpha|\left|b_{n}-\beta\right| \leq \frac{\varepsilon}{2(1+H)} H+|\alpha| \frac{\varepsilon}{2(1+|\alpha|)} \\
& \quad<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Introduction to Analysis: Sequences

Robert C. Vaughan

- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.

Robert C. Vaughan

- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.
- Proof. (iii) In view of (ii), it suffices to prove that

$$
\frac{1}{b_{n}} \rightarrow \frac{1}{\beta} \text { as } n \rightarrow \infty .
$$

- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.
- Proof. (iii) In view of (ii), it suffices to prove that

$$
\frac{1}{b_{n}} \rightarrow \frac{1}{\beta} \text { as } n \rightarrow \infty .
$$

- Somehow we need to make use of $\beta \neq 0$. From the special case $\varepsilon=\frac{1}{2}|\beta|$ we know that there is an N_{1} such that whenever $n>N_{1}$ we have $\left|b_{n}-\beta\right|<\frac{1}{2}|\beta|$ so that by the triangle inequality we have $\left|b_{n}\right|>|\beta| / 2$.
- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.
- Proof. (iii) In view of (ii), it suffices to prove that

$$
\frac{1}{b_{n}} \rightarrow \frac{1}{\beta} \text { as } n \rightarrow \infty .
$$

- Somehow we need to make use of $\beta \neq 0$. From the special case $\varepsilon=\frac{1}{2}|\beta|$ we know that there is an N_{1} such that whenever $n>N_{1}$ we have $\left|b_{n}-\beta\right|<\frac{1}{2}|\beta|$ so that by the triangle inequality we have $\left|b_{n}\right|>|\beta| / 2$.
- Now choose an arbitrary $\varepsilon>0$ and N_{2} so that whenever $n>N_{2}$ we have $\left|b_{n}-\beta\right|<\varepsilon|\beta|^{2} /(2)$.
- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.
- Proof. (iii) In view of (ii), it suffices to prove that

$$
\frac{1}{b_{n}} \rightarrow \frac{1}{\beta} \text { as } n \rightarrow \infty .
$$

- Somehow we need to make use of $\beta \neq 0$. From the special case $\varepsilon=\frac{1}{2}|\beta|$ we know that there is an N_{1} such that whenever $n>N_{1}$ we have $\left|b_{n}-\beta\right|<\frac{1}{2}|\beta|$ so that by the triangle inequality we have $\left|b_{n}\right|>|\beta| / 2$.
- Now choose an arbitrary $\varepsilon>0$ and N_{2} so that whenever $n>N_{2}$ we have $\left|b_{n}-\beta\right|<\varepsilon|\beta|^{2} /(2)$.
- Let $N=\max \left\{N_{1}, N_{2}\right\}$.
- Theorem 4. Suppose that $\left\langle a_{n}\right\rangle$ converges to α and $\left\langle b_{n}\right\rangle$ converges to β as $n \rightarrow \infty$, and let λ and μ be real numbers. Then
(ii) $\left\langle a_{n} b_{n}\right\rangle$ converges to $\alpha \beta$ as $n \rightarrow \infty$.
(iii) If $\beta \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{\alpha}{\beta}$ as $n \rightarrow \infty$.
- Proof. (iii) In view of (ii), it suffices to prove that

$$
\frac{1}{b_{n}} \rightarrow \frac{1}{\beta} \text { as } n \rightarrow \infty .
$$

- Somehow we need to make use of $\beta \neq 0$. From the special case $\varepsilon=\frac{1}{2}|\beta|$ we know that there is an N_{1} such that whenever $n>N_{1}$ we have $\left|b_{n}-\beta\right|<\frac{1}{2}|\beta|$ so that by the triangle inequality we have $\left|b_{n}\right|>|\beta| / 2$.
- Now choose an arbitrary $\varepsilon>0$ and N_{2} so that whenever $n>N_{2}$ we have $\left|b_{n}-\beta\right|<\varepsilon|\beta|^{2} /(2)$.
- Let $N=\max \left\{N_{1}, N_{2}\right\}$.
- Then whenever $n>N$ we have

$$
\left|\frac{1}{b_{n}}-\frac{1}{\beta}\right|=\left|\frac{\beta-b_{n}}{b_{n} \beta}\right|=\frac{\left|\beta-b_{n}\right|}{\left|b_{n}\right||\beta|}<\frac{2\left|\beta-b_{n}\right|}{|\beta|^{2}}<\varepsilon .
$$

- Example 4.8. Prove that

$$
\lim _{n \rightarrow \infty} \frac{n^{4}-3 n^{2}+5}{4 n^{4}+5 n^{3}-3 n}=\frac{1}{4}
$$

Convergent Sequences

- Example 4.8. Prove that

$$
\lim _{n \rightarrow \infty} \frac{n^{4}-3 n^{2}+5}{4 n^{4}+5 n^{3}-3 n}=\frac{1}{4}
$$

- Proof. We have

$$
\frac{n^{4}-3 n^{2}+5}{4 n^{4}+5 n^{3}-3 n}=\frac{1-3 n^{-2}+5 n^{-4}}{4+5 n^{-1}-3 n^{-3}}
$$

Robert C. Vaughan

- Example 4.8. Prove that

$$
\lim _{n \rightarrow \infty} \frac{n^{4}-3 n^{2}+5}{4 n^{4}+5 n^{3}-3 n}=\frac{1}{4}
$$

- Proof. We have

$$
\frac{n^{4}-3 n^{2}+5}{4 n^{4}+5 n^{3}-3 n}=\frac{1-3 n^{-2}+5 n^{-4}}{4+5 n^{-1}-3 n^{-3}}
$$

- and we know from Example 4.3. 1. that $n^{-1} \rightarrow 0$ as $n \rightarrow \infty$ and that $\lim _{n \rightarrow \infty} c=c$.
- Example 4.8. Prove that

$$
\lim _{n \rightarrow \infty} \frac{n^{4}-3 n^{2}+5}{4 n^{4}+5 n^{3}-3 n}=\frac{1}{4}
$$

- Proof. We have

$$
\frac{n^{4}-3 n^{2}+5}{4 n^{4}+5 n^{3}-3 n}=\frac{1-3 n^{-2}+5 n^{-4}}{4+5 n^{-1}-3 n^{-3}}
$$

- and we know from Example 4.3. 1. that $n^{-1} \rightarrow 0$ as $n \rightarrow \infty$ and that $\lim _{n \rightarrow \infty} c=c$.
- Hence we can apply Theorem 4.4 multiple times and obtain successively

$$
\begin{aligned}
& n^{-2} \rightarrow 0, \quad n^{-3} \rightarrow 0, \quad n^{-4} \rightarrow 0 \\
& 1-3 n^{-2}+5 n^{-4} \rightarrow 1 \\
& 4+5 n^{-1}-3 n^{-3} \rightarrow 4 \\
& \frac{1-3 n^{-2}+5 n^{-4}}{4+5 n^{-1}-3 n^{-3}} \rightarrow \frac{1}{4}
\end{aligned}
$$

Introduction to Analysis: Sequences

Robert C.
Vaughan

Introduction
Convergent Sequences Infinity

- What if we do not have an exact formula for the general term of the sequence?

Robert C.
Vaughan

- What if we do not have an exact formula for the general term of the sequence?
- The next theorem is very useful in such circumstances.

Theorem 5 (The Sandwich Theorem)

Suppose that $\left\langle a_{n}\right\rangle,\left\langle b_{n}\right\rangle,\left\langle c_{n}\right\rangle$ are three real sequences with $a_{n} \leq b_{n} \leq c_{n}$ for every $n \in \mathbb{N}$, and $a_{n} \rightarrow \ell$ as $n \rightarrow \infty$ and $c_{n} \rightarrow \ell$ as $n \rightarrow \infty$. Then $b_{n} \rightarrow \ell$ as $n \rightarrow \infty$

- What if we do not have an exact formula for the general term of the sequence?
- The next theorem is very useful in such circumstances.

Theorem 5 (The Sandwich Theorem)

Suppose that $\left\langle a_{n}\right\rangle,\left\langle b_{n}\right\rangle,\left\langle c_{n}\right\rangle$ are three real sequences with $a_{n} \leq b_{n} \leq c_{n}$ for every $n \in \mathbb{N}$, and $a_{n} \rightarrow \ell$ as $n \rightarrow \infty$ and $c_{n} \rightarrow \ell$ as $n \rightarrow \infty$. Then $b_{n} \rightarrow \ell$ as $n \rightarrow \infty$

- Let $\varepsilon>0$. Choose N_{1} so that whenever $n>N_{1}$ we have $\left|a_{n}-\ell\right|<\varepsilon$ and choose N_{2} so that whenever $n>N_{2}$ we have $\left|c_{n}-\ell\right|<\varepsilon$.
- What if we do not have an exact formula for the general term of the sequence?
- The next theorem is very useful in such circumstances.

Theorem 5 (The Sandwich Theorem)

Suppose that $\left\langle a_{n}\right\rangle,\left\langle b_{n}\right\rangle,\left\langle c_{n}\right\rangle$ are three real sequences with $a_{n} \leq b_{n} \leq c_{n}$ for every $n \in \mathbb{N}$, and $a_{n} \rightarrow \ell$ as $n \rightarrow \infty$ and $c_{n} \rightarrow \ell$ as $n \rightarrow \infty$. Then $b_{n} \rightarrow \ell$ as $n \rightarrow \infty$

- Let $\varepsilon>0$. Choose N_{1} so that whenever $n>N_{1}$ we have $\left|a_{n}-\ell\right|<\varepsilon$ and choose N_{2} so that whenever $n>N_{2}$ we have $\left|c_{n}-\ell\right|<\varepsilon$.
- Let $N=\max \left\{N_{1}, N_{2}\right\}$.
- What if we do not have an exact formula for the general term of the sequence?
- The next theorem is very useful in such circumstances.

Theorem 5 (The Sandwich Theorem)

Suppose that $\left\langle a_{n}\right\rangle,\left\langle b_{n}\right\rangle,\left\langle c_{n}\right\rangle$ are three real sequences with $a_{n} \leq b_{n} \leq c_{n}$ for every $n \in \mathbb{N}$, and $a_{n} \rightarrow \ell$ as $n \rightarrow \infty$ and $c_{n} \rightarrow \ell$ as $n \rightarrow \infty$. Then $b_{n} \rightarrow \ell$ as $n \rightarrow \infty$

- Let $\varepsilon>0$. Choose N_{1} so that whenever $n>N_{1}$ we have $\left|a_{n}-\ell\right|<\varepsilon$ and choose N_{2} so that whenever $n>N_{2}$ we have $\left|c_{n}-\ell\right|<\varepsilon$.
- Let $N=\max \left\{N_{1}, N_{2}\right\}$.
- Then, whenever $n>N$, we have

$$
\begin{gathered}
-\varepsilon<a_{n}-\ell \leq b_{n}-\ell \leq c_{n}-\ell<\varepsilon \\
-\varepsilon<b_{n}-\ell<\varepsilon, \\
\left|b_{n}-\ell\right|<\varepsilon
\end{gathered}
$$

- Example 4.9. Suppose that $|x|<1$. Then $x^{n} \rightarrow 0$ as $n \rightarrow \infty$.

Introduction

Convergent Sequences

- Example 4.9. Suppose that $|x|<1$. Then $x^{n} \rightarrow 0$ as $n \rightarrow \infty$.
- Proof. If $x=0$, so that $x^{n}=0$, then we already know the result.
- Example 4.9. Suppose that $|x|<1$. Then $x^{n} \rightarrow 0$ as $n \rightarrow \infty$.
- Proof. If $x=0$, so that $x^{n}=0$, then we already know the result.
- Thus we may suppose that $x \neq 0$, and thus $|x|^{-1}>1$.
- Example 4.9. Suppose that $|x|<1$. Then $x^{n} \rightarrow 0$ as $n \rightarrow \infty$.
- Proof. If $x=0$, so that $x^{n}=0$, then we already know the result.
- Thus we may suppose that $x \neq 0$, and thus $|x|^{-1}>1$.
- Let $y=|x|^{-1}-1$ so that $y>0$ and $|x|^{-1}=1+y$.
- Example 4.9. Suppose that $|x|<1$. Then $x^{n} \rightarrow 0$ as $n \rightarrow \infty$.
- Proof. If $x=0$, so that $x^{n}=0$, then we already know the result.
- Thus we may suppose that $x \neq 0$, and thus $|x|^{-1}>1$.
- Let $y=|x|^{-1}-1$ so that $y>0$ and $|x|^{-1}=1+y$.
- By the binomial inequality

$$
|x|^{-n}=(1+y)^{n} \geq 1+n y>n y .
$$

- Example 4.9. Suppose that $|x|<1$. Then $x^{n} \rightarrow 0$ as $n \rightarrow \infty$.
- Proof. If $x=0$, so that $x^{n}=0$, then we already know the result.
- Thus we may suppose that $x \neq 0$, and thus $|x|^{-1}>1$.
- Let $y=|x|^{-1}-1$ so that $y>0$ and $|x|^{-1}=1+y$.
- By the binomial inequality

$$
|x|^{-n}=(1+y)^{n} \geq 1+n y>n y .
$$

- Hence

$$
0 \leq|x|^{n}<\frac{1}{n y}
$$

- Example 4.9. Suppose that $|x|<1$. Then $x^{n} \rightarrow 0$ as $n \rightarrow \infty$.
- Proof. If $x=0$, so that $x^{n}=0$, then we already know the result.
- Thus we may suppose that $x \neq 0$, and thus $|x|^{-1}>1$.
- Let $y=|x|^{-1}-1$ so that $y>0$ and $|x|^{-1}=1+y$.
- By the binomial inequality

$$
|x|^{-n}=(1+y)^{n} \geq 1+n y>n y .
$$

- Hence

$$
0 \leq|x|^{n}<\frac{1}{n y}
$$

- Now both sides have limit 0 so we can apply the sandwich theorem.
Introduction to Analysis: Sequences
Robert C.
Vaughan

Introduction

Convergent Sequences

- Example 4.10. Suppose $x>0$. Then $x^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$.

Robert C. Vaughan

- Example 4.10. Suppose $x>0$. Then $x^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$.
- By $x^{1 / n}$ we mean that positive number t such that $t^{n}=x$.

Robert C. Vaughan

- Example 4.10. Suppose $x>0$. Then $x^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$.
- By $x^{1 / n}$ we mean that positive number t such that $t^{n}=x$.
- We have not established that such an object exists. Shortly we will look at $2^{1 / 2}$. However after we have studied monotonic sequences Chapter 5 the proofs become easier.
- Example 4.10. Suppose $x>0$. Then $x^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$.
- By $x^{1 / n}$ we mean that positive number t such that $t^{n}=x$.
- We have not established that such an object exists.

Shortly we will look at $2^{1 / 2}$. However after we have studied monotonic sequences Chapter 5 the proofs become easier.

- Proof. We first suppose that $x \geq 1$.
- Example 4.10. Suppose $x>0$. Then $x^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$.
- By $x^{1 / n}$ we mean that positive number t such that $t^{n}=x$.
- We have not established that such an object exists. Shortly we will look at $2^{1 / 2}$. However after we have studied monotonic sequences Chapter 5 the proofs become easier.
- Proof. We first suppose that $x \geq 1$.
- Then $x^{1 / n} \geq 1$, for if $x^{1 / n}<1$, then it would follow by the order axioms and induction that $x=\left(x^{1 / n}\right)^{n}<1^{n}=1$.
- Example 4.10. Suppose $x>0$. Then $x^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$.
- By $x^{1 / n}$ we mean that positive number t such that $t^{n}=x$.
- We have not established that such an object exists.

Shortly we will look at $2^{1 / 2}$. However after we have studied monotonic sequences Chapter 5 the proofs become easier.

- Proof. We first suppose that $x \geq 1$.
- Then $x^{1 / n} \geq 1$, for if $x^{1 / n}<1$, then it would follow by the order axioms and induction that $x=\left(x^{1 / n}\right)^{n}<1^{n}=1$.
- Let $y_{n}=x^{1 / n}-1$, so $y_{n} \geq 0$ and $\left(1+y_{n}\right)^{n}=\left(x^{1 / n}\right)^{n}=x$.
- Example 4.10. Suppose $x>0$. Then $x^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$.
- By $x^{1 / n}$ we mean that positive number t such that $t^{n}=x$.
- We have not established that such an object exists. Shortly we will look at $2^{1 / 2}$. However after we have studied monotonic sequences Chapter 5 the proofs become easier.
- Proof. We first suppose that $x \geq 1$.
- Then $x^{1 / n} \geq 1$, for if $x^{1 / n}<1$, then it would follow by the order axioms and induction that $x=\left(x^{1 / n}\right)^{n}<1^{n}=1$.
- Let $y_{n}=x^{1 / n}-1$, so $y_{n} \geq 0$ and $\left(1+y_{n}\right)^{n}=\left(x^{1 / n}\right)^{n}=x$.
- Hence, by the binomial inequality,
$x=\left(1+y_{n}\right)^{n} \geq 1+n y_{n}=1+n\left(x^{1 / n}-1\right)$ which can be rearranged to give $1 \leq x^{1 / n} \leq 1+\frac{x-1}{n}$ and again the sandwich theorem comes to our aid.
- Example 4.10. Suppose $x>0$. Then $x^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$.
- By $x^{1 / n}$ we mean that positive number t such that $t^{n}=x$.
- We have not established that such an object exists.

Shortly we will look at $2^{1 / 2}$. However after we have studied monotonic sequences Chapter 5 the proofs become easier.

- Proof. We first suppose that $x \geq 1$.
- Then $x^{1 / n} \geq 1$, for if $x^{1 / n}<1$, then it would follow by the order axioms and induction that $x=\left(x^{1 / n}\right)^{n}<1^{n}=1$.
- Let $y_{n}=x^{1 / n}-1$, so $y_{n} \geq 0$ and $\left(1+y_{n}\right)^{n}=\left(x^{1 / n}\right)^{n}=x$.
- Hence, by the binomial inequality,
$x=\left(1+y_{n}\right)^{n} \geq 1+n y_{n}=1+n\left(x^{1 / n}-1\right)$ which can be rearranged to give $1 \leq x^{1 / n} \leq 1+\frac{x-1}{n}$ and again the sandwich theorem comes to our aid.
- If instead we have $0<x<1$, then

$$
\frac{1}{x^{1 / n}}=\left(\frac{1}{x}\right)^{1 / n} \rightarrow 1
$$

- Example 4.10. Suppose $x>0$. Then $x^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$.
- By $x^{1 / n}$ we mean that positive number t such that $t^{n}=x$.
- We have not established that such an object exists.

Shortly we will look at $2^{1 / 2}$. However after we have studied monotonic sequences Chapter 5 the proofs become easier.

- Proof. We first suppose that $x \geq 1$.
- Then $x^{1 / n} \geq 1$, for if $x^{1 / n}<1$, then it would follow by the order axioms and induction that $x=\left(x^{1 / n}\right)^{n}<1^{n}=1$.
- Let $y_{n}=x^{1 / n}-1$, so $y_{n} \geq 0$ and $\left(1+y_{n}\right)^{n}=\left(x^{1 / n}\right)^{n}=x$.
- Hence, by the binomial inequality,
$x=\left(1+y_{n}\right)^{n} \geq 1+n y_{n}=1+n\left(x^{1 / n}-1\right)$ which can be rearranged to give $1 \leq x^{1 / n} \leq 1+\frac{x-1}{n}$ and again the sandwich theorem comes to our aid.
- If instead we have $0<x<1$, then

$$
\frac{1}{x^{1 / n}}=\left(\frac{1}{x}\right)^{1 / n} \rightarrow 1
$$

- Hence, by the combination theorem we have the desired conclusion.

Divergence to Infinity

- Definition 4.3. A sequence $\left\langle a_{n}\right\rangle$ diverges to $+\infty$ (written $\left.x_{n} \rightarrow+\infty\right)$ as $n \rightarrow \infty$ when for any $B>0$ there exists a real number N such that whenever $n>N$ we have $a_{n}>B$. Likewise $\left\langle a_{n}\right\rangle$ diverges to $-\infty$ (and we write $x_{n} \rightarrow-\infty$) as $n \rightarrow \infty$ when for any $b<0$ there exists a real number N such that whenever $n>N$ we have $a_{n}<b$.

Divergence to Infinity

Robert C.
Vaughan

- Definition 4.3. A sequence $\left\langle a_{n}\right\rangle$ diverges to $+\infty$ (written $\left.x_{n} \rightarrow+\infty\right)$ as $n \rightarrow \infty$ when for any $B>0$ there exists a real number N such that whenever $n>N$ we have $a_{n}>B$. Likewise $\left\langle a_{n}\right\rangle$ diverges to $-\infty$ (and we write $x_{n} \rightarrow-\infty$) as $n \rightarrow \infty$ when for any $b<0$ there exists a real number N such that whenever $n>N$ we have $a_{n}<b$.
- Example 4.11 1. Let $a_{n}=\sqrt{n}$ for $n \in \mathbb{N}$. Then $\left\langle a_{n}\right\rangle$ diverges to $+\infty$.

2. Let $b_{n}=n+(-1)^{n} \sqrt{n}$. Then $\left\langle b_{n}\right\rangle$ diverges to $+\infty$.

Divergence to Infinity

Robert C.
Vaughan

- Definition 4.3. A sequence $\left\langle a_{n}\right\rangle$ diverges to $+\infty$ (written $\left.x_{n} \rightarrow+\infty\right)$ as $n \rightarrow \infty$ when for any $B>0$ there exists a real number N such that whenever $n>N$ we have $a_{n}>B$. Likewise $\left\langle a_{n}\right\rangle$ diverges to $-\infty$ (and we write $x_{n} \rightarrow-\infty$) as $n \rightarrow \infty$ when for any $b<0$ there exists a real number N such that whenever $n>N$ we have $a_{n}<b$.
- Example 4.11 1. Let $a_{n}=\sqrt{n}$ for $n \in \mathbb{N}$. Then $\left\langle a_{n}\right\rangle$ diverges to $+\infty$.

2. Let $b_{n}=n+(-1)^{n} \sqrt{n}$. Then $\left\langle b_{n}\right\rangle$ diverges to $+\infty$.

- Proof. 1. Let $B>0$ and choose $N=B^{2}$. Then, whenever $n>N$ we have $a_{n}=\sqrt{n}>\sqrt{N}=B$.
- 2. Let $B>0$ and choose $N=(\sqrt{B}+1)^{2}$. Then

$$
\begin{aligned}
& b_{n}=n+(-1)^{n} \sqrt{n} \geq n-\sqrt{n}=\left(\sqrt{n}-\frac{1}{2}\right)^{2}-\frac{1}{4} \\
& >\left(\sqrt{N}-\frac{1}{2}\right)^{2}-\frac{1}{4}=\left(\sqrt{B}+\frac{1}{2}\right)^{2}-\frac{1}{4}=B+\sqrt{B}>B
\end{aligned}
$$

