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• We have seen that the natural numbers N are embedded
in Z (“n” is the equivalence class A(n + 1, 1)) and that is
embedded in Q which in turn is embedded in R.

• We now see what impact the Continuum property has on
N.

Theorem 1 (Archimedean Property)

The set N is unbounded above.

• Proof. We argue by contradiction. Suppose N is bounded
above. Since 1 ∈ N we have N ̸= ∅. Thus B = supN
exists. Then B − 1 is not an upper bound of N. Hence
there is an element n of N such that B − 1 < n. But
n + 1 ∈ N and B < n + 1 gives a contradiction. □

• It is perhaps surprising that the continuum property makes
a crucial contribution.

• It is immediate from the fact that 0 < 1 and the principle
of induction that N is bounded below by 1.
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• There are many ways we use this.

• Example 3.1 Let

A =

{
1

n
: n ∈ N

}
.

Then A is bounded, and infA = 0, supA = 1.

• Proof. We have 1/1 = 1 ∈ A, so A ≠ ∅.
• Since n ≥ 1 for n ∈ N we have 1/n ≤ 1.

• Hence A is bounded above by 1 and as 1 ∈ A there
cannot be any smaller upper bound.

• Thus supA = 1.

• We also have n ≥ 1 > 0. Thus 1/n > 0 also, so 0 is a
lower bound for A. Hence infA exists. We now show that
there is no larger lower bound. We argue by contradiction.
Let b = infA and suppose that b > 0. Then for every
n ∈ N we have b ≤ 1/n. Hence n ≤ 1/b which contradicts
the Archimedean property.
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• Since n ≥ 1 for n ∈ N we have 1/n ≤ 1.

• Hence A is bounded above by 1 and as 1 ∈ A there
cannot be any smaller upper bound.

• Thus supA = 1.

• We also have n ≥ 1 > 0. Thus 1/n > 0 also, so 0 is a
lower bound for A. Hence infA exists. We now show that
there is no larger lower bound. We argue by contradiction.
Let b = infA and suppose that b > 0. Then for every
n ∈ N we have b ≤ 1/n. Hence n ≤ 1/b which contradicts
the Archimedean property.



Introduction
to Analysis

Robert C.
Vaughan

The
Archmidean
Property

The Principle
of Induction

• There are many ways we use this.

• Example 3.1 Let

A =

{
1

n
: n ∈ N

}
.

Then A is bounded, and infA = 0, supA = 1.

• Proof. We have 1/1 = 1 ∈ A, so A ≠ ∅.
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• This is the first instance in this text of a “limiting”
process, and the connection with the Archimedean
property, and through that the continuum property is
crucial.

• We have not yet defined what we mean by a limit, but it
suggests that such a concept is already built in to the
definition of the continuum property.
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• Here is another example.

• Example 3.2. Let

B =

{
2n

3n − 1
: n ∈ N

}
.

Then B is bounded, and inf B = 2
3 , supB = 1.

• Proof. There are quite a lot of details which need to be
attended to.

• We first deal with the upper bound.

• Such proofs should be divided into three parts. (i) Prove
that B ̸= ∅, (ii) prove that 1 is an upper bound, and (iii)
prove that there is no smaller upper bound.
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• (i) We have 1 = 2×1
3×1−1 ∈ B, so 1 ∈ B and B ̸= ∅.

• (ii) Since n ≥ 1 for n ∈ N we have
3n − 1 = 2n + n − 1 ≥ 2n.

• Hence 2n
3n−1 ≤ 2n

2n = 1 and so 1 is an upper bound.

• (iii) As 1 ∈ B there can be no smaller upper bound.

• We can deal with the lower bound in the same kind of way.

• We have already established that the set is non-empty in
(i) above.

• It remains to show (ii) that 2
3 is a lower bound and (iii)

that there is no larger lower bound.

• (ii) We have 3n − 1 < 3n for each n ∈ N, so that
2n

3n−1 > 2n
3n = 2

3 . Hence
2
3 is a lower bound for the set.

• Thus b = inf B exists and b ≥ 2
3 .
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• (iii) We now prove that b = 2
3 . This is the trickiest part of

the question. We argue by contradiction.

• Suppose on the contrary that b > 2
3 , so that b − 2

3 > 0.

• By the Archimedean property we can choose an n ∈ N so
that

n >
b

3b − 2
.

• Then, as b > 2/3,

3bn − 2n = n(3b − 2) > b,

b(3n − 1) = 3bn − b > 2n, .

• so that
2n

3n − 1
< b

contradicting the assumption on b.
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• Here is something which one might think is self evident.

Theorem 2

Every non-empty subset of N has a minimum.

• Before embarking on the proof we should be clear what we
mean by the maximum or minimum of a set.

• Definition 3.1. When a set A of real numbers has the
property that it has a lower bound with m ∈ A, then we
say that m is the minimum of A.

• When a set B of real numbers has the property that it has
an upper bound M with M ∈ B, then we say that M is the
maximum of B.

• Example 3.3. 1. The set N has 1 as its minimum.
• 2. The open interval (2, 3) has neither a max. nor a min.
• 3. The closed interval [1, 2] has 1 as min. and 2 as max.
• 4. 2. shows that, even when a set has an inf. or a sup.,
that does not guarantee that it has a corresponding min.
or max. In other words, extrema may not be members of
the set.
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• Now we return to it Proof of Theorem 2. Let A be a
non-empty subset of N.

• Every element of N is bounded below by 1 so A is
bounded below.

• Let b = infA.

• Then b + 1 is not a lower bound.

• Hence there is an element n of A such that n < b + 1.

• If m ≥ n for every element m of A, then n is a lower
bound of A and n ∈ A, and we would be done.

• If there would be an element m of A with m < n, then we
would have m + 1 ≤ n < b + 1, so that m would satisfy
m < b which contradicts b being a lower bound of A.
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• This principle can be extended to Z.

• Example 3.4. Every non-empty subset of Z which is
bounded below has a minimum.

• Proof. Let S be the set and let b be a lower bound for S .

• By the Archimedean property there is an n ∈ N such that
n > −b.

• Let T = {n + s : s ∈ S}.
• For each s ∈ S we have s + n > b + (−b) = 0, so that
s + n ≥ 1.

• Hence T is a subset of N and so by Theorem 2 has a
minimum m.

• Thus m ∈ T , so that and m ≤ s + n for every s ∈ S and
m = s0 + n for some s0 ∈ S.

• Therefore m − n ≤ s for every s ∈ S and m − n = s0 ∈ S.
• Hence m − n is the minimum for S.
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• Another consequence of the Archimedean property is that
the rationals are dense amongst the real numbers.

Theorem 3

Suppose that a and b are real numbers with a < b. Then there
is a rational number r with a < r < b.

• By a rational number we mean r = m
n with m ∈ Z and

n ∈ N. We also use the term irrational to mean a real
number which is not rational.

• Proof. First we find a suitable n.
• Since a < b we have 0 < b − a and so 0 < 1

b−a .
• By the Archimedean property there is an n ∈ N such that
n > 1

b−a .
• Hence n(b − a) > 1, and so 1 + na < nb.
• Let A be the subset of Z, A = {ℓ ∈ Z : ℓ > na}.
• Then from above A has a minimal element. Call it m. If
m ≥ nb, then we would have m − 1 ≥ nb − 1 > na,

• so m − 1 ∈ A contradicting the minimality of m.
• Thus na < m < nb and dividing by n gives the result.
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• I want to say something more about the principle of
induction, that is, the fourth Peano Axiom and look at
some applications which are a bit different from the kind
that are normally met when the principle is introduced.

• We recall that the principle of induction says that if S is a
set with the properties that (a) 1 ∈ S and (b) whenever
n ∈ S we have n + 1 ∈ S, then S = N.

• It is often convenient to think of our set S as having some
kind of defining statement for n to be an element. That is,
there is some proposition or statement P(n) which we
would like to prove is true for every n ∈ N.

• Then we take

S = {n : P(n) is true}.

• Thus if we can show that
(i) P(1) is true,
(ii) whenever P(n) is true P(n + 1) is also true,
then it follows that S = N and P(n) is true for every
n ∈ N.
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• Example 3.5. 1. A classic example is the formula

1 + 2 + · · ·+ n = 1
2n(n + 1).

• Proof. Clearly it is true for n = 1.

• Suppose it holds for a particular n. Then

1+2+· · ·+n+(n+1) = 1
2n(n+1)+(n+1) = 1

2(n+1)(n+2)

and so it also holds with n replaced by n + 1.

• 2. A more interesting example is to prove the proposition
P(n), that when n ≥ 4 we have n2 ≤ 2n.

• Proof. Let S be the set of n for which P(n) is true.

• Since P(n) is not making any claim for n = 1, n = 2,
n = 3, it is trivial that P(1), P(2), P(3) are true. We also
have 42 = 16 = 42 so that P(4) is true.

• Now suppose that n ≥ 4 and P(n) is true. Then 2n+1 =

2.2n ≥ 2n2 = n2 + n2 ≥ n2 +4n ≥ n2 +2n+1 = (n+1)2.

Hence P(n + 1) is true.
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• A different way to organise this would be to think of P(4)
as being the first case. Thus we would prove that
P(n + 3) holds for every n ∈ N.

• 3. Suppose that 0 < x < 1. Then for every n ∈ N we have
0 < xn+1 < xn < 1

• Proof. Suppose that P(n) is the proposition
“0 < xn+1 < xn < 1”.

• Then x < 1 is immediate from the hypothesis, x2 < x
follows from order axiom O4 and we know 0 < x2, so P(1)
holds.

• Suppose P(n) is true. Then 0 < x , so 0 < xn+1.x = xn+2

and xn+2 = xn+1.x < xn.x = xn+1.

• Moreover x < 1 so that xn+1 = xn.x < xn < 1.

• Hence P(n + 1) is true.
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